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Abstracf .

) The main purpose of this paper is to extend the;concept of Bellow’s uniform amarts
and E—Valued martingales indexed by directed sets, and te give a necessary and sufﬁment
condition for the strong sto. convergence of the nef (mr>7€Ta, thxs ‘condition is also a
necessary and sufficient condition for the strong ess. convergenee of the net (:z:,),E p When
the stochastic basis satisfies the Vitali endition V. o ‘ ‘

In this paper we introducea class of uniform amarts in a o-finite measure space
indexed by directed sets as a generalization of Bellow’s uniform aiiarts and E-valued
 martingales indexed by directed sets,  and . characterize the strong stochastlo
~ convergence of and strong essential convergence of an adapted process. B

§ 1. Introduction

Lot (2, F, w) be a fixed o—finite measure space and D a directed set filtering to
the right. A family (F;),ep of o—algebras, contained in F satisfying P, F(s<t),
' +|, and (X)sep be
a family of strongly measurable A-valued r. v.’s adapted o0 (F:);cp. Throughout
" this paper, functions, sets, and r. v’. 8 are considered equal if they are equal almost

surely. A function 7:Q—>D is called a countable (simple)stopping time with respech
10 (Fp)sep if (v=1) EF, for all €D and R(z)A{¢ € D |there éxists w € Q:7(w) =1} is
-a countable (finite) subget of .D. The set of all countable (éimple) stbpping times will
be denoted by T°(T%). Under the natural order, 7° and T* are directed sets filtering
to the right. Let v€7° and(X;);ep be an adapbed -process. Define the r. v.
X, = Z I(,,._t)X, and the o—algebra F, —{AEF] for any tER(z), A(z=t) EF},

and write E""( Yfor conditional expectation B (- |F ,) It is easy to see that X, ig
F,~measurable. We denote as usual by Ly=L3(2, F, p)a space of all Bochner

integrable B—valued r. v.’s. For X € L}, we Write]]X[i=L | X (o) |dp(w)=E|X|.
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When D=1, 2, -, AN, and px is a probability measure, Bellow [1, 2]
introduced the concept of wniform amarts o extend E-valued martingales and
quasi-martingales. She called an adapted sequence(X,)acy an umform amart if for
each v €T*, X. €L} and

Lim | X.—-E°X, l]1

T, 0T
T<o

She proved that if (X,)scy is'an Li-bounded uniform amart and E has the Radon— '
Nikodym property, then(X4)aey converges strongly almost surely and sup E|X .|,
: i

< oo, For a general directed set D Millet and Sucheston™ extened Chatterji’s
theorem™ and showed that if E has the Radon-Nikodym property and if the
stochastic basis(F¢)scp satisfies the Vitali condition ¥, then every Lji-bounded
martingale (X¢);cp With respect 1o (F4):cp converges essentially. |

The main purpose of this paper is to extend the concept of uniform amarts and
E-valued martingales indexed by directed sets, and to give a necessary and sufficient
condition for the strong stochastic convergence of the net (X.);ers. By Theorem
12.38 of [8], this condition ig also a necessary and sufficient condition for the strong
essential convergence of the net (Xy):ep When the stochastic basis (F,),e p satisfies
the Vitali condition V. :

§ 2. A Class of Uniform Amarts

In thié section we introdnce a class of uniform amarts and give a characterization
of the clags of uniform amarts by the Riesz decomposition. Suppose T'C7T° and
v €T°, we denote T('zr) ={0c €T |v<o}, and write

T ={T|T is a directed subset of 7° and T () #( for each t€D}.

~ Definition 2.1%., Let T €T, we say that T has the localization pq'opewty if for
each finite family(v;)ses T and each finite partition of Q, (4;);es with 4;EF,, for
- J€J, the stopping time v=7;(w)for w € 4;, jE€J belongs to T'.

-~ Let A ‘ ‘ .

L L={T €T|T has the localization property}.
Definition 2.2. Lot TEL. (X)sep 45 @
a) T-uniform amart if |X.|1<cofor each vE€T and

Lim [ X,~E*X,|1=0;

T,
T<o

b)) T-uniform potential if
Lim ]]X.,ﬂ1=0.
T

Since the conditional expectation contracts the norm [« [;, and L} is complete,
we thus have ‘ ' ‘
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Lemma 23. Let TEL and (Xy)eep be a lT-uwéfoa'm amart. Then for any v
ET° with T (v) 0, the net (B"X;)qer converges in L. : :

Definition 2.4. Let TET and (Xy)iep be an E—valued martingale. (Xo)sep is
called & T-regular martingale &f for any v, €T and 7<o, |X.[|1<cc and
E'X,=X,a.s -

Definition 2.5. A sub-o—algebra B of F is called o ﬁmte iof there ewists (2,)C
B such that Q44 Q and u(2,) <oo. L |

In the case T'=T" and D N, the following Riesz decomposfﬁmn ’oheorem is due
to Bellow™.

Theorem 2.6. For T€L, (X,)iepts a T-uniform amart if and only if
(Xt)tep admits @ unique decompbsq}t@m, X;=Y+2Z;, for t€D, where (¥i)iep 15, a
(T' U D)-regular martingale and (Z;) is @ T-uniform potential. Furthermore, for each
t€D Y, is the Ly limit of the net (B'X ;) qer. If there ewists @ 7" €T, Fuis o—finite,
then Yy 48 also the strong essenitial lomit of the net (H* X I P

Proof The suﬂiclency is obvious. Now we prove the necessity. For each t€D
and o €7, denote the L1 limits of the net (B X.)ser and the net (H°X, )yer
respectively by Y; and ¥ (o). It is easy to show that y(o) =tER2@ Yilieety=Y, and

(Yi)sepisa (TU D)—regular martingale. Lebt Z;=X;-Y,, we shall show that (Z;):ep
is a T-uniform potential. In fact, for any &>0 there exits 7,E7 such thab
[[X —E°X,|1<e. For any o €T (v,), choose ¢’ €T {c), [IY — B X, i<e, -

T U‘GT(tn)

then : o
1Zuls= | X o=V o i< | Xom B X s+ | B X =V o |i<26,
which implies 11119 [Z+]1=0, i. e., (Z¢)tep is a T-uniform potential. If (X,);cp has

another decomposition: X;=Y7+Z7, where (¥Y})scpis a (I'UD)-regular martingale
and (Z1)icp a T—uniform potential, then
lim |V, — Y3 =lim[Z, Zl|]1<11mﬂZ s + llmHZIIJ =

and for any 7, o € (T uD), 'v'<o-,
| [Yo=Yzi|a= | E* (Y —Y5 )Hi\HY YIH
hence for each t €D
[¥ =Y <Lim[Y,—Y]:=
B then follows that Y,=Y} a. s. v .

Tt remains to show that for each & D, Y, is the strong essential limit of the net
(B'X ;)rer if there exists a z°€T and F,. is o-finite. We shall prove it by
contradiction. Suppose it were not true, then there would exist ¢, €D, >0, and
AEF . w(4)<oo such that

w(ess lim sup A,)=a>0,



376 . | CEIN: ANN. OF MATH. - . . Vol. 7 Ser, B

where A, A( [ Et X, Y t.,{ > so) Foreachv €T (to) nr ('zr*) , there exists (7:,,) T (%)
ess sup A, U A, Ohoose kEN 72 [U A,”]>a/2 Leb c=7v, on 4,, o= P

Tw)

'AT,,\<U 4, ) for 1<n<#, and o= on O\ ([ 4.,). Then ¢ €T(s), end

p(4)>p (U 4.,)>a/2.

Yet Y, is the L} limib of the net(E* X,)rcr, and it is a contradiction. .
Definition 2.9. Suppose TEL, we say that (X t),ED satisfies cond@mo«m A (T)
(B (T)) if Hm inf| X1 <o (Lim sup| X ;1< c0).

The followmg theorem 1mproves Theorem 1 in [1]
Theorem 2.8. ILet T &L amd(X t)sep be @ T-uniform amart. Then
&) Condition A(T)is equivalent to condition B(T); '
b) Under condition A(T) x tl)tep is @ real-vallued T-amart, i. e., 11m ﬁX [[1

ewists in RY.
Pq~oof Tt is sufﬁclent to show b). Suppose that Iim mfl[X ﬂl—a<oo By

Theorem 2.6, X;=Y;+Z;, where(¥Y;)scp is (7' D)-regular martingale and(Z;);ep
is a T-uniform potential. For any 7, ¢ €T and. 7<0,[Y o[1=|E"Y o [1=[Y +[1,hence
Hm (Y| =lim| Xo—Z. H1<11m inf] X, u1+1jfanz,,u'1=a<oo,

li;nlleﬂflgnﬂX«—Z«ﬂ@hm sup| X[y —Um|Z. |1 =1lim sup| X[,
whence lim supﬂ X |i=lim inf 1X-] 1=w‘<oo , ([X ¢|)iep 18 a real-valued T-amart.

Using the proof of Theorm 2.2 in [8], we can obtain the followmg cofinal
oplional samplmg property for T—uniform amarts, where T =T¢ or T°.
. Theorem 2.9. The class of T*(T°)—uniform amarts has cofinal optional sampling
property, &. e., for any T*(T%)-uniform amart (Xi)iep, and for any cofinal subset
T of T (T°) (i. e, TT(T°) and for any z€T*(L°) T(v)+#@), the process (X,
F)rer 15 a T (T9)~uniform amart, where T (T°) is the set of all simple (countable)
stopping times with respect to (Fr)rer. |

§ 3. Convergence in the absence of the Aitali condition V.

In the following sections we assﬁme that the o—algebral_ = A\.F; is c—finite.
Definition 8.1. Let (U,):ep be a family of E-valued r. v.” s. We say that (Uy)sep
converges strongly stochastically if there ewists an E-valued r. v. X such that for any
£>0and AEF, u(d)<oo,
lign wlA(|Us—X | >&)]=0.



No.3 .3 = - Xue, X. H. A’ CLASS'OF UNIFORM AMARTS 377

Theorem 3.2. Suppose that T €L, (Xo)ep is @ T-uniform amart satisfying
- condition A(T), and E fias the: Radon-Nikodym property. Then (X)zer converges
strongly stochastically. ,

Proof By Theorem 2,86, ‘We can write X, =Y ,+7,, 'Where(Y*;),eD is a (' yD)-
regular martingale and (Z,);ep a T-uniform potential. It is easy to see that (Z,) ,cp
converges strongly stoohastioallj to zero. We need t0 show the convergence of the
net (¥) e Usir_ig the argument of Theorem 2.8,s1;pﬂY.,ﬂi=——'1i£1’ﬂ.Y7'ﬂ1=lim %fﬂ X .
<%0, thus, for every increasing sequence (z,) T, (¥esy Pr)ane is an Ii-hounded
martingale which converges according o Chatterji’s theouzfezﬂ’:(s:eé,”e.‘ g,v [9] p. 112)
almost surely in the norm :tbpolog'yi, hence si;ror:lgljr Sfbbliastically. 'Since the strong
stochastic convergence is defined by a oompleté mefric, V"Jbllﬂs'imr;]i'es that (Y ) ver
converges strongly stochastically to 7. S

Definetion 3.3.7  Lot(U,)sep bo & family of Bevalued 7. o, 's. We say that
(Us)sep is terminally uni formly integrable if given any 6>'Q there ewist an S€D, a
positive number C and an elément H in F of finite measare such that

31 ILCE RS L AT R
Theorem 3 4. Suppose TeL and (X,)yep s terminally uniformly . integrable,
Among the féllowé]ng assertions: | - |

(@)  the net(X ) er comverges im Lf;

(b)  the net (X,)rep converges strongly stochastically:

(e) (X)iep is @ T-uniform amart, S | . -
e hawe(a)(.:)('b)#(c). If, in addition, B has the Radon-Nikodym property, then the
assertions (a), (b), and (c) are equivalent. . , v

Proof Tt is clear that, under the hypothesis of the theorem (a)e(b). (b):}(c)
Suppose that (X ) rer éonverges Astrmigly stochastically to X. Sinoce (X )wer is
terminally uniformly integrable, lim squﬂX w[1<<co. Thus, :biy Fatou’s lemma,

| X [1<eo. It is easy to see that (X +—H"X)rep converges strohgly stochastically to
zero. Since

| X~ BX|<| X[+ | B X | <[X.|+ 5| X]|,

(X —E"X),cp is terminally uniformly integrable, hence B
m|X,~E"X|;=0.
T . :

For any e>0, there- exists a 7, €T such that , ‘
. sup-ﬂX,—E’X[[1<s. :

: ¢+ T'(Ta)
I e, o-ET‘('ro) and <o, then , e
X EX, <[ X, ~ B X34 |E°X ~B°X,|; .
. <&+ |E(B'X-X,) [i<e+ | X~ B X |;<2s,
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whence (X),ep is a T—uniform amarb.
If H has the Radon-Nikodym property, (¢)=>(b) by Theorem 3.2,

§4. A Characterization of Strong Sfochastic
- Covergence of (X.).ers

Definition 4.1.® Let T€ L, we say that T has the density if for any >0 and
any A in F of finite measure, there exists @ ¢t € D such that for any vET°(t) there is
' €T with ulA(r+7)]<e.

Lemma 4.23. The following assertions are equivalent:

(@) (X)re 7 cowbefrges strongly stochastically to X;

(B) (X ,)rers converges sirongly stochastically to X;

(¢) There emists ¢ TEL such that T has the density and (X T)TET conver ges
str Ongly stochast@cally to X.

Proof (a)=(b). For any >0 and A4 in F of finite measre, there exists a
o €T° such that

sup p[A(| X+ X[>8)]<s

(o)
Sﬁppbsé “R(c)=(t,). Choose k, t and o  satisfying KEN, ¢t€ NiD(%), and
o' €T°(o) NT°(%) respectively so that ' ‘
pfal 0 o=t <e.
For any mes(t), let /=7 on [U (o- t,.)J and 7' =o' on [Q (o=t,) ]“, then +/ €
T“(o‘), and o ‘ '
- plA(IX.-X]| >6)] <wpld(z#77)] +M[A({X7'—X! >e)] <e+te —23,
‘ whmh implies that(X,)epe cOnverges s’orongly stochastmally to X.
Clearly, T* has the densﬂ:y , (B)=(e).
(¢)=>(a). For given >0 and 4 in ¥ of finite measure there exists a o €T such
sup ,U/[AUX X|>8>]<8
Since T' has the density, there is a t €D as glven in Deﬁm’mon 4 1. Then for any
T€T(a) NT(t), there is a v €T, u[A(z+7)]<e.
Take 7/ €T (¢) NT(7"), and let ¢’ =7’ on (7’ >0), and o —1’ on (v'30), then
¢ €T (o) and pulA(z+#0)I<ulAd(z#7")]<e. Hence
WA X o= X | >6)]<ulA(| Xo— X|>e)]+plA(r0)] <2,
It follows that (X, )repe converges strongly stochastically to X.. ,
Theorem 4.3. Suppose.that (X ,):ep is an H-valued adapted. process, aml E has
the Radon-Nikodym property. Then the nei (X.)rers (Xz)rere) converges strongly
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stochastically to a Bochner integrable r. v. ¢f and only of there exists a T €L such that
T has the density and (X;)iep ts @ T-uniform amart, satisfying sup|X.[1<oo.
T

Proof By Theorem 3.2 and Lemma 4.2 the sufficiency is obvious. As to the
necessity, suppose that (X +)vepe cODVErges strongly stooha,stmally to X GLI Take

(H,) of disjoint sets in F_,, such that for each n>1, ,u,(H,,) <o and .Q U Hy 4 Q.
1 .
For any >0 let '

(&) — € .
Eha I E A ES

then U® is an F__-measurable positive r. v. Let
T={z€T°| | X,—E"X|<UW},
then supl]X [ <BU®+ |B X |1<EU®+ | X |1<co. For any 0<s<<l leb At=

(| X, —EB*X|>U®), Bs=(|X,—E"X [<U“’) Slnoe (Xo—B" X )peqe ‘converges
strongly stochastically to zero, (Ie)scpe converges stochastlca,]ly o zero For any
o €T° we can choose €T (o), pw[Ri45]<<1/2. Hang chosen 7y, -, 7,, take
a1 €T° (%), [ Qnr1ds,,]<1/2°*, then L |

.Q==DB°
Letfv =7y On B,,, and 7=1, on [B‘;,,/UB ] for n>1 Then 7€7°(c), and

| X, —E"X |<U®, partlcularly, €T (o), hence TET. It is clear that T has the
localization property, thus 7' L. Now we prove that T hag the dens1ty. For any
>0 and ACF, u(4)<oo, take o €T such that ’

sup w (4AL )<——28—

- To)

Suppose R(c) = (%,), choose ]ﬁ.E N, .
M{A [,Ql (a=tn)]}<“8“
Take € [:] D(%,), then for any v €T°(¢), take ' €T (r) NT (o), and leb
o (7 von BI[LkJ (o=t )] | |
) s "
o’ | on Q\BI[LkJ (o=t )]
[T gis ‘s
'-'v, on L:J (o=ty),

k
| o', on Q\L1)(0'=t,,),

then ' €T (), " €T%(0), and |
. plAG £5)]<p {A [T = ]}W(AA;,)Q.
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Therefore 7" has.the density. It remains to show thatb (X ,)tep is.a T-uniform amart.
For any >0, choose k€N .and 7,7 such that . ‘ ‘

o

2 21; <5) sup (TO)M(QkAi-) <s
Then 1f 7;, o ET(To)and .‘.,.<0.’ S
- X B X<E (Uu) Tose,) + B (U9Io,BS) + M(Qk A«r)

<2 2,, +e- 2 ;“ +e<3e.

[]X,——E"X[11<~3s. .

Hence e :
NX =B X |s<| X, —E°X |1+ | B X ~EX,|s )

<8e+|B (B (X - X)) |:<8e+| X, —B°X |1<6e,

‘which implies that X t)tep is a T-uniform amart - '

§5. Convergence under the Vitali Condition V.
Krickeberg™ introduced the Vitali condition ¥ on a stochastio basis o assure
essential convergence of Li:~bounded martingales. A s‘aochastm basis (Fy)sep is saml
bo sainsfy the Vitali condition ¥ if the following holds™ ¥ ‘

For every A in F of finite measure, for every family of AtEF,(tED) sueh
that Acess lim sup A,, and for any >0, there exist ﬁmtely many indiges tyy tay o

t,€D and sets By € F, (¢=1, 2, ---,-n) such that
B, 4;, for i=1, 2
BN B,--—{D for fz,%j,

and | A
o (A\u B;)<e

Wo remark that 1f D is ’ﬁo’ﬁally ordered, then the Vltah oondltlon 14 holds[" 9‘ Mﬂlet
and Sucheston™ showed that (Fy)iep satisfies the Vitali condition ¥V if and only if
for every Banach space E-and for. every E-valued adapted process (X;);cp, the
strong stochastic convergence of (X )rers 1mphes the strong essential convergence
of (X;)¢ep. Using this resuld and Lemma 4.2, we have

Theorem 5.1. For a stochastic basws (Ft)tep the follo'wmg assertions are
equivalent: : o

(a)  (Fy)iep satisfies the Vitali COnd’I/t’bO')’b V: . v

(b) For every Banach space B and every E—wlwgd adapted pa'ocess (X +)teDs the
stfrowg stochastic convergence of (X)vers 0. @ lmit X mnplws the strong essential
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convergerice of (Xy)iep to X0 T TR TR o

(¢) Same as (b) ea:cept that T° és bemg mplcwed bfy T, where T EL and T has the-
density. ) > C L
By Theorems 5.1, 3.2, 3.4, and 4.3, we. ob’oaln ' : : :

Theorem 5.2. Uuder the assumptions of  Theorem 3.2, @f (Ft)te p Satis ﬁes the
Vitali CO%d%t'ZO’fb V, and if T has the densoty, then (X t)tep cowwerges strongly
essentwuy | '

Therem 5.3. Suppose that T €L, T has the density, and (X w)ver 88 teq*mmwll/y -
iszoo*mly sntegrable. Then the strong essential convergence of (X ,),GD implies that
(X)t)eep t8 @ T-uniform amart. If, in addition, E has the Radon-Nikodym property
and (Ft)tep swt@sﬁes the Vitali condition V, then the conver'se is also true.

‘Theorem 5.4. Suppose thczt(X Diep 08 an Elvahied adapted process, B has the
Radon-Nikodym property, and. (Ft)tep satisfies the V@ta,lfz, condition V. Then (Xten
conver ges strongly essentially to a Bochner' mtegmble row. g if and only if there exists a
T €L such that T has the denswty and (X t)te » s a T-uniform amart samsfymg'
Sup[[X Ji<< 0. ' :

Remark. In the oaSe that T' = Ts D= N and tha,t wis aprobablhty measure,
Theorem 5.2 is due to [1], Theorem 5.4 ig due to [8], and Theorem 5.8 is an

improvement of a result in [1]. Theorem 5. 2 iy also a generahzatmn of Theorem
12.4 in [8].

§6 The Real—Valued Case

In this sechon we assume B = Ri

Definition 6.1. Let TE€L, and (X t)tED be a rewl wlued mda;pted prrooess We say
~ that (Xt)tep és a T-amart, if 11m EX emsts fm R1 e .

Lemma 6.2 LetTEL. (Xt)ten fzs a T—amwrt ’bf cmd only %f (.Xt)tep is @
T-uniform amart.

Proof For any w, c €T, v<o, [E'X ——E’Xl |B(X, — B°X,)|<
B|X,—-EX,| =|X,— EX,[s, the sufficienoy is obvmus Now we prove the
'necessﬂ:y For any ¢>0, choose 71 €T, . -

SuplE(X -X )[<e

For any 7, GET(’D‘O), 7<c, lot 7' =% on (X ,— H"X ,>0), and v’ =0 on (X, —E"X,
<0).Then BH(X,—E"X,)*=EX—HBEX,<e. Similary, (X .~ E"X,)"<e. Heroe
| X.—E"X,[1<2¢ , and (X ;)sep is a T-uniform amars. .. .

Thus, the results in section 2, 8, and b are also true Wl’uh T-uniform amart
replaced by T-amart, and R*'in lieu of A. -
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In the followmg we glve another chara,ctenzatlon of convergence of real-valued
adapted process. o . o

We say that a real-valued process (Uy)een stochagtically converges to ar. v. X
which take values in R, if for any >0, M>0, and A in F of finite measure

| Lim{u[A(|U:~ Xl>s)(lX!<oo)+u[A(Ut<M>(X=+oo)]
+u[AU>— M) (X = —e0)]}=0.
It is easy o seo that T:)sen stochashoally converges t0 ¢ r. v. X if and only if for
any finite positive r. v. A ((mMVX ,A?L),en stoohastma,lly converges to
(=A) VX AA.

Definition 6.2.7 Let (X t),ep b a real—mlued adapted process. TEL We swy
that (X,)iep is @ TS—maa"tmgwle of for any F_ —mewswable positive T. V. A in LRl,‘
((=A) VX, AR) is & T-amart.

From Theorems 2.4 and 5. 3, we obta,m .

Theorem 63. Let TEL and (X t)iep e @  real-valued adapted process. Then
(X o) ver stochastically converges if and only if (X1)tep 8 a T;S'-martmgale

Theorem 6.4. Suppose that(F);cp satisfies Vitali condition V, and (X)sep be
a real-valued adapted process. Then (X,)ien essentwlly comwges of and only if there
ewists a T € L such that T has the dsms@ty qnd _(X Dien 18 @ TS-martingale.

§7. A Class of Ordered Amarts

A v in T* is called an ordered stopping time if i?(f) is & totally ordered subseb
of D. All ordered stopping times are denoted by T'. Given o, = in T", we writed
o<l<r if =0 or, if there exists an § €D such ‘that a~<S<7 For the partial
order<<1, 7" is a directed seb filtering to the right. We say that (Ft)te p sabisfies
the Vitali condition V" if for every 4 in F of finite measurs, for every family of
A€ F,(t€D) such that AC ess lim sup 44, and for every £>0, there exists ¢ v €7"

such that u(4\4.)<e, where 4,=|J(#=1)4;. This has been sh_own by Krickeberg
v PN -

o be sufficient for essential convergence of Li:-bounded submartingales™. Millet

and Sucheston™ showed that the Vitali condition ¥ is necessary and sufficient for

essential convergence of Lz-bounded ordered amarts (i. e., lim BX, exists in RYY,
B TI

and it is also equivalent that for every Banach space E and for every H-valued
adapted process (X;):cp, the strong stochastic convergence of (X+)rer, implies the
sirong essential convergence of(X})sep.

Let : , A .
l”={T]T is a directed subset of 7" and T"(¢) #¢ for any € D}.
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Definition 7.0. Let TET’, we say that T has the monotone localization propea'ty,

&f for each finite family 71 <I<w<1<--<1<7,CT" and finite pariition of Q, (4;)

1<j<

n with A;€Fr, (1<j<n), the stopping time v=1v;(w) for @ € Ar,(A<j<n),

belongs to T.

Let
L'={T€T'|T has the monotone localization pmpemty}
Definition 7.1. Let TEL (X )iecn is @
(a) T-uniform ordered amart if | X ;]1<oo for each v €T and
lim | X,—~E°X,[1=0;

%, 0T
r<i<o

(b) T—umform orded potential if hmﬂX [1=0.

For T-uniform ordered amaris we have
Theorem 7.2. Lot T€L'. (Xt)sep is @ T-uniform ordered amart if and only

if (X)tep admits a unique decomposition, X ;=Y +2Z;, for t€D, where (Yi)een is
a martingale and (Zs)sep 68 a T-uniform ordered potential. Forthermore, for each
t€D, Y, is the L} limit of (B'X,)zer. . " '

6.4,

Theorem 7.3. Identfbcwt to Theorems 2.8, 2.9, 3.2, 3.4, 5.2, 5.8, 6.8, and
with T’ replacing T and T°, L/ replacing L, V' ~eplacmg V, and T-unifrom

ordered amart replacing T-uniform amart.

2.9,

£11
f2]

[3l

[4]
[5]
[6]
[73
[83

191

Proofs of Theorems 7.2.and 7.3 are ana,logous to that of Theorems 2.6, 2.8,
3.2,3.4,5.2,b5.8,6.3, and 6.4.
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