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ON GROUPS OF ODD ORDER AND RANK<2
Fax Yown (3 | Z)*

Abstta.ct

The lea,st common multiple of dimensions of chief factors of a finite solvable group iz
ealled the rank of the group.

The groups of odd order with trivial Fra,tttml subgroups, all of whose subgroups but _
itself have ranks<2, are completely determined (Theorem A).

For an odd number n, a necessary and sufficient condition for the groups of order n
all to be of rank<2 is obtained (Theorem B). '

All groups and modules in this paper are finite. Terminologies and notabions
are usual (see [1]), except other explanations.

- § 1. The Main Results

We denote by F, the Galois field of order p for an odd prime p, i. e. Fy=GF(p).
Given a non-gquare elemet & in F, and a root j of the equation £?=3, we have
Fo(§) =GF(p*).

‘We call the least commom multiple of dlmensmns of chief factors of a solvable
group @ the rank of G and denote it by (&) (see [2], p. 712).

0 1

We appoint that p, r, g are distinet odd primers, O=| i 1 |is a cyclic.
g e 0
matrix and I is the identity matrix.

Our main resulis are the following Theorem A and Theorem B.

Theorem A. A group G of odd order with ®(@) =1 is of rank>2 but all of its
pmog;er subgroups are of rank<<2, if and only if G' is isomorphic to a semi—direct
product VXIH with V being an dementtary Abeian p—group and H<GL(V /F,),
and H is one of the following nine types, written as three forms according to geneq ators
of H; '
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01
(i) B={ |: = "1 /, 0y, v+, ay are such that & —cgé1—.c—ay is an

ak ece ai

“ irreduoible factor of £2—1 in F,[€] (hence eip (p) =k (mod q)) and k>2.

/01 gh A\ |
(i) H= 0 1 o . |

\ : " ’ R
A 0/ gxq &% | gxq

a) e=1, A has order ¢ (b>1) in F,, ¢*|g—1 (d.e. g”"[p--'i but ¢lp—1).

b) A has order ¢*1(b>1) in F, and ¢*|p—1, & has order ¢* (a=1) én F, (hence
glp—1), ai=1+ (i —Dk¢* I<k<g-1). |

¢) A has order @ 1(b=>1) in Fy and ¢*|p—1, e ha;s orrdefr r én F (heneetr[p —1),

S ‘ - &1 _

(@4, +, ag) is @ solution in F, of the linear equation (C—tI)|  |=0 with ay=1, ¢
being such that § —1 is a factor of £2—1 in F,[£] (hence q|r—1) and t+1. |

d) A and ¢ are the same as above, (ay, ++-, a,) 4s @ solution in F, of the equa:tfwn 1

&
(O*—sO—¢I)| i |=0with ay=1, and s, t being such that £2—s& —% is an irreducidle .
3
Jactor of £2—1 im F.[£] (hence g|r+1). ]
| / 0 I M@
(iii) He= 0 I , Mo
\ 'A . 0 2qx2d | | Mag 2gx2¢

with I, A, M being of size 2% 2. ‘ : ' :

A d : . .
a) M=I, ./1=( :) with A+ uj having order ¢**(b>1) in F,(5), ¢lp+1.
w -
_ A dw\ o . . .
b) 4= N with A+pj having order ¢ (b=>1) in Fo(j) and ¢*|p+1,
7

: 5 _ |

M'—-—_(; /3) with a-+Bj having order ¢* (a=>1) in F,(3) (hence ¢°|p+1), p and B
o . . o ] ‘

are not zero, ;=14 (—1) kg 1 (1<k<<g—1).

A D . ' . _
c) /1.=< f) with A+uj having order ¢°* (b=1) in F,(5) and ¢°|p*—

d ' : .
M= (; ﬁ) with a-+Bj having order r in Fy(j) (hence r|p?—1), at least one of w
o R T .

and B is not zero, (ay, -+, a,) is-the same as (ii, ¢)..
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d) 4 and M are the same as above, (s, -+, ag) s the same as (ii, d).
~ Remark, Among the above types, (i) with k>1 instead of 4>2, (ii, a), (ii,
b), (i, o) are exactly the all minimal non-supersolvable groups with trivial Frattini
subgroups, provided the restriction in Theorem A that |G |=o0dd iy eliminated
(compare with 8, 4]). In fact, the condition that |@|=odd is not used in the
discussions of these four types in thig paper.
Theorem B. Lot n—p, -, p% with p; being distinct odd promes, and a; being
positive integers. Then r(@) <2 foa' all groups of orrder n if ‘and only if the following -
thrree conditions hold:

- 1) If ap=>2, then <p;, H{P;a 1}) (o4, D2— 1) 1<,

2) If pi<an<2p; and pi| pp—1, then @;<2, o | pe— 1 and therre s no pm such that
o] pa—1 (I=1 or 2 according 1o ap=1 or>1) and p,|py—1 both hold.
8) If 2pi<ay and pi|pi—1, then @, <2, o |pi—1, and there és no pu such that
p;l ph—1 (1=1 or 2 according to an=1 or>1) and pm| pi—1 both hold.
One can frace an analogy between theorem B and the resulb of [5] , when he
eompares the two. ‘ '

-§ 2. Preliminari@s and Lemmas

we begm w1’oh an observabion of the following facts ([2] p. 712).

" The class of all groups of odd order and rank<C2is a 1003,1 forma,hon F deﬁnecl
by #(p) with ‘ '

(i) F@) =9, :

(i) F(p)={4|4is abehan exp(A) |p?—1} for p>2 .

Becauge the divisors of p?—1 are all less than p when p ig odd, it is easy to see
that each group in J~ hag sylow-tower in the natural order ([2] p. 698)

~ For briefness, we use the symbol 82" to denote the class of thoge groups, all of
whose subgroups but iself belong to 27, where 2" is an arbitrary class- of groups.

We shall preserve all notations mentioned up to now fhroﬁgh’ﬁou‘t

Lemma 1. A4 group & of odd order with @ (G) =1 belongs to 8.F if and only if
Q= V><1H V is an elamtnta,fry Abelian p—group foa~ some odd prime p, H Eaﬁ' (p) N
F, and H acts irreduciblly faithfully on V.

Proo f By aresult of [6], G €87 if and only if G=VXH, ¥ is-an elementary
Abelian p—group, H 68(9”(19) -F(p)N Z and H acts fa,lthfully irreduciblly on ¥,
where P(p)-F(p) is the class of all extensions of p—groups by groups in & (p)

~ Obviously, it is ‘sufficient to show pHHE|.
Suppose p| | H |. Notice that the prime divisors of | H | -different from p are all
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less than p for they divide p—1 and p>2, H possesses a non-trivial normal p
subgroup because H €.# and the groups of & have sylow—towers in the natural
order. On the other hand, by a basic fact of representation theory of groups O, (H)
acts trivially on any irreducible F,H-module. This contradicts the fact that H acts
irreduciblly faithfully on the F,H-module V. . :
Lemma 2. In QL(n, F,) a g—element o is wrreducwble (1. e. <z s wreduowble) ,
if and only if || |p"—1 but |@|fp¥—1 for 0<k<n." v
Proof Seb || =m=¢° o is irreducible if and only if its characteristic
polynomial f(¢) ig irreducible in F,[£]. Since the order of & is m which is a power
of prime ¢, at leash one of the Toots of f(&), say w, is a primitive m’ th root of unity.
Now s is irreducible if and only if F,(w) is of order p", i. e. Fp(w)=GF(p"); the
latter i3 equivalent to m|p"—1 but mip*—1 for any 0<k<mn, because the
- multiplicative group of G.F(p") is a cyclic group of order p"—1. |
Remark. Another version of thig lemma ig to say that if the exponent of p
mod m is n, then the degrees of irreducible factors of the m'th cyclotomic polynomial
in F,[£] are all equal to n. In the later we shall, in fact, determine such factors
under gpecial conditions. : '
" Lemma38. Let Abean Abel@cm gfroup, exp(A) —e, F a field, ([A[, char F)=
1. If F contains the e’th primitive root of unity, then F is a splitting field for A.
Proof It is sufficient to 'show that any irreducible F A-module has dimension 1
over F. Obviously the assertion ig true when A=<= is cyohc because f 1#l —1 can be
wrlt’oen ag the produot of factors of degree 1in Fil¢]. Im genersl caso, the images
of any irreducible representations of A are always cyohc which are reduced fo the
above case. :
Remark This lemma ig, in fact, Well known as a Tesult of linear algebra,
~e. g.see [T].p. 490. ' :
Lemma 4. 'Let an Abelian p'—group A<GL(V/ Fp) be fbrrfreduclble
(i) Ifexp(4)|p—1, then dimpV =1.. . :
(i) If exp(4)|p*—1 but exp(A)*l\p —1, pis odd, then dlmFV 2 an there is
@ basis of V such that o
_ , _“'8'8“,_
T (B @ )

with o+ B] having ordelr { | in F ( §) for every wEA and B#0 for at least one
sCA.

- Proof (i) See Lemma 3, '

(ii) exp(4)] p 1 1mphes that the irreducible A—subSpaces of V®F,(j) are
all of dimension 1 over F,(j) by Lemma 8. Let <u-+vj) (u, v€V) be such an 4
subspace of V@F,(4). Considering any o€ A acts on {u+vj>, we have ’
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(utvf)o=(a+85) (u+vj) = (au+83v) + (Bu+av) 3,
Where o+ @7 is just the characteristic root of o restricted on utoi>. It follows that
: us=ov+ 88,
vo=Bu+ow.
Hence the subspace of ¥ generated by {u, v} is invariant under 4. So {4, v} generates
V. On the other hand, dimg, ¥ >1 becasse exp (4)} p—1. Thus {y, fu} is a basisof V,
under which z can be written ag
' [a 3B\
. (/3 a ) .

By the way, it is eagy to see that V®F,( §) =<u+vi> @ {w—wvj>. Furthermore, if the
characteristic Toot of » on u+vj) is a+pBj, then the characteristic root of = on
{u—v5) is a—Bj. '

The last conclusion i easy. If 8=0 for every #€ 4, then V <u,>6-)<rv> and <u>,
<) are both A-invariant, which is impossible. ‘

Lemma 5. Let o be an irreducible transformation of order g in GL(V/ F,,).

0 1
(1) If @7p—1 b>1, then dimy, V=g ando=| 0 "1 | with A having
order ¢°* in F,.
| oI

- A Sw\

(i1) If ¢ *p+1, b>1, then dimy, V' =2¢ and o=| 0 I , A= \
w
A 0

with A+ wj having order ¢*=* in F 2(4)-
Conversely, in the both cases & is an srreducible element o f O!I'd@‘l' ¢
Proof The treats of the two cases are similar. We only prove (i).
First of all we show that the exponent of p mod ¢* is equal to 2¢. ¢**[p+1
- implies p+-1=L¢"* with (8, ¢) =1, i.e. p=B¢—1. Now p'=1 (mod ¢*)&(Bg"
~—1)"=1 (mod ¢*). Suppose r is odd, then the latter becomes rBg* =2 (mod ¢*).
But this implies ¢|2, which contradicis the fact that ¢ is odd. Thus r must be even.
Assume r=2¢. Then (Bg*~ 1——1)53s=1 (mod g") is equivalent to 2sq” =0 (mod ¢,
so s=0 (mod q).
- Now Lemma 2 shows that dim,, ¥ =2¢. Given a subspace W of ¥ irreducible for
@, since |2?| =¢** and ¢**|p+1, W/F, has dimension 2 by Lemma 4. Moreover,
27 gy = ( ;» 5}’:‘ ) =:4 (p#0) with respect to a suitable basis of w. Clearly W+ Waz+
oo+ W29 is an invariant subspace of ¥ for . So. S
V=W Wate o+ Wat™ 2
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Because dim V' =2¢ and dim W =2, the right-hand side of the above equality musb
be a direct sum. We conclude ' :
V=WoOWsD -®Wat1,
Therefore under a suitable basis of 7

0 I
o= 0. I
4 0
0 I |
o (A dw . oy
Conversely assume ¢*|p+1, o= 0 I| d= N with A+ pj having
&
4 0

~order ¢"*in F,(4). Since the characteristic roots of A are A= pug, the order of A is

8lso equal to ¢* 1. Hence |#|=¢’. In the first paragraph of this proof it has been
seen that the exponent of p mod ¢® is 2¢. So = is irreducible by Lemma 2, completing
proof.

Lemma 6. Let NV be an Abelian normal subgroup of a non—Abelian group H<
GL(V/F,), |H: N|=g, H=N-{a> for a g-clement m, exp(N) |p?—1. Then the
F,H-module V is irreducible if and only if

V=WOWs®--@Wa"?,
where W is an irreducidle F,N-module and Wah is not F,N -@somorpiwc to Wa* for

Proof Assume F,H-module V is irreducible. Write ¥ as the direct sum of
N-Wedderburn components (Oliford’s theorem, [1], p. 70)
V=W,0W:®D--OW,, .

the x acts transitively on Wy, -+, W,. Since 22€ N, a7 fixes each W,. Thus s=1 or g.
We claim that s 1. Suppose s=1. Then ¥ is a direct sum of isomorphic irreducible
FyN-modules Vy(i=1, -, n).

| V=V 1@ @V
Either exp(N) |p—1 or exp(N){p—1. If exp(N) |p—1, dimp, V=1 by Lemma 4.
Hence each element of N is a scalar transformation. Thus & commuis with each
element of &V, which contradicts the fact that H is non—Abehan.

In the case of exp(N){p—1, we extend the F, to Fy(§) and consider V@F,(4)
=:7. Reacall exp(N)|p*—1, V=V @F,(j) are of dimension 2 over F,(j) and
71=U11®U12, U =<u+vi>, Us=<u—vjy, using the notations in Lemma 4. It is
clear that UsaUss as N-modules (see the proof of Lemma 4). Since V=V, (i=2,
ooe, m), Vi=Uu@U,s with Uya=Uyy, Uig2Usa as Fy(j) N-modules. Thus we obtain the
N-wedderburn factorization ‘
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V= (U@ @Us) ® (Us®- - ®Upa) = Uy @V
The actions of elements of N on U;(4=1, 2) are all scalar multiplications. Now we
view 7 as an Fp( HH-module and write 11: as a direct sum of irreducible submodules,
noting V' is complete reducible as an H-module for (|H|, p)=1. Let U be a
summand of the direct sum. Then as an N-module U= (U U)®UNU,). TN,
(4=1, 2) are both non—irivial, # would interchange them for U is H-irreducible.
Hence 2| |o|, which contradicts the fact that g#2. Bo one of the UNU; (6=1, 2) is
trival for every summand U. Then » commuts with elements of N on every U.
Consequently H =N<{z> is Abelian, which is also a contradiction.
Up to now we can assert s=q, o0 it is obvious that
V=WOWsP:--@PWar2,

Next it is easy to prove that W is N—irreducible. In the contrary case there is
0#W1<W where Wy is N-invariant. Then 0#=W1DW12D- - DW a0~ 1<V and
W.i®---@W 22t is H-invariant, which is impossible.

Conversely let 7 be such as the assertion of the lemma and ¥y an FyH-submodule
with 0% V,<V. As an N-module

Vi=VinW®:-@ViNWat,

Clearly at least ane of the direct summands of V5, say ViNW, is non-trwlal Then
ViNW=W. Using the action of s, we see that V=V ab onoe, completing the
proof. : ,
Remark. For the latter use we translate this lemma into matrix forms, If we
choose a basis {ws, -+, w} of w, then {wa', ---, wyw'}y is a basis of Wa' and the
collection of them is just a basis of V. Hence z is written as

0 I

z=|" 0 ) I A
4 o

In addition, each element y of IV is written as a diagonal block form

. ,
y= s

where M is the matrix of y resticted on Wa'™. If exp(N )|p*—1 bub exp(N){p—1,

and |y| =¢°, then Mi (6=1, «--, ¢) can be written ag powers of one and the same
' (o OB\ i S b X :

matrix M= 2 with a+8j having order ¢* in F,(§j) (ses Lemma 4); moreover,

because the W in the factorization V=WOWasD---@Wa?™? can be, -in practice,
arbitrary one of the N~Wedderburn components of V, in a suitable order of the
basis of ¥ mentioned above
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M«h
y=| M= with ay=1.

BMea

Lemma 7. Let H, N be the same as in Lemma 6. Assume

, V=WOWaD- OWar™ |

with W bemg an W’educwble F N-module and Wat=W. Then H is Wfr'educ@ble if and
only of there are two of Wat (i =0, ---, g¢—1) which are not F,N -—Q,somorphw '
mutually. | A |

Proof The* only if” part is obvmus by Lemma, 6.

rAssume there are two of Wa''s which are nob Ay N ~isomorphic mutually. Then
there are at least two N —Wedderburn components of ¥ each of which is constructed
by means of collecting those members of Wa's isomorphic to each other. Since »
permuts transitively the Wa's, o also permuts ﬁra,nsﬂnvely the N-Wedderburn
components of 7. On the other hand, 2 fixes each Wat, and then 2? also fixes each
N-Wedderburn components of 7. Hence the number of N—Wedderburn components
is equal to 1 or ¢. But the previous argument implies thabt the number must be only
equal to ¢, and consequently each Wg'is an NV —~Wedderburn component.
That is Wah gt Wah as F,N-modules for 4;#¢s. Thus H is irreducible by Lemma

§ 8 ThevProof of Theorem A

Let G be a group of odd order with &(G)=1. Lemma 1 shows that GEIF if
and only if G=V X H,V isan elementary Abehan p—group for. some odd prime p,
HcoF(p) NZ and H acts faithfully 1rreduclb11y on V. Hence we view H<GL
(V/F,), where V is regarded as a vector Space over Fy. The proof of Theorem A is
reduced to the determination of all irreducible linear groups H over F, which lie in
oF (p) NF.

By the structures of the groups of 8. (p) and of &, H must be ons of the three
- types. ,
’ (1) H is an Abelian g—group for some odd prime g;

(2) H is a non-Abelian q—group for some odd prime g| fp

(8) H is non—Abelian, |H|=

‘We proceed with the three cases respectively.

(1) H is an Abelian g-group. .

Firstly it is immediate thab H is cyclic. Suppose the contrary Then <h> € Z(p)
for any A€ H. So h**"1=1, consequently H € #(p), which is impossible.
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Let H=<2), |o|=¢" We see that ¢*p*—1 but ¢ rp”—-i. In other word,
g";1|l p®—1. With this information we, at once, come o the following conclusions.

If b=1, H may be and only may be (i) of Theorem A.

If 6>1, ¢ *|p—1, (ii. a) and only (ii. a) of Theorem A are required by Lemma
5, (i). ‘

If 6>1, ¢ p+1 Lemma 5, (ii) reduces H to (iii. a) of Theorem A,

(2) H is a non-Abelian g-group.

A well-known result (see [8]) shows that H is genera‘bed by two elements », y
with|2| =¢? [y| =g¢* and [, y] is an element of Z(H) and of order g. Furthermore,
¢° and ¢° both divide p—1 as H€8.F (p). Jonversely if H is as mentioned above,

‘then H is minimal non-Abelian also by [8]. In addition, H is regular by [2]

P- 822. Hence (huha)™=h{"%5" for any hy, hs€ H. It follows that exp(H) —max{p .
p°}, consequently exp(H) [p*—1. Hence H €2.7 (p) N Z.
On the other hand, choosmg a maximal subgroup N of H containing y, by
Lemma 6 and Lemma 4 we immediately write » and y as follows: If ¢|p—1, then

01 C [e™
= 0 1} ,y=| &= s
A 0 axa Ce axa
A and & are just the same as (ii. b) of Theorem A. If ¢|p-+1, then
' 0 I ‘ M=
o=| 0 I , Y= Mo ,
4 0 2gx2g " Mo 2gx2g

A and M are just the same as (iii. b) mentioned in Theorem A.
It only remains to determine @, ---, @, We deal with the two cases
simultaneously, but write it in the form of the latter case.

S ‘ ' :
Notice that M = (; '8) is of order ¢® and a;=1 (see the remark following
11

Lemma 6).
By a simple calculation
Moaa—te

(@, y] =27y wy=| Mot
- M Oa—0g-
Since [, y] commuts with , another straightforward calculation shows
6= —G=ay—a="-=aq;—a,_3; (mod ¢°%).
Since | [@, y]| =¢, we obtain another equation |
cq=0(mod ¢%).
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The latber equation shows o= 0(mod ¢*%), so c=k¢* ! (k =1, «o; g=— 1) "Then the
 former equation gives the values of a;, '
a1=1, ag=1+kg*?, -, aq=1+(q—1)79q“’1-

Clearly a;,%a;, (mod ¢*) for 4y is.

Now we have to deal with the jrreducibility of H. The chara,ctenstlc roots of M
are o Bj (B+0) which are all of order ¢° in F,(5). So (a+Bf)=+ (a+B)* (1#4).
Hence there is at most one of M™ (4=2, -+, ¢) whose characteristic roots are
coincident with that of M. Thus there is ab most one of Wa* (4=1, -, ¢—1)
" mentioned in Lemma 7 which is F,N-isomorphic to W. Noting g—odd, there are
two of Wa'(4=0, «--, ¢—1) which are not F,N —womorphlc to each other. So H is
irreducible by Lemma 7.

Summarizing the above, we achieve (ii. b) and (iii. b) of Theorem A.

@) |H[=¢r |

In this case H=RQ, Q€ Syl,(H), R€Syl,(H), R<H and R is an elementary
Abelian r-group, @=<#) is a cyclic group which acts irreduciblly on R;
consequently R=<y®> for any 1#y € R. So H =<w, y». All the information follows
from well-known results on minimal non-Abelian groups. Moreover, since H &
0F (p), exp(H) |p*—1. In addition, HE F. Thus ¢=1 or 2. Conversely the group
H determined above belongs obviously o 0.4 (p) N Z.

Let N=R-{a%. Then H=N{z). We use Lemma 6 in writting =, y and use
Lemma 7 in discussing the irreducibility of H.

If exp(V) |p—1, then .

| 01 =
o= 0 . 1 , Y= gh ) R
A "0/ xa B g% axg

A and & are the same as (ii, ¢) of Theorem A.

If exp(IV) |p+1, then

0 I s
T= 0 ) I , Y= M . : ’
\ 4 . 0 2gx2g - . Mo 2gx2q

A and M are just the same as (iii, ¢) of Theorem A. I} is necessary to explain that
the reason that at least one of w and B is nob zero is the irreducibility of N-meodule
W in Lemma 6 (see Lemma 4).

It remains only to determine (&, -, @) like the argurment in case (2) we
treat the two types simultaneously and always assume @y =1. But we shall proceed
with two cases according to ¢=1 or ¢=2.
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- Firstly assume | H | = ¢’ . Gonsequenitly q]a- -1, Suppose wyw~ =yt Wlth G, r)
=1, its matrix form is

MG; : Mﬂh
V M g : MW}:
E Mo - . Mivw ’
M= A - M
/2] @1
@ @
.3 = t 2 J (]'.D. F r) °

al g

By use of the cyclic matrix.0 this formula is rephrased as follows

S al, : ,

@—tD| ® |=0 (7).

| a o

Hépce (@1, B s @) is a solution in F, of the following linear equation

C—D| : |=0 (in 7).

o S ‘
Because deb (0 —¢I)=(—1)2(¢2—1), the above equatlon ‘has non-trivial solution if
and only if £ is a root of £2—1 (the roots of this polynomial are all in F, for
glr—1I). But t=1 can not be chosen, because in this case @y =qz="++-=a, and W,
Wet! mentioned in Lemma 6 are all isomorphic N-modules, which is not requlred
- by Lemma 6. In addition, the above equation has only one solution with =1
because the ¢ roots of 59—1 are distinct pairwisely and consequently O—tI has rank
¢—1. In fact, the solution is as follows: ,
a=1, @a=%, ---, g =171,
Thus a;, #a;, (mod r) (41%4s). So H is irreducible by the same argument as in the
case (2). :
The above discussion reduces H to (li. ¢) and (iii. ¢) of Theorem A. Next let
[ H | =g¢"2, consequently g[m-l—l Now B=<y, y°) is a 2~dimensional Space over F,.
This holds if and only if y” =4*(y*)* for some ¢, s, € F,, i. e.
Ma,, . JV” 101+302
» | Mm-ksaa
A Mtoas+ong,
’ Mta.g-?;,'saq )
MMtsta+sas /-
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Similarly to the previous it can be written as the linear equation form
o , _

/23

@-0-m| 7 |-0 GnF).

Qg .

In order %o explain this formula and to determine s and f such that H is
irreducible, we fransform O in diagonal ferm, noting g[&—{—l and the characteristic
polynomial of O is £2—1, this can be perfomed in G'F(r?). With these observationsv
it is easy to see thatb det(02430 —tI) =0 if and only if £&?—s{—? is an irreducible
factor of £2—1 in F,[£]. This is exactly consistent with the reqﬁiement that = acts
irreduciblly on R because the characteristic polynomial of » on R is exactly £2—s¢
—+t. On the other hand, Lemma 2 shows that the irreducible factors of £¢—1 in
F.[£] are all of degree 2, except for £ —1. Furthermore, by the same observations
the rank of 0?—sO—iI is ¢g—2 when s, ¢ are chosen ag above; so the equation

&
(=) j (03—s0—tI)| i |=0 (inFy)
&g ‘
has many solutions with @ =1. But we shall show that for any solution of (%) with
@y=1 we get the one and the same linear group H which is always irreducible.
Hence, in practice, we can choose arbitrary one solution (@1, *+, @g) of (») with
a1=1. |
o ' ay
Let (ay, =+, ag) be a non-trivial solution of (#). Clearly Of : |isalsoa
24

solution of (). Further we claim that the two solutions are linearly independen’o.'

w\ (@
In the contrary case, 0| : |=d{ i |for some d&F,. Hence det(0—dI)=0. So
' g aq

£—d is a factor of £2—1 in F,[£]. Bubt we have seen that the factors of £2—1 and of
degree 1 is only the £ —1. Thus (ay, -, @) belongs not only to the charactenistic
- subspace of £—1, but also fo the characberistic subspace of £2—s&—t. This is
impossible because the two subspaces have the trivial intersection.

Assume H = =<{w, y>=R-<z) is the group determined by means of (a1, =, @)

~ » by A ,
Notice that R=<y?, y®=diag (M*, -, M%), where | ¢ |=0| : |, and each
| ' \ be. \ Qg

element z of R is a combination of y and ¢°. Hence z=diag(M®, ---, M?:) and (24, -,
%) is a combination of (ay, -+, o) and (by, *+, bg). Now if we seb at>(21, ==, 2g)s



362 :° . CHIN. ANN. OF MATH. - = . Vol. 7 Ser. B

It is easy to see that R is, in fact, isomorphic to the 2-dimensional subspace of ()¢

which consists of all solutions of (#). So we conclude that H is uniquely determind
by the irreducible factor £2—s¢& —t. '
We turn to the irreducibility of H now. Recall oFy(a¥) "t =diag (M, -+, M%),

Cq (741 :
where [ : |=04 : | Asfirst step we show that for any _1<fz}1#q}3<q there is &
bq /- a, ' : '

such that ¢, %¢;,. We prove this by contradiction.- Lossing no generality, assume
Gi=1, ta=i-1. Suppose ¢;=¢;,; for any k. A simple computation shows ¢;= @1 4k
Ci41=@14irk, Where the subseripts 1+ %, 14+4¢+% are all modulo q. S0 Gi3=ay1.;; for
all k. Putting k=0, 4, 2¢, ---, we obtain ay= a,+1=ag.,+1—a3¢+1—- . Since (4, ¢q) =1,
there always is I satisfying l,,;=n (mod ¢). Consequently a;=ga, for any n, i. e.
@1=a3=""*=a,, Which is impossible by the previous argument.
If a; are all distinct pairwisely, then the irreducibility of H has been proved in
the cage that c=1. A ,
Assume a; are not all distinct. Lossing no generality, assum ay=as=1, i.e.
M Me
y= M . Further assume ¢ =ayz* = - Mos with ¢4 ¢, (mod )

by the first step. It is enough for the proof of irreducibility of H by Lemma 7 to
show that WsWa (the symbols in Lemma 6 and Lemma 7) as F,N-modules.
Suppose this is not true, then there is T €GL(2, F,) such that T"*MT =M and
T7*M*T = M. We extend F, 10 F,( §) and transform M into chagonal form. For
convenience, we do not change the symbols, so
| e ( a-+Bjf )
a— ,8_7
Because T-*MT =M and o+ Bj#a— Bj (in the case that B=0) the irreducibility of
H ig trivial since at least two of M%(5=1, .-, g) possess characterisbic. roots
different from each other), T is also a diagonal matrix. Then
Mcl=((a+ﬁj).°’ . )’
- | (a—pBf)>
(T )
BN C -k
Mo =TT =M,
These equalities imply (a+R87)% = (a—l—Bj)"’, which is impossible because a-+Bj is of
order r and ¢;%¢a(mod 7). '
Now we obtain (ii. d) and (iii. d) of Theorem A,
The proof of Theorem A is complete.
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§ 4. The Proof of Theorem B
The necessity of conditions (1), (2), (8). | o
First of all we show an obvious fact: if there is a group of order m which has
rank>2, then there is a group of order mk for any k>1 which has rank>2.

Suppose (1) does not hold. Then there are p;, p; such that ( i, ﬁ Dy — 1))
s=1

% (pi, pi—1). Hence there exists & with 3<h<ak such that p;|pk—1 but piip;—1 for
any 0<s<h. Thus (i) of Theorem A gives a group G with |@|=mpp} and r(G)=A
=38 (see Lemma 2 and the remark following it).

Suppose p;<a;<2p; and p;|p,—1. Firstly we show that it is necessary that
p¥|py—1. If this is not true, then there is & such that p}|p,—1, 1<h<a;, so (ii. a)
of Theorem A gives a group &, |G| —pf‘“lpk, r(@) =p;>2. Next if a,>2, we consider
(ii. b) of Theorem A. Take ¢ to be a p} th primitive root of unity in F, (remark

- pilpe—1) and A=1. Then G@=V X H, |G| =pip¥, and r(@)=p,>2. This fact shows
that it is neéessary that @;<<2. Now assume there is also p, such that p;|pl,—1 (I=1
or 2 according 0 a@n=1 or>>1) and p,|p,—1 both hold. Then either p;|p,—1 or
2| pm+1 (hence a,>2). If p,|p,—1, we consider (ii, ¢) of Theorem A and put p;=g,
Pm=1 p=p, A=1. Then we obtain a group G=V XH, |G| =ppnpl, r(&)=p>2..
If p;|pw+1, noting a,>2, we turn to (ii. d) of Theorem A and put py=q, Pn=1r, Ds
=p, A=1. Then we have G=V XH, |G| =p:;p.p¥, r(G)=1. c. m of p; and 2.

Summarizing the above discussion, we assert that -the condition @ is
necessary. - o

It is easy to see that the proof of necessity of conéhtlon (8) is similar to the
above. In other words, if some one of (38) does not hold, one can find

- counterexamples in (iii) of Theorem A, except some cases, for example, 2| pr—1 and

" Dy |pr—1, which fall into the condition (2) in fact. '

The sufficiency of conditions (1), (2), (3).

It is a simple fact that if n satisfies conditions (1), (2), (8) of Theorem B, so
does any divisor of n. .

If the sufficiency of Theorem B is not true, let G be a minimal counterexample.

Firstly @(&) =1. If &(@) #1, then r(G/P(G))<2, so r(G)<2 because F is
local and consequently saturated (see [2] p. 697). This is impossible.

Now G must be one of the list of Theorem A. Affer examining the orders of
groups listed in Theorem A one by one, we find the following:

The orders of groups of (i) of Theorem A violate the condition (I1).

The orders of groups of (ii. a) of Theorem A violate the one of (2): if

Pi<ax<2p;, pi|ppy—1, then p¥|p;—1.
The orders of (ii. b) of Theorem A violate the one of condition (2): if
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Pisar<2pi, p;|pp—1, then ¢;<<2. In order to clear this c;ntradiction, we show that
the group H in (ii. b) is a non-Abelian g-group. So. |.H|>¢° whence ¢°»?| |G|.
...~ The orders of (ii. ¢) and (ii. d) of Theorem A do not satisfy the one of
condition (2): if Pi<ap<2p;, Pal pr—1, then there is no Pm Such thab p;|pl,—1 (I=1
or 2 according to a,=1 or>1) and p,|p;—1 both hold. This assertion is deduced »
from the following fact. In (i. o) and (ii. d), H =R x0, RQ=<z>, |o|=¢, v acts
non-trivially and irréducibily on B, |R|=r° ¢e=1 or 2. Thus ‘q[aﬂ—l (if e=1) or
¢|r+1 (if 6=2), while r|p—1 in both ths cages. | ‘ -
Similarly the orders of groups of (iii) of Theorem A violate the condition (3)

of Theorem B. ' ' ‘ | _

- Now we conclude that there is no minimal conuterexample to the sufficiency of
Theorem B. So the sufficiency of Theorem B is proved. -
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