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Abstract

In this paper, the author studies the quasilinear pa,ra.bolic equation
U= (Gy; (&, £, W) 5, +b:(T; b Wiky +0(Z) T, u)
in @QF={(=,t) |» € R", 0<i<T}, which is unifommly degenerate wherever u=0. Under
some conditions of the coefficients of the equation and the presupposition 0<u(w, t) <M,
the author proves that non-negative weak solutions, u(z, 1), to the equation satisfy the
estimation that, for any (29, %) € @7, -

1_.
= m.m{lz_mlllif-v_u(m, 0), 1} <u(a®, 1%)<C [rﬂgm u(z, 0),

where the constants b and ¢ depend only upon M, T and the coefficients. It is a more exact
description on the finife diffusing speed for the equation which has not been obtained even
for one-dimensional porous medium eq uations.

§ 1.

In the paper [1] we studied existence and uniqueness of the weak solutions fo
the Cauchy problem and the first boundary—value problem for the quasﬂ,mear
parabolic equation

w= (@i (@, ¢, Ws,)o+bi(®, , u)the+c(a, ¥, w), 1.1)
where the matrix (ay)yxy is uniformly degenerate wherever u=0. Now we are going
to discuss some proPerfies of the weak solutions.

B. F. Knerr™, L. A. Caffarelli and A. Friedman™ made systematic studies on
the properties of the weak solutions for one~dimensional porous medium problems.
Afterwards, L. A. Caffareli and A. Friedman™ studied the regularity of the free
boundary for N —dimensional porous medium equation

u=4@") (m>1).
It is 'diffcult to generalize their method to the equation (1.1). In this paper we
obtain some properties of the weak solutions to the equation (1.1), using the method
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given in the paper [2]. It is remarkable that we give a more exact desoription about
the finite diffusing speed for the equation (1.1) which has not been obtained even
for one dimensional problems.
Let R¥ be N-dimensional Euclidean space and Q a bounded open domain in R¥
and 9Q the boundary of Q. Leb |
={(z,t) |w€Q, 0<t<T},
={(z,t) |2€RY, 0<i<T},
I'=2Qx [0, T].
Assmme that the coefficients of the equation (1. 1) satisfy the following
eondlhons
(EA) For any (o,t) €QF,0<u<oco, CR", .
v(Jul) 112 <ay(ot0) e v ([u]) €12, (1.2)
where 4 is a constant and »(s) hag the following properties: ‘
(1) »(s) €0[0,00], »(0) =0 and »(s) >0 if s>0.
(ii) Letb
w=g(u)= J:v(s) ds and its inverse be u=&(w). 1.3)

There exist >0 and m>1 such t,ha,t for any wy,wa: 0<wy<<wy<<§,

) T<Pa(m), ae

where A (%) is non-decreasing and A(7)—0 a8 7—>0*.
(EB) ay(w, t, u), b(s, t, Wby, (, t, w), c,(z, 8, u) (3, j=1, 2, =+, N) are in
O(QF x [0, o)) and satisfy that, for (z,f) €QF and 0<u<co,

V(Ilul) g b’”glcb‘)“iH["u[<”<l@|): (1.5)
c(=, 3, 0,)=0,. (1.6)

where n(z) ig a non—decreasmg funection.

When we consider the weak solutions to (1.1) in QF, the above conditions can
be changed correspondingly. »

Definition 1.1. 4 function u(w, t) defined in QF (or @) is called @ non—negative
weak solution to the equation (1.1) if it is bounded and there ewists @ sequence of positive
classical solutions, {u,(w,t)}, to the equation (1.1) such that the sequence {un(wm, t)}
converges uniformly (or bounded and local uniformly) to u(w,?) in @F (or @F).

In this paper, we always suppose that (EA), (EB) are satisfied and

 0<up(z, ) <M in @F(or QF). a.mn

Obviously, we can get from (1.4) that, for any w; and ws, -

o<y <wy=TI =¢(_Men<mm)

-1 ,
) T B (<,
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if changing appropriately the constant m and the function A(z) (they depend upon
dand M as well at this tlme) It can be proved from (1.4)’ (cf [1]) that for
O<w1<fw2<M

. 1 .
1 we @(’wl) U m ' A
(i) < B <m () @
and that for 0<uy<<ua<<M ' _

L(mY o) ol 8)’
m™ uz) < p(us) ~m Uy’ (£.8)
§ 1 Uy 'm -1 VU&) _ : .

W( Ug > V(U2) . : ) (1'9)

In what follows we shall describe the main results in this paper.
At first we review how 4o describe the finite diffusing speed for one-dimensional
porous medium equation before (for example, of. [3]).
Oonsider the Cauchy problem
| = [ (1) ]y — 00 <@< 400, $30,
‘ U|s-0=uo (@) =0, — 00 Lo 400,
If uo(#) has a compact support and -

J ‘P(s) ds< oo,

then for any >0 there exigts X ¢+ such that
u(w, £)=0 if |z|>X..
. Now our desoriptiOn about this property is given in the following theorems.
In virtue of the properties of A(7), we can certainly find go € (0, 1) such that -

1 (1.10)

Ma)<+g

and then define ‘ ' :

B= 1— I/ 1=qo. g (1.11)
Theorem 1.1. Let u(a, t) be a weak solution to the equation (1.1) in Qf and

(E4), (EB) and (1.'7) be satisfied, Thon for any (a°, 1°) €QF thore ewists @ constamt B,

which depends fml y upcm N, m, 8, T, M, 4, n(s) and ?\,(s), such that

u(a® t°)<

MT

1.12

18 maxé(w“ bsuvtn N2 u(w, O>, (‘(’)bts/ gﬂ D Na QUI(w, t)} ? ( 1 )
<t<i0

where K (2°, p) 65 @ ball in RYwith the centre at 2° and radius p-

If u(w, t) 4s @ weak solution in QF, then (1.12) reduces to

u(a?, %) << me” D

sup _ u(w, 0). | (Zl 12)"

K@, bV )
Corollary 1.2. Let u(w, t) be a weak solution to the equation (1.1) in QT and
(BA), (EB) and (1.7) be savisfied. Suppose that u(w,0) has a compact support. Then,

for any t,0<¢<<T, there ewists a constant R; such that
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cu(w,t) =0 if |o| >R, .
In fact, if the support of u(=,0) is on the sphere K (0,R,), then it suffcies to take
Ry=Ry+b~%,
where b ig deﬁned in Theorem 1.1. :
Theorem1.3. Let u(s,i) be a wew]o solution to the equation (1. 1) in QF and
(E4), (EB) and (1.7) be satisfied. For any (2°1°) €QF, define
te= inf u(w, O)

l7—0®|<p
Then, there ewists & constant b, whwk depends upon the same quwnt%t@es asthose in
Theorem 1.1, such that

g
u(a®,9) =2 ’

s in U @M /B%)), (L)

where M =p(Me™™T) and A1(%) is the snversion of the function A(s) tn (1.4).
Corollary 1.4. Let u(w,t) be 6 weak solution to the equation (1.1) in QT and
(EA), (EB) and (1.7) be satisfied. Then, that u(a®, °)>0 tmplies
» w(a®, 1) >0 for =1,
Theorem 1. 5. Let u(w,t) be o weak solution to the equwtwn 1.1) én Q" and
(E4), (EB) and (1.7) be satisfied. Then, for any (2°8%) €QF, o .
O min{ inf  u(2,0),1}<u(®, ¥)<O max" u(w,“o), (1.14)

lo—e® | <bv T © o lo—at | <DV

'wherre b is defined in Theorem 1.1 and O depends only upon N, m 8 4, T,M, n(s) and
A(s).

This theorem is a direct inference from Theorems 1.1 and 1 .8, and it gives us a
description about finite diffusing speed. ’

Remak 1. 1. The description is very dlﬁeren’o from that for hyperbolic
equations gince ’uhe estimations (1.14) &re obtained under the presupposition
0<u(,/) <M and the constant b depends on M. _ »

'~ Remark 1.2, In general, Bdeﬁne'd in (1.11) will depeiid on M =max{u(s, £)}
~since A(7) in (1.4)’ depends on M , and so Theorem 1.1 perhaps does not give any
more information than that u(z,t)<M if u (s, £) is a classical positive solution.

However, if p(u) =um™ 1 (m>1), then B defined in (1.11) will be independent of
M. If o(w, ¢, u)=0, the factor exp {n(M)T} in (1 12)’ can be dropped. Thus the
esbimation (1.12)" shows that classical positive solutions for some olass of quasilinear
parabolic equations have the property on finite diffusing speed as well.

In this paper, we also discuss how. the free boundary expands under the
influence of initial data. The result is well-known for one—dimengional problems®?
but our method is suitable for general equations.

Let u(w,t) be a weak solution in QF. Set
D) ~ {0 € R¥ [u(a, §)>0}, Dm{(s, &) |o€ D(¥), 0<t<T},
I'={(z,t) |z €oD(t), 0<¢<<T}. d1.15)
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The set I is called the free boundary. By Oorollary 1.4, it follows that

: - D) TD(e) i $1<bs, - (1.16)
which means that the free boundary is expanding as ¢ increases. : :

- Theorem 1.6. Let o° éaD (0) I f there ewists 8>0 such that, in the o-
neighborhood of «°, ~ = :

: lv(u(a;, 0))|<K[m %12,
then we can find t*>0 such that -
: °€6D(t) for O<E<Ct™. @17,
In § 2 we sha]l Study further properties of olass—ﬁ’z which provlde the egsential

tools for our purpose. In § 8 and § 4, we shall prove Theorem 1.1, Theorems 1. 3 and
1.6 respectively.

§2.
In the paper [2], we mtroduced the generahzed clags-%a and studied some
properties of it. Now we shall give some more estimates and fur’sher propertles

Let 2° EQ For 0<i<T, deﬁne ‘
Ay, (8 w) = '{mEK(P) D.Qlw(w,t)>lc}, :

2.1
S By, (bw) — €K (o) N0 |w(@d)<E, @5
where K (p) =K (°, p)
Sob S :
1, ' ‘lw'—w0]<92)
(o o o) =) 221222l < lo—af| <pr, @2.2)
' | pi—*’pﬂ, . .
0, _— ‘“’ m0l>P1

Definition 2.1. A funciion 'w(a:, ) defined in Qf is said to belong the class
superr—,@g(Qi, Mo, 7, M, D) if it satisfies :
(i) w(a,i) €0z (@ )F\C’(Q;{') and 0<'w(a>, <M on Q7.
(i) For any p€ (0,1), 2°€Q and 1€ [0, T1, if ,
k> max w(z,d) (K(p)=K (%)),

‘wEE(p)n o2

we have

—g——[ “WJA” CQ(@ au(w—1k) dw]-l—?\pe"” JAx.p(t)ngw) | Vani® cZa? o

<7ye™ ’*"J. lVZ] (w—k)? dw, (2.8)
where V is a gradient opemtorr with respect to the variable @, C(a;) C(w, o,(1—0)p)
(Vo €(0,1)) Ay, ,(8) =4y, ,(f;w) and

s =L &' (k+7)v dr. | .9
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Here @(s) has the following propertles . S
(1) 2(s) €0[0, M1NO*[0,M], (0)=0 and @(s) >0 if >0,
(11) (1.4)" is satisfied for 0<w1<w2<M
" Definition 2.2. 4 Function w (@,t) defmed in Q1 is said to beZOng to the cI/ass
sub-(QF Moy, M, D), if
(1) wi,t) €0%HQD NO@D) and0<w(z,t) <M on QF,
(i1) For any p€ (0,1), 2*€Q and + € [0,T] if
| 0<ki< min w(w,),

. z€EK(P)NnoQ
we hawe »
2 [e-wjxmmzs (@) (b—10)da | +hoo ™ JB,;.,.@ C(e) | Ve |* dw
<7e-WJB” |VE |2 (w—k)* da, o (2.5)
where _ ’
%% (8) =K@’(k—v)r d=. . (2.6)

Theorem 2.1. Let w(w,t) belong to the class super-Fa. Then there ewists @
constant b, which depends only on the parameters o f B, such that, for any (m",t") €qQr,

1 .
w (2 %) <L sup  w(z, 0 sup wlm. 97
(2°,¢%) g max {K(w"b«/—;a-)m (2, )wewagmnw (; )} 2.7
O<t<to

We first prove the following lemma: ‘
‘Lemma 2.2. Let w(a,t) belong to the class super—-%Ba. Then, for any BE (O,i),
there ewists some constant a>0, which depends only on B and the parameters o f the class
- Bs, such that if w and k satisfy ' :
W= max w(m,t) #*<Zad’ (1) o?, ‘ l

weK{p)n
0<t<t“ ;
k>max {Bu, max w(w, 0), max w(z,l)}, (2.8)
o€EE(@EING I ({s;(:é?a !
. H é#’ —k >O:
then , :
mes A“_ -sym, (#) =0 for t€ [0,:°]. (2.9)

Proof Integrating the inequality (2.8) from 0 to ¢ with {(o) ={(m; P, -%-) and

. noting that mes {4y,,(0)}=0 by'the hypothesis of the lemma, we have, for ¢<¢°
) 240
e’“/tj Car(w—k) do<< 47% t

Ay o)
where xy=mes {K (1)}. It follows that, for ¢ € [0,:°], ‘
(BH) mes 4y, o (1) <daye™ H*P' (1) uxp’. (2.10)
In virtue of (1.4) ', we can find

xw(BH) _ (%% &' (k+7) 1 5
Ty "o ~way T gy (BHY). (2.11)

%NSN,




824 . .- . - . CHIN.ANN. OF MATH. S o Vol, 78er: B

Combining (2 10) with (2. 11) , We ob’ﬁam :

mes Ak+BH. of2 (t) <

o L ¥ forte{om I B )
Hereafter we use U <k=1,2 o express oonsta.nts dependmg only upon the
parame’néi's of the class By,

Now got .
b=h+8(2~B) H M' o=+,
pp= max mesdy, (), (@) =l(@memeres), . (2.13)
Io(D) =6~ L , G@)m (=i

The inequality (2.12) 1mphes - ‘
- - <@L | | (2.14)

We are going to prove

if ¢ is small enough.
By the condition (1 4)' we have, for fw>lc,,,

' w—tn / 1-3 - ' .
_%&L<mh ( i ) d—;<-2ﬁ"f_ml_ -k, (215
and so » ‘ o
In(t) = 2,9 QS’(P')JA () G(w—Fn)? da. ' (2.16)
e on . .

For any uw EWEP(Q), by the Sobolev’s lemma, we have _
JA W< (mes 4o) Q/NJ |Vul*da, (2.17)

Where Ao={zE Q2 |u(s)>0} and 0=0 (v ) A.pplymg (2. 17) to the right hand side
of (2.16), we get

1 iy 2 . . H?
I5(t) <O = D" () g U LiVw| dw“‘—"—":‘aﬁ)‘f Fm]~ (2-18> :

A-k;,pp), @ (pr 1
On the other hand, $he inequality (2.8) implies = |
3

T1(2) +hoo™" J 22| Voo |? dwc— 2L

Ay 0»( (p Ph )2
Define : :

v=sup{s€ [0,]|I'(s)=0}.
Since I;(0) =0 and I3(0)>0, = exists. It i3 clear that I} (#)=0 and I,(¥) <I;,(fr:)
’I‘hu.s we obtam from (2.18) a.nd (2. 19) that

I h(t) <I(7)

Y o' H 2#'; N
(& +1)m. (2.20)
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Notmg that, by the condition (1. 4)’

- I;. (t) =6~ 71’)514,, UCJH-l - kk) mes Ak»nvﬁnn (t)
>_2'%n— @_1 o (fu’) (ka‘i_ kl) gmeS.A.an Paiz (t) »
‘we can obtain from (2.20) that

5 1+-2.
(ong1— Ic;.)*ph+1<2ma"e (2 7'."_;_1)__@_&__‘\_.

191;.-1 \ Ao (Ph Ph+1>
Hence '
. o LHE
/'l’h+1< 2_3_;_ 2 hl;z : N .. §2 ’21)
Let yo=pa/p". Then (2.21) yields - , e - :
yh+1< ?fl 24hy1 +;§," K ) . A . (2.22)
The inequality (2.14) means ’ .
) < GO:[_
Yo ﬁgz y
We shall argue by induction
’ %< (feoﬂi 2—2z\m (k=‘0,1_;2,'“)- | (2.23)
In fach S - ~' -
< gy Cs 2%( 901 o m)
£ Ba—%
, 142
< Os 2—2Nh< 001) ¥ i
g o
In order to make (2.23) valid, it sufﬁces to take o ,
¥y '
. ,32 / 2—2N83-—m_>"f
o< 01 \ 03 ' ) (2.24)

Now, setting A—>co in (2.28), we find what we warit.
The proof of Theorem 2.1 Set..
,wo=-M y Me=goti—1, k=P

‘ 2.95
JET—T, = Pz-1/4 ( )
Qz——{@:,t)te | xw m°i<p,,o<t<t°} (z =1,2,:+),
Mo=max{ max w(,0), zeﬁﬁmww,t}}, |
O<t<t?
=gup{l|k;>M,}, o ' (2.26)

where g is determined in Lemma 2.2 and ¢ and g are defined in (1.10) and (1.11)
respectively.
We shall argue by 1nduc1310n ’ﬁha’o

{max (w (m)}@;

for I<l*+1. ‘ (2.27)
°<a®’ () pi D - -
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In view of the sslection of o and po, (2.27) i3 valid for 1=0. Now suppose that
(2.27) is valid for I<<1", we shall show that (2.27) is vahd for 1+ 1 as well,
In virtue of I<<I*, 113 follows that
kl>M o

which implies

Icz>max{ﬁ,w;, Mo}
Applying Lemma 2 2 to the domain Q;, we obtain

mes A,,_d_pym, ,,,,4(t) =0 for O<t<t°

where H=w— k= (1—B)w, which yields )
' max{w(®,t)} <wm— (1 B)Hi=p— (1—B)3mi=goti=thisze

L . [ 7%%
Furthermore, by the condition (1.4)’ we have
’ [0/]
ad (F"H—i)P?ﬂ“'?g%i%l 16 -ad (l«lfl)Pz
1 1, 1 1,
S o 0> 0.
=7 A #'z+1> 16 r= ?\.(g ) 16 r=e
Mo v

Thus {2 27) is valid for l>l*+1 by induetion and, in particular, we have
max {w(w,t)}<pu 1

t-u

By the definition (2 26) of ¢ ) k1 <<M,, and so we have

w (a°,8%) <max {w (w t)} <[.b;*+1— % k,*+1<-B—

as claimed in (2.7) if taking b= [a,@’(M)] '
Theorem 2.3. Let w(w,t) belorwg to the clwss sub—@g(QT 7«0, 7, M @) I f
inf w(=,0)>k>0,

oEK (@°p)

then there ewists some constant @ a’:ependmg only upon the parameters of %y such that

inf w(zv,t)>-—— for O<t<t°=mm{a@’(lc)p Tk,
.'L‘C—.E(w" ”)

Proof It is similar o the proof of Lemma 2. 2 ‘if noting ’sha:b

1 o Z(s) oo
58 O <m s for lc>s>0

which was ob‘oamed in the paper [2] (Lemma 3.8).

53

In this section, we shall give the proof of Theorem 1.1 and Theorem 1.8.

Lemma 3.1. Let u(w,t) be a classical pos@té?be solution to the equation (1.1) with
0<u(a:, D<M. Then, v(w,t) =p(e"@u(w,t)) and w(z,t) ==gp(e""”’*w(w,t) belong to
sub—vé‘g(Ql, Aoy 7 M, ®) and super-Bo(QF, ko, .y, M, D) respectively, where



]
9

g

:’;
|

'USmg the inequality (1.8)’, we obtain

.ag claimed. -
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M =p(Me™™T), Ao and v are some constants depending only 'upon the specified data and

@(w) is defined in (1.8). B

The proof refer to § 2 in the paper [2]

The Proof of Theorem 1. 1,

- Let {u (0,9} be the sequence in the Definition 1.1 of weak solutions Sahsfymg'
(1 7) and w,(,t) =@ (uy(w,8)e™"¥*). By Lemma 3 1, s (z,t) belong to the class
super—%, with the parameters independent of n. ‘

Using Theorem 2.1 t0 w,(w,t), We obtain that for any (a°,¢%)-€QF, there exists a

| gonstant b independent of n such that

1 ,
) <— 0 £
ua(2%°) g max { max wa(2, 0), o ?A;x o W@}
<tt

In virtue of (1.8)', it follows that
me 3T

U (a?, 1) < max { max - u,(s, 0), max zi,.tm,t)}.

E(@,ov/ 700 E(@*,bv ) 000
Let n—oco, the proof is complete.

- The proof of Theo'rem 1.8.

" In view of Lemma 3. 1, the functions v, (2,8) = (", (3,1)) belong to the
«clags sub—%’,, (QT Mo, 75 M, ®). For simplicity, we drop the subscript n.

If o, =0, Theorem 1.8 is trivial. Now suppose that ,>0. We shall take Ic>0

Such thab
- a®' (k) p*=>10.

By the con dition (1.4)’, it suffices to select
k ap2@l (M) -1 )
R R
-where b= (a@"(ﬂ))‘?. By'Theorem 2.8, if
. » o .
k"_'min{ @ (1) 5 Mk‘-:l( bgto )}’

-then ;

'v(m°,t°>>’1— min{ @ (1p), M ( o >}

—n(A0)ES,

0> 2
u(2:%) = I

mlﬁ {ﬂp, @(M?\.”l b;" ))}

54,
The proof of Theorem 1.6.
Let w,(w, t) =@(e™ et ,.(w, t}) Then 'w,,(m,t) (n—-l 2 ) belong to the class

ssuper—4ti- We omit the subseript n-ad well.’
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At first we take >0 go small that

s<[(m+KPRIIF, - - @D
where K is the constant in (1.17) and M =$¢(M gnTy ' . t
Set | ) N - ,
' o=8/4, (1=0,1,2--.) - (4.2)

,=mf{ s]@'(s} <_(-_+—]]fmf}

By the condition (1.17) of Theorem 1.6, we shall have S
g> max w(z,0). . T (4.8)

lo—a®i <p3

In fact, the condition (1‘.17) imphes.
inf @' (w(a;,O))>

lo—z0| <pg

Combining it with (1.4)’, we get (4. 3)
Now we define
,w0=max{ﬂ,,8'1eo}, 7
p,;-—max{ﬁ' &, qop-1t(1=1, 2, =), k=Bm(1=0, 1 2, . ), (4.4)
Qz*'{(“’:t) ||z~ “"ol <Pl:0<t<t ‘““@’(]Co>90}: | :
where 8 and g, are deﬁned in (1 10) and’ (1. 11) respeetlvely, and a 1S determmed

1 >@wn@@a

in Lemmma 2.2
‘We shall have

% g . : R
t<m—. ST 4.5)

Actually, if po=pB""s,, fohe;;

*= ’ 2__ ’ 2 @Po a
a®’ (ko) pt=ad (80>P0 re™ +1)Kpo (m—l—l)K s

and if p,o—-M then, by the seleotlon of 3, it follows that
= ‘Z@’ (BE)pi<

T_1f37
In what follows we shall : argue by induction that
max {w(z,t)}<uy,
‘ t“<a@’(lz ) pr
Obwously, (4.6) is valid for 1=0. Now suppose that (4.6) is valid for 1.
In view of (4.8) it follows thatb .
k>8> max w(w,O) (=0, 1, 2, --). 4.7

le—a®| <py

@=¢L%my' @

Using Lemma 2.2 in @, we obtain .
 max {‘w(ﬂ?:t)}<l~bz (1- ,3)25:<M1+1, o

where H ,—m-k; As for the seoond mequahty of (4 6), if ppeq=gom, then



L
24
14
=
4
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a@'(]cz.;-y.)P?ﬂ/ @@gé;;:;) 1 —T—)— 16 >t

and if pyyy=B"1g;,4, then it follows from (4.2) and (4.5) that

. “@'(701+1)Pz+i=6@ (81+1)Pz+1 (m +1> sz Pl+1>t

Thus, (4 6) is valid for I+1 as well. By induction, (4.6) has been proved and, in
particular, we have :
. omaxw(@® <. - (4.8)

O<t<t®
At present we should prove that
w—>0  "as  l->oo.

s

We consider two cases:

(1) If qop,;_1>/8 1g; for any 1>0, then since
, =gz (I=1,2,-),
the fact’ (4 9) is obvious. ' ‘
(2) If go,w;_1< B~ g for some lo, vie shall show tha,t |
Gopiiy <P ep1. ' ' T (4.10)
In fact, by (4. 2) and (1. 4)’ it fo]lows that : ‘
@/(Slﬁz El+1
T (ors) 16 <’“< )
In vutue of the definition (1.10) of qo, we have
:*1 >g : i. e. 81o112> G1, 61, = GoB i,
) ) ‘to . - . .
Thus, (4.10) hes been proved. By induction, we have
B~ 81>90l1'z- A=lo, Lo+1, ).
Obvmusly, by (4 2), ‘the Sequence {e:} converges o zero as l—>oo and so does {uw;}.
- Let I->00 in (4.8) we have proved what we wani. ‘
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