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A THEOREM OF LIOUVILLE'S TYPE ON :
HARMONIC MAPS WITH FINITE OR
SLOWLY DIVERGENT ENERGY
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Abstract.

Some theorems of Liouville’s type on harmonic maps from Euclidean space of
conformal flat space with finite or slowly divergent energy have been obtained‘by the
" first-named author and H. C. J. Sealey, respectively. In this pdper, a more general
theorem is proved, which includes their results as special cases. The technique is to use a
conservation law for harmonic maps. A .

~§1. Introduction

In [1], the firsb-named author proved  the theorem: Let @: R*—M™ be a
harmonic map of n(n+2)-dimensional Euclidean space R" into ‘an m-~dimensional '
Riemannian manifold M, Suppose that the energy e¢(p) of @ ig finite or slowly
divergent. Then g is a constant map. Here “slowly divergent energy” means thab

Jm e(@df‘(m) = oo gn@ IR”% dnw<w, .Wh:ere>‘ $(r) is ’av posjtive, Aoon_’tinuousA
function of 7 satisfying

= dr . '
—— . 'b °

L e oo (for a certain cF)ns ant ¢>0) @

On the other hand, H. (. J. Sealey in [2] proved the theorem: Let M*(n=>38)

be a conformal flat space with metric form ds’=f%(2) (da’ A+ eeda™). If L(f)

Ezm‘%%i>—l, then any harmonic map with finite energy from M" into any

Riemannian manifold must be a constant map. o o L
Sealey has pointed out that the 601_1dition L(f=-1 h@s a geometric significance.

In fact, if S, denotes the level surface {wER"lEV(m‘)zérﬂ}, then L( f)> ~1 holds if

and only if the mean curvature normal of 8, with respect fo ds= ff‘(w)Z(dm‘)“’ is

never pointing away from zero. :
In this paper, using a similar technique as in [1], we will prove the following
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more general theorem which includes both the above theorems as special cases.
Main theorem. Let M"(n>8) be a Riemannian manifold with metric form
ds*=f1 (@) (dm1>2+ 2(2) (do®)2+ -+ f2(2) (da")? satisfying the fouowmg conditions:

(&) L(f)- 2 731°gf‘> 1, i=1,

(B) There exists a posmtwe constant. K such that

max L-<K
. 1<t d<n Jj
(O) For any wndew 1<q,<n, and indew §1+ ,92# #yn-a,
5.‘.1 (1+L(fn))>1+13(f¢)

Then, cmy hwrmomc map @ 'wwth ﬁmte or slorwly divergent errwa‘gy Jrom M* into any
Riemanmnian manifold must be a constant map, where “slowly divergent energy’ means
thatJ e(p)dV = ‘and” I -%i%— dV<oo whefre ¢r(rr) is a poswtfwe, contimuous

Jfunction of r satisfing

< dr
= 00 or @ certain constant a>0
L——_z_—‘rl[! . " (f n CONSEam )B

Remark 1. In the case of fy=---=f.=f, the _conditions (B) and (C) are
trivial and this theorem is a generalization of Sealey’s result as well as Hu's previous
result.

Remark 2. We point oub that the condltmn (A) also has the geometric

significance as that in Sealey’s case.
Remark 3. Theorem 1 includes essentially the case where M" i a &1reot

product manifold of p conformal flat manifolds My X -~ X M,.

§ 2. Preliminary-

Let M " be as above and S, the level surface {mEM"}Z(m‘ 2= rrg}

Since there exists at Joast an &'#0 on S, say o 7’=0 we denote the induced

metric of S, from M* by gh, da® da®, where a, b, ¢, «=-=1, =+, n— 1, and the volums
element of 8, by dh. A straightforward computation shows o
gab faaab+( fﬂ ) o . : (2)

Thus, it is eagy to show that

&et(g{,b) =(;I11 :fi '( E

®

where &= 2( f4>2

§=1
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rdr—>>) o®da®
Since de"=d~/1r7—>)(2%)? = 2 » and the volume element dV of M*

mﬂ

is »/deb(gi;) da*A -+ Ada"* Ada”, we have from (3) the following Lemma 1.

Lemma 1. Ox 8., it holds that 4V = —— \/ = dh \dr.

Now suppose that @ is a harmonic map from M* into any Riemannian manifold
(I'™, g). The stress—energy tensor § ‘of @ is a (1, 1)-type tensor with components
=¢(p)d] -—lgﬁ 9"90p%05, Where e(p) is the energy density of ¢ and «, B, y=1, -,
m (cf. [8]). : ‘
Tt is well known that the divergence of § vanishes, i. e.,
; 8i,=o0. @

Here the comma stands for the covariant derivative.

Lemma 2. Tt holds that Z{ ?}k}af"S{=2 b Blogf; ;,:where {;k} is the
9,5,k j i,00

second Ohristoffel symbol of M™.

Proof Since g;;=f23,;, from computation we have

{ b }= 1(8, olog f.f; e dlog fifu _57; 1 9fifs )

ik 2 o o’ f2 ot ®)
Thus ,
) pSim S 218 f o 18 O i v fs Ofs i .
4%{]]c}msj 27 o SR g o M 2 ot O )
But, on the other hand, we have
2 of, g ___f_ o _s1_d_0fi ~
Ef awj 6( )Z k 8(016 % fifj wg g¢ﬁ¢ 5§D i (7)
Ji Ofi i _ ¥ of i~ ,
i f2 6!1} wjlg 6( )2 f am;.; “~ ]':2 a i gaﬂ?ﬂ’i (8)

From (6), (7) and (8), the lemma is obvious.
Lemma 8. If condition (A) and (O) are satisfied, then

S+ L8>0, | ®

Proof For simplicity, we denote @~ (1+L(f)). Thus, ;0. Let p be a point
in M". If, at the poini p, §i>0 for any index ¢, then (9) holds obviously. Otherwise,
sinoe S} =—21-<2 712— T s —?12— T as P’ 0", ), i} ig clear that 8% <0 holds only for one

J5 i $ . .
index 4, say, 87<0, and in this cage we have
n—1

fz g abP' P, n> 2 fz gaﬁqa "5 (10)

Without loss of generahty, We can assume 0<a1< ' @p-1 ab point p. Now, we
have



348 L o CHIN. ANN. OF MATH. - ° B Vol. 7 8et, B

E(HL(J%))S‘ {2 (2 - o Juss— i Gaapie )

g=1 " \j==t
n—1 ~ 1. . :
+ 2 2 gaﬁgb,jq) i fg g¢3¢;‘ﬂ€p€n}- o (11)
In the case @,<a,.1, Weo h’é,ve.‘ | '

7—2-

RHS of (11} { 2 2 2 _9«174”,199 it 2 Ml ga_ﬂﬁp JGU i ’2 % gdﬁ?’%ﬁpﬁ

0
n—1
» 9«w¢ Pk 2 i Gooplip) et o Gospl = fz st nsv,n}
\V V
o ' 0
n—2 1 . . .
( E @;— an—i) 1 9«;59’ n—iQD n—1>0 . (12)
When a,,>a,._1, we have | }
n—1
RHS of (11>——“{§; 2 2 gaﬁQ’ﬂPﬁ 2 gawq?e@ +2 2 gwqp,gv,,
f“’ =
\\/ \Y :
. o -
. a—1 - - .~ ) ’ ‘
+ 2'%2’ g @ﬁ?"fn??ﬂ_% g aﬁ¢?ﬂ¢?ﬂ}
1
a 7/ n> ° " 13
E“t an>f296§v¢. 0 | ' (18)

Thus the lemma is proved
From the above proof, it is not difficult to prove the following lemma.
Lemma 4. If conditions (A) and (C) are satisfied, then (14 L(f;)Si=0 holds

'bf and only if @ is ‘a constant map.

§3 Proof of Mam Theorem

In this section, we use Dmsteln summatlon conventlon Let B,={zc M" }E(m‘)z

<r/'2} From (4), we have

0 JBr'wSM (,ZV‘ «[B,- SLORLS "Lzr <8w5'+ ik =) 8 dV. ' 14
- Noting that the unit outward normal vector of S, is .. ‘
1 & 0 o
=rETw

and using the infegral fop;nula : ) o
[, divE 7 = j <X, W dh
and Lemma 2, (14) ig reduced 1o
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-Lf S Stedh [ SAIFIsar. (15)

By using schwartz inequality, we have -

Efﬂg’ w’_e(?’)z fi(a)?— 2 f 9as(%0’) (@)

<e(p)2if; (w’)2<6(¢)0‘9 N2 T (16)
From (15) and (16), we obtain
Q‘J’sr *(¢) \/—gﬁ dh>>]’Br 2(1+L(f;)):5’13 av. (17}

If p is not a constant, from Lemma 3 and Lemma 4, we claim that there exist
two positive numbers R, and & such that, for r>R,,

L SA+DENSE T e @8)
Letb () be a positive continuous function of r s@tisfying '

I: 7“4-?6'_)—=‘00 (for a certa.in 60ns1;ant a>0) . (19

In consequence of Lemma 1 and (18), 1n1;egrat1ng (17), we have

s <(* 3(97’) /"‘_ elg) 2 -
Leo 'n/.r(fr) ‘R. J‘s, Y(r) P dde<J J‘ W(ry \/Ef dh dr
5 .

= RJ olo) \/Zf%\/— . dhdr
JoJs, Y(r) r N @

(o) NV
Ja, () 7

Furthermore, from condition (B), we have

S )/ anG )<

Thus, (20) reduces to

=

dV, for RB>Ry. (20

o 8@) g tor o h
L“ o) da"\nK'J ¢(¢> v, for B> Re. (21)

Letting R—>co in (21), the left hand side of (21) approaches 1nﬁn1te, but the
right hand side of (21) is finite, since @ is of ﬁm‘ue energy or Wl‘bh slowly dwergent
energy. Th1s contradlo’mon ‘proves our thoerem.
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