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Abstract

Let @ be a locally compact abelian group and 4,(G) the p-Fourier algebra of Hersz.

This pepar studies the space A1 () =L1(G) N 4,(&) with convolution produmet. It is

provéd that 43 ,(G) is a character Segal algebra. Moreover,.for the mﬁltip]iers of 43 »(@)

the author proves that M (41 (@), Li(G)) =M (@) and M (41 ,(@), 41,(@))=M(@

provided @ is noncompact. If G is discrete, then M (41 ,(@), Lt (@)= 41 ,(@) and
CM(41,(@), A1,,(@))=41,(@. '

Leb @ be a locally compact abelian group and @ the character group of G. We
denote by 4,(&) a space consisting of all the following functions:

=3, u€ Ly(@), v € Ly(@),

Whei"e 1<p, g<co, —;L;+-:-;—=1, 7i(@) =v:;(27), Vo €G and

Salslnlo<oo.

For each f € 4,(G), define the norm of f by
1 la, =0t {33 ful,lod
_Wheré the infimum ig taken over all possible representations for f.
~ In thig paper, we introduce the algebra Ay,,(G), the subspace of 4,(G):
| 43,5(@) = Ta(@ N 4,(6).
The norm | [4,, of 44,,(&) is defined as follows:
FlawmIFlt 1flay ¥F € dun(@

Obviously, 4,,(&) is nonempty since 0,(@)*0,(G) C A44,,(&), where O,(&) is
the space of all eontinuous functions with compact support in . Herz™ proved that
A,(®) is a Banach algebra under pointWise multiplication, but is not an algebra
under convolution. In a later paper™ Herz also j_)roved that 4,(G) is a regular
Tauberian algebra of the functions on @. Lai and Chen™ proved that A, p(G) ig a
commutative Banach algebra under pointwise multiplication, and moreover, the
following statements are equivalent: (i) G is compact. (ii) Ay,,(G) < L,(G) for each
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0<r<<eco. (iil) 4y,,(@) =4,(@). (iv) A4y, »(G) has a bounded approximate identity.
(v) A1,,(@) hag the factorization property. (vi) 4i,,(&) has an identity, ete.

In this paper we will consider the space 44,,(@) under convolution product and
study the multipliers of 4,,,(&). v

Theorem 1. Ai,,,(G) 48 a character Segal algebra with convolution product.

Note. A homogeneous Banach algebra §(@) is called a character Segal algebra
if it is dense in I;(@), and for each yE€@Q, v €E8@), |7fls=]fls where vf(a)
~@ Nf@). |

Proof Tt suffices to prove the following facts since Ay, »(@) is a commutative
Banach algebra under multiplication and L;(@) possesses the homogeneous
_ structures. These facts are . : ’

(a) VF9 € Ayo(@), f*gE A1,,(@),

[f911o<[f l1.5]¢[1.s-
(b)  A1,,(&) is dense in L;(@).
(¢) For each f € 4,,,(@) and each Y EQ, vf € 4;,,(&). Moreover
17 115= 15115

‘We prove these facts now. .
(a) For each f, g€ 4,,,(&) , evidently, fxg € L;(@). Suppose

f =g Uk, g =§E 34*7;{; o . ‘ (1)

U, SEL(G), v, € L (@), %-l——i(ll'- =1,

8

co

[ulolode<en,  Sslléfe<oo. @

¢=1

=

il

Then
 frg=2(frs)

‘SincefELi(G) and s;€ L, (@), f*s‘EL,,‘(G) and | fxs;],<[f[1]8], Bub &€ L(G).
Therefore fxg € Ay,,(&). '
Furthermore

L*ghus=rrglst Ifsgle, | |
<I7bulgls + Zfesdoltede<IF Ll gl 171 Slsds Lt

§=1

< Elody) (ol Ssblel). @

_ For'every e>0, there exists uf, of, s}, # (=1, .2, --+) such that (1), (2) and (3) -
hold together with | »

-

fed 1ol [o<[f] 0+,

@,
'I_I‘

Ms

b

Ist o024 ﬂq<"9ﬂ4,+6‘.‘ |

N}
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Since & ig arbitrary, we have
[f*gleo<Ifluslglus

(b) Recall that Li(G) has the factorization property: le(G‘v) =Ly (@) + Ly ().
Hence for each f € Ly (G), there exists g, h€ L;(@) such that f =gxh. Furthermore
since 0,(®) is dense in L(G), for every >0, there exist g hEOo(G), such thatb

lg— 9H1<6: ﬂh hli<e. '
Therefore :
1/ =gxhla= ﬂ!f*h Gols<e,
where g«h €0 (G) %0, @). Tt follows hat O (@) =0,(@) is dense in Ll(G) By
' ' 0 (G)*O @ CAiw<G> CL:(G):

(b) is proved.

(c) Lot y €G. Then 7 is a continuous character on G and Vo€ G, | (m, 7) [
=1. Suppose that

f 2 u/;*’l),, Uy S Lp(G) P E Lq(G) , + %. =

©o

udsdode<Iflate

where &>0 ig arbitrary. Thus
vf =2 B
It is easy to see that yu, € L,(G) and Iyl o= [t e Hence vf € Ay,,(&).
Moreover, by the fact |7/ [1=|[f[1, it follows that '

H?’fﬂirl’< ufﬂim"'s:
that ig

| o 17 l1,o<If l1.5-
If ll?flllrp<“fﬂ199) then there exist u; € Ly,(@), ELQ(G)) i=1,2, -,
guch that

k3 |
+ .

|
I

’-l

')’f=2 u; ¥y

“7’in-»< ﬂ?’fﬂﬁzﬂwﬂ [0l < ﬂf“i,p
Repeating the above process and noting the fact y 7y =1, we obtam

[flae= 7" ) 1< l7/ 1o 1f Ja0s-
But this is a contradiction. Hence |f|1,5=|f [1,,- The proof is complete.
The following theorem will show that A,,(&) is a proper subspace of Ly (@)
when the group G is nondiscrete.
Theorem 2. The following are equivaleni:
(i) G ds diserete (or G is compact).
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(i) Aivp(G) =Li(&).

Proof (i)=>(ii). It is known that if @ is discrete,then any Sega.l algebra. is the
whole of L; (G)™#:%. Since Ay,,(&) is a Segal algebra, we got 4y, , =Ly (&).

(ii)=>(). It suffices fo prove that if @ is nondiscrete, there emsts an element
u€ Li(G) bub we 4y,,(G).

"Take a function

1, v=e,
w(a;) {0 v+e,
where ¢ is an identity of group G— It is obvmus that u € L;(G). On the other hand,
if u is a continuous function, then the smgle point set {a} is an open set of G.
Henoe G is discrebe. It shows that u is dmmnmonuous because @ is nondiscrete. It is
easy fo see that A4;,,(G)0,(Q@) since u;w;EOo(G) and [us¥i]. <[], l#:]q, where
0u(@) denotes the Banach space of all continuous funchions on @ vanishing ab
infinity under the norm H [ So uq_:Ai,,,(G) That is 4y,,(G) %Li(G) when G ig
nondiscrete.

‘We now study the multlphers of Segal algebra A1,,(@). Let G be a locally
compaoct abelian group, 8;(G) and 85(@) are two Segal algebras on @. Let T' e a
linear operator from 8;(&) into S;(@). If T commutes “with every translation
operator ,, that is Tz, =1,T, then 7T ig called a multiplier of §;(&) info S:(&F). We
denote the collectlon of all the mul’slphers by M (SI(G), 82(&)), which is a Banach
- algebra.

The following theorem glves the relatlons between M (Al,,,(Gf), Ly (G)),
M(A43,,(@), 41,,(@)) and M(Q), where M@ denotes the Banach algebra of
bounded regular complex valued Borel measures on G.

Theorem 3. Let G be a locally compact but noncompact abelian group. Then

» | M (41,,(@), Li(@®)) = M (&), ‘

M(AivP(G)J Ai'pCGl)) =M(G>
M(41,)(@), Li(@)) =M (41,)(&), 41,,( D),
where “="" means: isometric algebra isomorphism.
We will turn the proof into following two lemmas.
Lemma A Let G be a locwlly compact but nowcompact abelmn group. If
T4, (L@ '
bs @ continuous linear operator, then the following are equ@wlent:
(1) TEM(41,,(@), Li(@). |
- (i) There ewists a unique measure w€M(G) such tkat
Tf=pxf, Vf€A1,(@),
where M (G) denotes the Banach algebra of bounded regular oomplesv valued Borel

. measures on G.
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Moreover, the correspondence between T and u defines an isometric limear
@somorph@sm Jrom M(4;,,(@),L(Q)) onto M @.

Proof If € M (@) and Tf = uxf for each f € A1,,(G), then, clearly

. | I7f o= Lsf o< w1 b 1 Flas
' It is evident that 7€M (44,,(@), Ly(@)), [TI<|p].

Conversely, suppose that 7€M (Al, 2(@), Li(@)). For each f EAi,p(G), since
Tf € Li(@) and @ is a locally ‘compact but noncompact group, for any >0, there
exish s1, 89, ++¢, 8.1 € G such that

BITS s < |TF + 5T oo T [ .

Tisa multiplier, that is, a continuous linear 6perator such that =, Tf =Tz, b

4=1, 2, -, k~1, g0 that
[leﬂi\[lT(f+rs,f+ -i—'vs,c_lf)ﬂi-lvlcs , ,
<[|T[f+7ef+-+ v flat [ f + 7o f+oo ‘1.‘."5'3,‘_1]6’"411,) +ks.
By the homogeneity of L,(&), |

lf +Ts1f+ “F T, f [11<7ﬁﬂf ﬂ
Hence

| BITF [o<IT ] B fla+ [ 470 f+ o+ v f ) +Rs. @
Lot '

f=§;%;*’3)’i,« WELN(R), €L D), %.*__3_;____ ,

O Sullnle<os.

For the above &3>0, there exists an ihteger N sqeh that

3 Jubslode<e.

Next let
g&=§1d,.*5¢.
We have |
1f=grla,=1 3], werbila< z Tl uwzuq<s D)
Since 0,(@) is dense in I (G), there emst oa,,, ,&EC’ (G‘), i= 1 2, - N , such
that ,
u—al<g Hw;—ﬁillqﬁ—i,,
| s (3 [l 3} oo )
- Let ' i

v _ ,
‘P=§°@*Bi; GPan(G),V
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gy—@= z(us*"’i - 05&*5;)
1:1 s (Ts— ﬁe) 2(%“"0@ (’D, ,é‘) +2(u,¢- o) %0,

ﬂgN“‘9’“49<§Hu¢ﬂpﬂ’”a“:3iﬂq+i=21ﬂuc*“?iﬂpn"?i*ﬁsﬂ_q"f‘gl:ﬂ =0, ﬂ’”fﬂa<38
From (5) and (6) |

If —lu,<[|f— QNHA» lgw— q)ﬂa,,<46;
and it ig easy to see that for any s,

N f ] 4, <A4e.
Hence : o
1 4+t T Flay ,
<IGHwafte 470, ) = (rrapt+ra.g) o+ [IqH wp+ +%H¢ﬂ
<dhbe+ ﬂgu+'rslgv+ N
Substituting (7) info (4), we get
BT 1<|T[ (| f|1+4be+ o+ 7e9+ - + 75 0] a,) + e,
where
N
. ¢=§10‘£*é¢, Oz, B;GOu(G);
so that | |
@+ To,pt 0T, @ =§1] (o5 0620 + 7, 00) *E;,,

N -
"¢+731¢+ o0 +7&n—19’"%<21_n“¢+731“€+ o +'Vax-;“iﬂpﬂlginc'

We can also choose s;(4=1, 2, -, k—1) such that (8) holds é._nd
SuppPTs, 1 SUPps,06=0,
etf, ‘6 f=0,1,2, -, k—1.
Then :
et o -t -+ -], <
o+ 7op-+ -+ 7091, <B Sacl,lBile:

Substituting the last inequality into (8), we have B
1T <|T ll(llfl!1+4s+k” e dslBda)+e.

‘ Smce s and k are arbitrary and p>1, we obtain

ITf<IT1Sf |-

®

(7

®

This shows that T dennes a mulbiplier of A;,,(&) considered as a subspace of
L;(@) into L;(@). Since A4;,,(&) is dense in IL;(&), T debtermines a unique
continuous linear operator I’ (we also use the notation T) from IL;(@) into Li(G),

whose norm remains the same. We now prove that T isa mulhpher from L, (@) 1nt0

L, (&).
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For each f€L;(@) and any >0, there exists gGAi, ,(G) guch that |f— gﬂ1< 8.

For each translation 7,, :
175 f =5 T[T — Prgla [y — T 2T 1 — gni<2nTu

so that T'z, f =,Tf. Consequently T" is a multiplier from I, (@) into Ly(@).

By a well-known result on multipliers of L; (&), there exists a unique maesure
€ M(G) such that ' '

Tf=u*f, Vel

and [T'] =[u[. This completes the proof. - e :

From Lemma A, it is convenient'to investigate the multiplieps from 4 ,(&)

‘into 44,,(@). In general, let S(G) be a Segal algebra on G. Unni®* proved that if 7

is a multiplier from §(@) into S(&), then there exisis a unique pseudomeasure ¢
such that : : ~ -
Tf= O‘*f for eaothS(G)

yeb, in general the correspondence only appears to be a relation between .M (S (G),
8(@)) and some subset of all pSeudomeasures For Al,,,(G‘) ‘we have, however, the
following lemma. . '

Lemma B. ILet G be a locally compwct but woncompact abelian group. It

T2 41;,(@)—> 44, ,(@)

28 @ continuous linear operator, then the Sfollowing are eguwcvlent

(1) TEM(Usn(@, 4un(@). - | |

(11) There ewists a unigue measure w € M (G) such that : i

Tf —psf, VF € Asy(@).

Moreover, the correspendence between T and 1 dd fines an isometric -algebra
ésomorphism from M (Ay,,(Q), As;,(G)) onto M (G).

Proof Bvery T€ M (4,,(&), Ai,,(G)) will be identified with an element of !
M (A1,,(@), Li(@)) since .
IFli<Uflw» VfE€ Am(g)

By Lemma A, there exists a unique measure y € M (G) such that

Tf=pxf, VFEA,(@, [T]=[u].

Conversely, for each € M(Q) , pxf € 4;,,(&) since 4y,,(Q) is a Segal algebra. 7

Therefore Ay,,(&) is an ideal in the measure algebra M (G). Moreover '
Lisf s <l |l VF € dsun(@).

Let ; -
| T:44,,(@) > 41,,(@), Tf=psf.
It is easy to see that T'€ M (4s,,(F), 41,,(&)). Lemma B is proved.

From Lemma 4 and Lemma B we get Theorem 3 immediately."

In the case when @ is a discrete group, Theorem 3 ig simpler.

Theorem 4. Lot Q be a disorete group. Then the following are equivalents .
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(1) /TEM(41,,(®), L1(G‘)) | : ~
(ii) There ewists a unique funomon gTEAi,,(G) such that

o | Tf =grf, VfE€A1,(@). :
Moreover, thJs correspondence between T'-and gr difines an algebra isomorphism
. from M (4s,,(@), Li(@)) onte A3,,(@), and the'norms are equivalent.

Theorem §. Let @ be a discrete gfroup Then the followmg are eng;mlent

(1) TEM(41,,(@), 41,,(@)).

(ii) There evists a unique function gp € As,,(&) such that

; ST Tf=goxf, VfE€A1,(@).

M oreover, this correspondence between T and ¢gr difines an algebra q,somorph@sm
Jfrom M (A1,,(@), 41,,(@)) onto A1,,(&), and the two norms are equivalent.

The proofs of Theorem 4 and Theorem 5 are obvious. If G is a discrebe group,
then A;,,(G)=Li(@) =M (@) and gr=T3, where § is an identity of A,,,(G). It
remains to prove the norms are'equivalent.beéause the norm of 4;,,(@) is not the
same one of L;(§) = M (Q). By

ITf | = T3f | <[T81.plf 1.

we have_' R . o
IT1<IT5]s.0, ©)
where T3 =gp. '
On the other hand, since & is an 1dent1ty of 4, ,(G) s
, (1, m=e, .
-
<m> : O; T '-I‘L 3;, @ E G’

where ¢ is an identity of group & Hence ,
[8]1.0= 18]+ |0%8] £, <[8]1+ [8]510]<2.
Together with [T']|<<|T8{1,, we have Lo e
| o 1781, <IT[[8]1.,<2|T|. N
Subshm’nmg (10) into (9), we obtian L
ATI<IT3]1,= llgz-ﬂi.p<2HTﬂ
The proof is complete. -
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