A CLASS OF UNIFORM AMARTS INDEXED BY DIYECTED SETS

XUE XINGHONG (薛行鸿)*

Abstract

The main purpose of this paper is to extend the concept of Bellow's uniform amarts and E-valued martingales indexed by directed sets, and to give a necessary and sufficient condition for the strong sto. convergence of the $net(x_\tau)_{\tau \in T^2}$, this condition is also a necessary and sufficient condition for the strong ess. convergence of the net $(x_t)_{t \in D}$ when the stochastic basis satisfies the Vitali endition V.

In this paper we introduce class of uniform amarts in a σ -finite measure space indexed by directed sets as a generalization of Bellow's uniform amarts and E-valued martingales indexed by directed sets, and characterize the strong stochastic convergence of and strong essential convergence of an adapted process.

§ 1. Introduction

Let (Ω, F, μ) be a fixed σ -finite measure space and D a directed set filtering to the right. A family $(F_t)_{t\in D}$ of σ -algebras, contained in F satisfying $F_s \subset F_t(s \leqslant t)$, is called a stochastic basis. Let E be a Banach space with norm $|\cdot|$, and $(X_t)_{t\in D}$ be a family of strongly measurable E-valued r. v.'s adapted to $(F_t)_{t\in D}$. Throughout this paper, functions, sets, and r. v'. s are considered equal if they are equal almost surely. A function $\tau:\Omega\to D$ is called a countable (simple)stopping time with respect to $(F_t)_{t\in D}$ if $(\tau=t)\in F_t$ for all $t\in D$ and $R(\tau)\triangle\{t\in D|$ there exists $\omega\in\Omega:\tau(\omega)=t\}$ is a countable (finite) subset of D. The set of all countable (simple) stopping times will be denoted by $T^o(T^s)$. Under the natural order, T^o and T^s are directed sets filtering to the right. Let $\tau\in T^o$ and $(X_t)_{t\in D}$ be an adapted process. Define the r. v. $X_\tau=\sum_{t\in E(\tau)}I_{(\tau=t)}X_t$ and the σ -algebra $F_\tau=\{A\in F|$ for any $t\in R(\tau)$, $A(\tau=t)\in F_t\}$, and write $E^\tau(\cdot)$ for conditional expectation $E(\cdot|F_\tau)$. It is easy to see that X_τ is F_τ -measurable. We denote as usual by $L^1_E=L^1_E(\Omega,F,\mu)$ a space of all Bochner integrable E-valued r. v.'s. For $X\in L^1_E$, we write $|X_t|=1$.

Manuscript received January 31, 1984. Revised January 23. 1985.

^{*} Department of Mathematics, East China Normal University, Shanghai, China.

When $D=1, 2, \dots, \triangle N$, and μ is a probability measure, Bellow [1, 2] introduced the concept of uniform amarts to extend E-valued martingales and quasi-martingales. She called an adapted sequence $(X_n)_{n\in\mathbb{N}}$ an uniform amart, if for each $\tau\in T^s$, $X_{\tau}\in L^1_F$ and

$$\lim_{\substack{\tau,\sigma\in T^{\varepsilon}\\\tau < \sigma}} \|X_{\tau} - E^{\tau}X_{\sigma}\|_{1} = 0.$$

She proved that if $(X_n)_{n\in\mathbb{N}}$ is an L^1_E -bounded uniform amart and E has the Radon-Nikodym property, then $(X_n)_{n\in\mathbb{N}}$ converges strongly almost surely and $\sup_T \mathbb{E}[\![X_\tau]\!]_1$ $<\infty$. For a general directed set D Millet and Sucheston^[8] extende Chatterji's theorem^[4] and showed that if E has the Radon-Nikodym property and if the stochastic basis $(F_t)_{t\in D}$ satisfies the Vitali condition V, then every L^1_E -bounded martingale $(X_t)_{t\in D}$ with respect to $(F_t)_{t\in D}$ converges essentially.

The main purpose of this paper is to extend the concept of uniform amarts and E-valued martingales indexed by directed sets, and to give a necessary and sufficient condition for the strong stochastic convergence of the net $(X_{\tau})_{\tau \in T^*}$. By Theorem 12.3 of [8], this condition is also a necessary and sufficient condition for the strong essential convergence of the net $(X_t)_{t \in D}$ when the stochastic basis $(F_t)_{t \in D}$ satisfies the Vitali condition V.

§ 2. A Class of Uniform Amarts

In this section we introduce a class of uniform amarts and give a characterization of the class of uniform amarts by the Riesz decomposition. Suppose $T \subset T^c$ and $\tau \in T^c$, we denote $T(\tau) = \{\sigma \in T \mid \tau \leqslant \sigma\}$, and write

$$\underline{\underline{T}} = \{T \mid T \text{ is a directed subset of } T^c \text{ and } T(t) \neq \emptyset \text{ for each } t \in D\}.$$

Definition 2.1^[8]. Let $T \in \underline{T}$, we say that T has the localization property if for each finite family $(\tau_i)_{i \in J} \subset T$ and each finite partition of Ω , $(A_i)_{i \in J}$ with $A_i \in F_{\sigma_i}$ for $j \in J$, the stopping time $\tau = \tau_j(\omega)$ for $\omega \in A_i$, $j \in J$ belongs to T.

Let

 $\underline{\underline{L}} = \{ T \in \underline{\underline{T}} \mid T \text{ has the localization property} \}.$

Definition 2.2. Let $T \in \underline{L}$. $(X_t)_{t \in D}$ is a

a) T-uniform amart if $||X_{\sigma}||_1 < \infty$ for each $\tau \in T$ and $\lim_{\tau,\sigma \in T} ||X_{\sigma} - E^{\tau}X_{\sigma}||_1 = 0;$

$$\lim_{\tau} \|X_{\tau}\|_{\mathbf{1}} = 0.$$

Since the conditional expectation contracts the norm $\|\cdot\|_1$, and L_E^1 is complete, we thus have

Lemma 2.3. Let $T \in L$ and $(X_t)_{t \in D}$ be a T-uniform amart. Then for any $\tau \in T^c$ with $T(\tau) \neq \emptyset$, the net $(E^{\tau}X_{\sigma})_{\sigma \in T}$ converges in L_E^1 .

Definition 2.4. Let $T \in T$ and $(X_t)_{t \in D}$ be an E-valued martingale. $(X_t)_{t \in D}$ is called a T-regular martingale if for any τ , $\sigma \in T$ and $\tau \leqslant \sigma$, $\|X_{\sigma}\|_{1} < \infty$ and $E^{\tau}X_{\sigma} = X_{\tau}$ a. s.

Definition 2.5. A sub- σ -algebra B of F is called σ -finite if there exists $(\Omega_n) \subset B$ such that $\Omega_n \uparrow \Omega$ and $\mu(\Omega_n) < \infty$.

In the case $T = T^*$ and D = N, the following Riesz decomposition theorem is due to Bellow^[1].

Theorem 2.6. For $T \in \underline{L}$, $(X_t)_{t \in D}$ is a T-uniform amart if and only if $(X_t)_{t \in D}$ admits a unique decomposition, $X_t = Y_t + Z_t$, for $t \in D$, where $(Y_t)_{t \in D}$ is a $(T \cup D)$ -regular martingale and (Z_t) is a T-uniform potential. Furthermore, for each $t \in D$ Y_t is the L^1_E limit of the net $(E^t X_\tau)_{\tau \in T}$. If there exists a $\tau^* \in T$, F_{τ^*} is σ -finite, then Y_t is also the strong essential limit of the net $(E^t X_\tau)_{\tau \cap T}$.

Proof The sufficiency is obvious. Now we prove the necessity. For each $t \in D$ and $\sigma \in T$, denote the L^1_E limits of the net $(E^t X_\tau)_{\tau \in T}$ and the net $(E^\sigma X_\tau)_{\tau \in T}$ respectively by Y_t and $Y(\sigma)$. It is easy to show that $y(\sigma) = \sum_{t \in R(\sigma)} Y_t I_{(\sigma = t)} = Y_\sigma$ and $(Y_t)_{t \in D}$ is a $(T \cup D)$ -regular martingale. Let $Z_t = X_t - Y_t$, we shall show that $(Z_t)_{t \in D}$ is a T-uniform potential. In fact, for any $\varepsilon > 0$ there exits $\tau_0 \in T$ such that $\sup_{\substack{\tau,\sigma \in T(t_0) \\ \tau < \sigma}} \|X_\tau - E^\tau X_\sigma\|_1 < \varepsilon.$ For any $\sigma \in T(\tau_0)$, choose $\sigma' \in T(\sigma)$, $\|Y_\sigma - E^\sigma X_{\sigma'}\|_1 < \varepsilon$,

then

$$||Z_{\sigma}||_{1} = ||X_{\sigma} - Y_{\sigma}||_{1} \le ||X_{\sigma} - E^{\sigma}X_{\sigma'}||_{1} + ||E^{\sigma}X_{\sigma'} - Y_{\sigma}||_{1} < 2\varepsilon,$$

which implies $\lim_{T} \|Z_{\sigma}\|_{1} = 0$, i. e., $(Z_{t})_{t \in D}$ is a T-uniform potential. If $(X_{t})_{t \in D}$ has another decomposition: $X_{t} = Y_{t}^{1} + Z_{t}^{1}$, where $(Y_{t}^{1})_{t \in D}$ is a $(T \cup D)$ -regular martingale and $(Z_{t}^{1})_{t \in D}$ a T-uniform potential, then

$$\lim_{T}\|\boldsymbol{Y}_{\tau}-\boldsymbol{Y}_{\tau}^{1}\|_{1}\!=\!\lim_{T}\|\boldsymbol{Z}_{\tau}-\boldsymbol{Z}_{\tau}^{1}\|_{1}\!\ll\!\lim_{T}\|\boldsymbol{Z}_{\tau}\|_{1}+\lim_{T}\|\boldsymbol{Z}_{\tau}^{1}\|_{1}\!=\!0,$$

and for any τ , $\sigma \in (T \cup D)$, $\tau \leqslant \sigma$,

$$||Y_{\sigma} - Y_{\tau}^{1}||_{1} = |E^{\tau}(Y_{\sigma} - Y_{\sigma}^{1})||_{1} \leq ||Y_{\sigma} - Y_{\sigma}^{1}||_{1},$$

hence for each $t \in D$

$$||Y_t - Y_t^1||_1 \le \lim_{\tau} ||Y_{\tau} - Y_{\tau}^1||_1 = 0.$$

It then follows that $Y_t = Y_t^1$ a. s.

It remains to show that for each $t \in D$, Y_t is the strong essential limit of the net $(E^tX_\tau)_{\tau \in T}$ if there exists a $\tau^* \in T$ and F_{τ^*} is σ -finite. We shall prove it by contradiction. Suppose it were not true, then there would exist $t_0 \in D$, $\varepsilon > 0$, and $A \in F_{\tau^*} \mu(A) < \infty$ such that

$$\mu(\text{ess lim sup }A_{\tau})=a>0$$
,

where $A_{\tau} = A(|E^{t_0} X_{\tau} - Y_{t_0}| > \varepsilon_0)$. For each $\tau \in T(t_0) \cap T(\tau^*)$, there exists $(\tau_n) \subset T(\tau)$ ess $\sup_{T(\tau)} A_{\sigma} = \bigcup_n A_{\tau_n}$. Choose $k \in N$ $\mu \left[\bigcup_1^k A_{\tau_n}\right] > a/2$. Let $\sigma = \tau_1$ on A_{τ_1} , $\sigma = \tau_n$ on $A_{\tau_n} \setminus \left(\bigcup_1^{n-1} A_{\tau_n}\right)$ for 1 < n < k, and $\sigma = \tau_k$ on $\Omega \setminus \left(\bigcup_1^{k-1} A_{\tau_n}\right)$. Then $\sigma \in T(\tau)$, and $\mu(A_{\sigma}) \gg \mu \left(\bigcup_1^k A_{\tau_n}\right) > a/2$.

Yet Y_{t_0} is the L^1_E limit of the net $(E^{t_0} X_{\tau})_{\tau \in T}$, and it is a contradiction.

Definition 2.7. Suppose $T \in L$, we say that $(X_t)_{t \in D}$ satisfies condition A (T) (B(T)) if $\lim \inf_{\tau} ||X_{\tau}||_{1} < \infty (\lim \sup_{\tau} ||X_{\tau}||_{1} < \infty)$.

The following theorem improves Theorem 1 in [1].

Theorem 2.8. Let $T \in L$ and $(X_t)_{t \in D}$ be a T-uniform amort. Then

- a) Condition A(T) is equivalent to condition B(T);
- b) Under condition A(T), $(|X_t|)_{t\in D}$ is a real-vallued T-amart, i. e., $\lim_{T} ||X_{\tau}||_{1}$ exists in \mathbb{R}^1 .

Proof It is sufficient to show b). Suppose that $\lim_{T} \inf \|X_{\tau}\|_{1} = a < \infty$. By Theorem 2.6, $X_{t} = Y_{t} + Z_{t}$, where $(Y_{t})_{t \in D}$ is $(T \cup D)$ -regular martingale and $(Z_{t})_{t \in D}$ is a T-uniform potential. For any τ , $\sigma \in T$ and $\tau \leqslant \sigma$, $\|Y_{\sigma}\|_{1} \gg \|E^{\tau}Y_{\sigma}\|_{1} = \|Y_{\tau}\|_{1}$, hence $\lim_{T} \|Y_{\tau}\|_{1} = \lim_{T} \|X_{\tau} - Z_{\tau}\|_{1} \leqslant \lim_{T} \inf_{T} \|X_{\tau}\|_{1} + \lim_{T} \|Z_{\tau}\|_{1} = a < \infty,$

$$\lim_{T} \| Y_{\tau} \|_{\mathbf{1}} = \lim_{T} \| X_{\tau} - Z_{\tau} \|_{\mathbf{1}} \geqslant \lim_{T} \sup_{T} \| X_{\tau} \|_{\mathbf{1}} - \lim_{T} \| Z_{\tau} \|_{\mathbf{1}} = \lim_{T} \sup_{T} \| X_{\tau} \|_{\mathbf{1}},$$

whence $\lim \sup_{T} \|X_{\tau}\|_{1} = \lim \inf_{T} \|X_{\tau}\|_{1} = a < \infty$, $(|X_{t}|)_{t \in D}$ is a real-valued T-amart.

Using the proof of Theorm 2.2 in [8], we can obtain the following cofinal optional sampling property for T-uniform amarts, where $T = T^s$ or T^c .

Theorem 2.9. The class of $T^s(T^o)$ -uniform amarts has cofinal optional sampling property, i. e., for any $T^s(T^o)$ -uniform amart $(X_t)_{t\in D}$, and for any cofinal subset T of T^s (T^o) (i. e., $T\subset T^s(T^o)$ and for any $\tau\in T^s(T^o)$ $T(\tau)\neq \emptyset$), the process $(X_\tau, F_\tau)_{\tau\in T}$ is a \widetilde{T}^s (\widetilde{T}^o) -uniform amart, where \widetilde{T}^s (\widetilde{T}^o) is the set of all simple (countable) stopping times with respect to $(F_\tau)_{\tau\in T}$.

§ 3. Convergence in the absence of the Aitali condition V.

In the following sections we assume that the σ -algebra $F_{-\infty} = \bigwedge_t F_t$ is σ -finite.

Definition 3.1. Let $(U_t)_{t\in D}$ be a family of E-valued r. v.'s. We say that $(U_t)_{t\in D}$ converges strongly stochastically if there exists an E-valued r. v. X such that for any $\varepsilon>0$ and $A\in F$, $\mu(A)<\infty$,

$$\lim_{n} \mu[A(|U_t - X| > \varepsilon)] = 0.$$

Theorem 3.2. Suppose that $T \in L$, $(X_t)_{t \in D}$ is a T-uniform amart satisfying condition A(T), and E has the Radon-Nikodym property. Then $(X_{\tau})_{\tau \in T}$ converges strongly stochastically.

Proof By Theorem 2.6, we can write $X_t = Y_t + Z_t$, where $(Y_t)_{t \in D}$ is a $(T \cup D)$ -regular martingale and $(Z_t)_{t \in D}$ a T-uniform potential. It is easy to see that $(Z_\tau)_{\tau \in T}$ converges strongly stochastically to zero. We need to show the convergence of the net $(Y_\tau)_{\tau \in T}$. Using the argument of Theorem 2.8, $\sup_T \|Y_\tau\|_1 = \lim_T \|Y_\tau\|_1 = \lim\inf_T \|X_\tau\|_1 < \infty$, thus, for every increasing sequence $(\tau_n) \subset T$, $(Y_{\tau_n}, F_{\tau_n})_{n \geq 1}$ is an L_E^1 -bounded martingale which converges according to Chatterji's theorem (see, e. g, [9] p. 112) almost surely in the norm topology, hence strongly stochastically. Since the strong stochastic convergence is defined by a complete metric, this implies that $(Y_\tau)_{\tau \in T}$ converges strongly stochastically to Y.

Definetion 3.3.^[7] Let $(U_t)_{t\in D}$ be a family of E-valued r. v.'s. We say that $(U_t)_{t\in D}$ is terminally uniformly integrable if given any $\varepsilon>0$ there exist an $S\in D$, a positive number C and an element H in F of finite measure such that

$$\sup_{\scriptscriptstyle D(\mathcal{E})} \Big[\int_{\scriptscriptstyle (|U_t| > \mathcal{O})} |U_t| d\mu + \int_{\scriptscriptstyle (\mathcal{Q}/H)} |U_t| d\mu \, \Big] < \varepsilon.$$

Theorem 3.4. Suppose $T \in L$ and $(X_{\tau})_{\tau \in T}$ is terminally uniformly integrable. Among the following assertions:

- (a) the net $(X_{\tau})_{\tau \in T}$ converges in L^1_{E} ;
- (b) the net $(X_{\tau})_{\tau \in T}$ converges strongly stochastically:
- (c) $(X_t)_{t\in D}$ is a T-uniform amart, we have (a) \Leftrightarrow (b) \Rightarrow (c). If, in addition, E has the Radon-Nikodym property, then the assertions (a), (b), and (c) are equivalent.

Proof It is clear that, under the hypothesis of the theorem (a) \Leftrightarrow (b). (b) \Rightarrow (c): Suppose that $(X_{\tau})_{\tau \in T}$ converges strongly stochastically to X. Since $(X_{\tau})_{\tau \in T}$ is terminally uniformly integrable, $\lim \sup_{T} ||X_{\tau}||_{1} < \infty$. Thus, by Fatou's lemma, $|X||_{1} < \infty$. It is easy to see that $(X_{\tau} - E^{\tau}X)_{\tau \in T}$ converges strongly stochastically to zero. Since

$$\begin{split} |X_{\tau}-E^{\tau}X|\leqslant &|X_{\tau}|+|E^{\tau}X|\leqslant |X_{\tau}|+E^{\tau}|X|,\\ (X_{\tau}-E^{\tau}X)_{\tau\in T} \text{ is terminally uniformly integrable, hence}\\ &\lim_{T} \|X_{\tau}-E^{\tau}X\|_{1}=0. \end{split}$$

For any $\varepsilon > 0$, there exists a $\tau_0 \in T$ such that

$$\sup_{T(\tau_0)} \lVert X_{\tau} - E^{\tau} X \rVert_1 < \varepsilon.$$

If τ , $\sigma \in T(\tau_0)$ and $\tau \leqslant \sigma$, then

$$\begin{split} \|X_{\tau} - E^{\tau} X_{\sigma}\|_{\mathbf{1}} \leqslant \|X_{\tau} - E^{\tau} X\|_{\mathbf{1}} + \|E^{\tau} X - E^{\tau} X_{\sigma}\|_{\mathbf{1}} \\ \leqslant \varepsilon + \|E^{\tau} (E^{\sigma} X - X_{\sigma})\|_{\mathbf{1}} \leqslant \varepsilon + \|X_{\sigma} - E^{\sigma} X\|_{\mathbf{1}} < 2\varepsilon, \end{split}$$

whence $(X_t)_{t \in D}$ is a *T*-uniform amart.

If E has the Radon-Nikodym property, (c) \Rightarrow (b) by Theorem 3.2.

§ 4. A Characterization of Strong Stochastic Covergence of $(X_{\tau})_{\tau \in T^s}$

Definition 4.1.[8] Let $T \in \underline{L}$, we say that T has the density if for any $\varepsilon > 0$ and any A in F of finite measure, there exists a $t \in D$ such that for any $\tau \in T^c(t)$ there is $\tau' \in T$ with $\mu[A(\tau \neq \tau')] < \varepsilon$.

Lemma 4.2. The following assertions are equivalent:

- (a) $(X_{\tau})_{\tau \in T^c}$ converges strongly stochastically to X;
- (b) $(X_{\tau})_{\tau \in T^s}$ converges strongly stochastically to X;
- (c) There exists a $T \in L$ such that T has the density and $(X_{\tau})_{\tau \in T}$ converges strongly stochastically to X.

Proof (a) \Rightarrow (b). For any ε >0 and A in F of finite measre, there exists a $\sigma \in T^c$ such that

$$\sup_{T^{o}(\sigma)} \mu[A(|X_{\tau}-X|>\varepsilon)] < \varepsilon.$$

Suppose $R(\sigma) = (t_n)$. Choose k, t and σ' satisfying $k \in \mathbb{N}$, $t \in \bigcap_{i=1}^k D(t_i)$, and $\sigma' \in T^c(\sigma) \cap T^c(t)$ respectively so that

$$\mu \left\{ A \left[\bigcup_{k=1}^{\infty} (\sigma = t_n) \right] \right\} < \varepsilon.$$

For any $\tau \cap T^s(t)$, let $\tau' = \tau$ on $\left[\bigcup_{1}^{k} (\sigma = t_n)\right]$, and $\tau' = \sigma'$ on $\left[\bigcup_{k=1}^{\infty} (\sigma = t_n)\right]$, then $\tau' \in T^s(\sigma)$, and

 $\mu[A([X_\tau-X|>\varepsilon)]\leqslant \mu[A(\tau\neq\tau')]+\mu[A(|X_{\tau'}-X|>\varepsilon)]<\varepsilon+\varepsilon=2\varepsilon,$ which implies that $(X_\tau)_{\tau\in T^\varepsilon}$ converges strongly stochastically to X.

Clearly, T^s has the density, $(b) \Rightarrow (c)$.

(c) \Rightarrow (a). For given ε >0 and A in F of finite measure there exists a $\sigma \in T$ such that

$$\sup_{T(\sigma)} \mu[A(|X_{\tau}-X|>\varepsilon)] < \varepsilon.$$

Since T has the density, there is a $t \in D$ as given in Definition 4.1. Then, for any $\tau \in T^c(\sigma) \cap T^c(t)$, there is a $\tau' \in T$, $\mu[A(\tau \neq \tau')] < \varepsilon$.

Take $\tau'' \in T(\sigma) \cap T(\tau')$, and let $\sigma' = \tau'$ on $(\tau' \geqslant \sigma)$, and $\sigma' = \tau''$ on $(\tau' \not \geqslant \sigma)$, then $\sigma' \in T(\sigma)$ and $\mu \lceil A(\tau \neq \sigma') \rceil \leqslant \mu \lceil A(\tau \neq \tau') \rceil \leqslant \varepsilon$. Hence

$$\mu[A(|X_{\tau}-X| \geqslant \varepsilon)] \leqslant u[A(|X_{\sigma'}-X| > \varepsilon)] + \mu[A(\tau \neq \sigma')] < 2\varepsilon.$$

It follows that $(X_{\tau})_{\tau \in T^c}$ converges strongly stochastically to X.

Theorem 4.3. Suppose that $(X_t)_{t\in D}$ is an E-valued adapted process, and E has the Radon-Nikodym property. Then the net $(X_{\tau})_{\tau\in T^s}$ $(X_{\tau})_{\tau\in T^o}$ converges strongly

stochastically to a Bochner integrable r. v. if and only if there exists a $T \in \underline{\underline{L}}$ such that T has the density and $(X_t)_{t \in D}$ is a T-uniform amort, satisfying $\sup_{\pi} ||X_{\tau}||_{1} < \infty$.

Proof By Theorem 3.2 and Lemma 4.2 the sufficiency is obvious. As to the necessity, suppose that $(X_{\tau})_{\tau \in T^c}$ converges strongly stochastically to $X \in L_E^1$. Take (H_n) of disjoint sets in $F_{-\infty}$ such that for each $n \ge 1$, $\mu(H_n) < \infty$ and $\Omega_n = \bigcup_{1}^n H_k \uparrow \Omega$. For any $\varepsilon > 0$ let

$$U^{(\varepsilon)} = \sum_{n} \frac{\varepsilon}{2^{n} (\mu(H_{n}) + 1)} \cdot I_{H_{n}},$$

then $U^{(s)}$ is an $F_{-\infty}$ -measurable positive r. v. Let

$$T = \{ \tau \in T^c \mid |X_{\tau} - E^{\tau}X| \leq U^{(1)} \},$$

then $\sup_T \|X_\tau\|_1 \leqslant EU^{(1)} + \|E^\tau X\|_1 \leqslant EU^{(1)} + \|X\|_1 < \infty$. For any $0 < \varepsilon \leqslant 1$ let $A_\tau^\varepsilon = (|X_\tau - E^\tau X| > U^{(\varepsilon)})$, $B_\tau^\varepsilon = (|X_\tau - E^\tau X| \leqslant U^{(\varepsilon)})$. Since $(X_\tau - E^\tau X)_{\tau \in T^c}$ converges strongly stochastically to zero, $(I_{A_\tau^\varepsilon})_{\tau \in T^c}$ converges stochastically to zero. For any $\sigma \in T^c$, we can choose $\tau_1 \in T^c(\sigma)$, $\mu[\Omega_1 A_{\tau_1}^\varepsilon] < 1/2$. Having chosen τ_1, \dots, τ_n , take $\tau_{n+1} \in T^c(\tau_n)$, $\mu[\Omega_{n+1} A_{\tau_{n+1}}^\varepsilon] < 1/2^{n+1}$, then

$$\Omega = \bigcup_{1}^{\infty} B_{\tau_n}^{\varepsilon}.$$

Let $\tau = \tau_1$ on $B^{\epsilon}_{\tau_1}$, and $\tau = \tau_n$ on $\left[B^{\epsilon}_{\tau_n}/\bigcup_{1}^{n-1}B^{\epsilon}_{\tau_n}\right]$ for n>1. Then $\tau \in T^c(\sigma)$, and $|X_{\tau} - E^{\tau}X| \leq U^{(\epsilon)}$, particularly, $\tau \in T(\sigma)$, hence $T \in \underline{T}$. It is clear that T has the localization property, thus $T \in \underline{L}$. Now we prove that T has the density. For any $\epsilon > 0$ and $A \in F$, $\mu(A) < \infty$, take $\sigma \in T$ such that

$$\sup_{T^{\circ}(\sigma)}\mu\left(AA_{\tau}^{1}\right)<\frac{\varepsilon}{2}.$$

Suppose $R(\sigma) = (t_n)$, choose $k \in N$,

$$\mu\left\{A\left[\bigcup_{k=1}^{\infty}\left(\sigma=t_{n}\right)\right]\right\}<\frac{\varepsilon}{2}.$$

Take $t \in \bigcap D(t_n)$, then for any $\tau \in T^c(t)$, take $\sigma' \in T(\tau) \cap T(\sigma)$, and let

$$au' = egin{cases} au, & ext{on } B_{ au}^1 igg[igcup_1^k \left(\sigma = t_n
ight) igg] \\ \sigma', & ext{on } \Omega igl\langle B_{ au}^1 igg[igcup_1^k \left(\sigma = t_n
ight) igg] \end{cases} \\ au'' = egin{cases} au, & ext{on } igcup_1^k \left(\sigma = t_n
ight), \\ au'' & ext{on } \Omega igl\langle igcup_1^k \left(\sigma = t_n
ight), \end{cases} \end{cases}$$

then $\tau' \in T(\sigma)$, $\tau'' \in T^{c}(\sigma)$, and

$$\mu[A(\tau'\!\neq\!\tau)]\!\leqslant\!\mu\left\{A\left[\bigcup_{k+1}^{\infty}\left(\sigma\!=\!t_{n}\right)\right]\right\}\!+\!\mu(AA_{\tau''}^{1})\!<\!\epsilon.$$

Therefore T has the density. It remains to show that $(X_t)_{t\in D}$ is a T-uniform amart. For any $\varepsilon > 0$, choose $k \in \mathbb{N}$ and $\tau_0 \in T$ such that

$$\sum_{k+1}^{\infty} \frac{1}{2^n} < \varepsilon, \sup_{T^{\sigma}} \left(\tau_0 \right) \mu(\Omega_k A_{\tau}^{\varepsilon}) < \varepsilon.$$
 Then if σ $\sigma \in T(\sigma)$ and $\sigma < \sigma$

Then if τ , $\sigma \in T(\tau_0)$ and $\tau \leqslant \sigma$,

$$\begin{split} \|X_{\tau} - E^{\tau}X\|_{1} \leqslant & E(\bar{U}^{(1)}I_{\varOmega/\varOmega_{k}}) + E(\bar{U}^{(s)}I_{\varOmega_{k}}B_{\tau}^{s}) + \mu(\Omega_{k}A_{\tau}^{s}) \\ < \sum_{k+1}^{\infty} \frac{1}{2^{n}} + \varepsilon \cdot \sum_{1}^{k} \frac{1}{2^{n}} + \varepsilon < 3\varepsilon. \end{split}$$

Similarly

$$||X_{\sigma}-E^{\sigma}X||_{1}<3\varepsilon$$
.

Hence

$$\begin{split} \|X_{\tau} - E^{\tau} X_{\sigma}\|_{\mathbf{1}} \leqslant & \|X_{\tau} - E^{\tau} X\|_{\mathbf{1}} + \|E^{\tau} X - E^{\tau} X_{\sigma}\|_{\mathbf{1}} \\ < & 3\varepsilon + \|E^{\tau} (E^{\sigma} (X - X_{\sigma}))\|_{\mathbf{1}} \leqslant & 3\varepsilon + \|X_{\sigma} - E^{\sigma} X\|_{\mathbf{1}} < 6\varepsilon, \end{split}$$

which implies that $(X_t)_{t\in\mathcal{D}}$ is a T-uniform amart.

§5. Convergence under the Vitali Condition V.

Krickeberg^[7] introduced the Vitali condition V on a stochastic basis to assure essential convergence of L_R^1 -bounded martingales. A stochastic basis $(F_t)_{t\in\mathcal{D}}$ is said to satisfy the Vitali condition V if the following holds^[7,9]

For every A in F of finite measure, for every family of $A_t \in F_t(t \in D)$ such that $A \subset \text{ess lim sup } A_t$, and for any $\varepsilon > 0$, there exist finitely many indices t_1, t_2, \cdots

 $t_n \in D$ and sets $B_i \in F_{t_i}$ $(i=1, 2, \dots, n)$ such that

$$B_i \subset A_{i,i}$$
 for $i=1, 2, \dots, n$, $B_i \cap B_j = \emptyset$ for $i \neq j$,

and

$$\mu\left(A\backslash\bigcup_{1}^{n}B_{i}\right)\leqslant\varepsilon.$$

We remark that if D is totally ordered, then the Vitali condition V holds^[7,9]. Millet and Sucheston^[8] showed that $(F_t)_{t\in D}$ satisfies the Vitali condition V if and only if for every Banach space E and for every E-valued adapted process $(X_t)_{t\in\mathcal{D}_t}$ the strong stochastic convergence of $(X_{\tau})_{\tau \in T^s}$ implies the strong essential convergence of $(X_t)_{t\in\mathcal{D}}$. Using this result and Lemma 4.2, we have

Theorem 5.1. For a stochastic basis $(F_t)_{t\in D}$ the following assertions are equivalent:

- $(F_t)_{t\in D}$ satisfies the Vitali condition V;
- For every Banach space E and every E-valued adapted process $(X_t)_{t\in D}$, the strong stochastic convergence of $(X_{\tau})_{\tau \in T^c}$ to a limit X implies the strong essential

convergence of $(X_t)_{t\in\mathcal{D}}$ to X;

(c) Same as (b) except that T^c is being replaced by T, where $T \in \underline{L}$ and T has the density.

By Theorems 5.1, 3.2, 3.4, and 4.3, we obtain

Theorem 5.2. Under the assumptions of Theorem 3.2, if $(F_t)_{t\in D}$ satisfies the Vitali condition V, and if T has the density, then $(X_t)_{t\in D}$ converges strongly essentially.

Therem 5.3. Suppose that $T \in \underline{L}$, T has the density, and $(X_{\tau})_{\tau \in T}$ is terminally uniformly integrable. Then the strong essential convergence of $(X_t)_{t \in D}$ implies that $(X_t)_t)_{t \in D}$ is a T-uniform amart. If, in addition, E has the Radon-Nikodym property and $(F_t)_{t \in D}$ satisfies the Vitali condition V, then the converse is also true.

Theorem 5.4. Suppose that $(X_t)_{t\in D}$ is an E-valued adapted process, E has the Radon-Nikodym property, and $(F_t)_{t\in D}$ satisfies the Vitali condition V. Then $(X_t)_{t\in D}$ converges strongly essentially to a Bochner integrable r. v. if and only if there exists a $T\in \underline{L}$ such that T has the density and $(X_t)_{t\in D}$ is a T-uniform amort satisfying $\sup \|X_{\tau}\|_{1} < \infty$.

Remark. In the case that $T=T^s$, D=N, and that μ is aprobability measure, Theorem 5.2 is due to [1], Theorem 5.4 is due to [3], and Theorem 5.3 is an improvement of a result in [1]. Theorem 5.2 is also a generalization of Theorem 12.4 in [8].

§ 6. The Real-Valued Case

In this section we assume $E = R^1$.

Definition 6.1. Let $T \in \underline{L}$, and $(X_t)_{t \in D}$ be a real-valued adapted process. We say that $(X_t)_{t \in D}$ is a T-amart, if $\lim_{\tau} EX_{\tau}$ exists in R^1 .

Lemma 6.2. Let $T \in \underline{\underline{L}}$. $(X_t)_{t \in D}$ is a T-amart if and only if $(X_t)_{t \in D}$ is a T-uniform amart.

Proof For any τ , $\sigma \in T$, $\tau \leqslant \sigma$, $|EX_{\tau} - EX_{\sigma}| = |E(X_{\tau} - E^{\tau}X_{\sigma})| \leqslant E|X_{\tau} - E^{\tau}X_{\sigma}| = \|X_{\tau} - E^{\tau}X_{\sigma}\|_{1}$, the sufficiency is obvious. Now we prove the necessity. For any $\varepsilon > 0$, choose $\tau_{1} \in T$,

$$\sup_{T(\tau_0)} |E(X_{\tau} - X_{\sigma})| < \varepsilon.$$

For any τ , $\sigma \in T(\tau_0)$, $\tau \leqslant \sigma$, let $\tau' = \tau$ on $(X_{\tau} - E^{\tau}X_{\sigma} \geqslant 0)$, and $\tau' = \sigma$ on $(X_{\tau} - E^{\tau}X_{\sigma} < 0)$. Then $E(X_{\tau} - E^{\tau}X_{\sigma})^{+} = EX_{\tau'} - EX_{\sigma} < \varepsilon$. Similarly, $E(X_{\tau} - E^{\tau}X_{\sigma})^{-} < \varepsilon$. Hence $\|X_{\tau} - E^{\tau}X_{\sigma}\|_{1} < 2\varepsilon$, and $(X_{t})_{t \in D}$ is a T-uniform amort.

Thus, the results in section 2, 3, and 5 are also true with T-uniform amart replaced by T-amart, and R^1 in lieu of E.

In the following we give another characterization of convergence of real-valued adapted process.

We say that a real-valued process $(\overline{U}_t)_{t\in D}$ stochastically converges to a r. v. X which take values in \overline{R}^1 , if for any s>0, M>0, and A in F of finite measure

$$\lim_{D} \{\mu[A(|U_t - X| > \varepsilon)(|X| < \infty) + \mu[A(U_t < M)(X = +\infty)] + \mu[A(U_t > -M)(X = -\infty)]\} = 0.$$

It is easy to see that $(U_t)_{t\in D}$ stochastically converges to a r. v. X if and only if for any finite positive r. v. λ , $((-\lambda) \vee X_t \wedge \lambda)_{t\in D}$ stochastically converges to $(-\lambda) \vee X \wedge \lambda$.

Definition 6.2.^[5] Let $(X_t)_{t\in D}$ be a real-valued adapted process. $T\in \underline{L}$. We say that $(X_t)_{t\in D}$ is a TS-martingale, if for any $F_{-\infty}$ -measurable positive r. \forall . λ in $L^1_{R^1}$, $((-\lambda) \vee X_t \wedge \lambda)$ is a T-amart.

From Theorems 2.4 and 5.3, we obtain

Theorem 6.3. Let $T \in \underline{L}$ and $(X_t)_{t \in D}$ be a real-valued adapted process. Then $(X_{\tau})_{\tau \in T}$ stochastically converges if and only if $(X_t)_{t \in D}$ is a TS-martingale.

Theorem 6.4. Suppose that $(F_t)_{t\in D}$ satisfies Vitali condition V, and $(X_t)_{t\in D}$ be a real-valued adapted process. Then $(X_t)_{t\in D}$ essentially converges if and only if there exists a $T\in \underline{L}$ such that T has the density and $(X_t)_{t\in D}$ is a TS-martingale.

§ 7. A Class of Ordered Amarts

A τ in T^s is called an ordered stopping time if $R(\tau)$ is a totally ordered subset of D. All ordered stopping times are denoted by T'. Given σ , τ in T', we writed $\sigma \leqslant 1 \leqslant \tau$ if $\tau = \sigma$ or, if there exists an $S \in D$ such that $\sigma \leqslant S \leqslant \tau$. For the partial order $\leqslant 1$, T' is a directed set filtering to the right. We say that $(F_t)_{t \in D}$ satisfies the Vitali condition V' if for every A in F of finite measurs, for every family of $A_t \in F_t(t \in D)$ such that $A \subset \text{ess lim sup } A_t$, and for every $\varepsilon > 0$, there exists $a \tau \in T'$ such that $\mu(A \setminus A_\tau) < \varepsilon$, where $A_\tau = \bigcup_t (\tau = t) A_t$. This has been shown by K rickeberg to be sufficient for essential convergence of $L_R^{1_0}$ -bounded submartingales $L_R^{1_0}$. Millet and Sucheston showed that the Vitali condition V' is necessary and sufficient for essential convergence of $L_R^{1_0}$ -bounded ordered amarts (i. e., $\lim_{T'} EX_\tau$ exists in R^1), and it is also equivalent that for every Banach space E and for every E-valued adapted process $(X_t)_{t \in D}$, the strong stochastic convergence of $(X_\tau)_{\tau \in T}$, implies the strong essential convergence of $(X_t)_{t \in D}$.

Let

 $\underline{\underline{T}}' = \{T \mid T \text{ is a directed subset of } T' \text{ and } T'(t) \neq \emptyset \text{ for any } t \in D\}.$

Definition 7.0. Let $T \in \underline{T}'$, we say that T has the monotone localization property, if for each finite family $\tau_1 \leq 1 \leq \tau_2 \leq 1 \leq \cdots \leq 1 \leq \tau_n \subset T'$ and finite partition of Ω , (A_i) $1 \leq j \leq n$ with $A_j \in F_{\tau_j}$ $(1 \leq j \leq n)$, the stopping time $\tau = \tau_j(\omega)$ for $\omega \in A\tau_j(1 \leq j \leq n)$, belongs to T.

Let

 $L' = \{T \in T' \mid \underline{T} \text{ has the monotone localization property}\}.$

Definition 7.1. Let $T \in \underline{L}'(X_t)_{t \in D}$ is a

- (a) T-uniform ordered amart if $||X_{\tau}||_{1} < \infty$ for each $\tau \in T$ and $\lim_{\substack{\tau,\sigma \in T \\ \tau \leq 1 \leq \sigma}} ||X_{\tau} E^{\tau}X_{\sigma}||_{1} = 0;$
- (b) T-uniform orded potential if $\lim_{T} ||X_{\tau}||_{1} = 0$.

For T-uniform ordered amarts we have

Theorem 7.2. Let $T \in \underline{L}'$. $(X_t)_{t \in D}$ is a T-uniform ordered amart if and only if $(X_t)_{t \in D}$ admits a unique decomposition, $X_t = Y_t + Z_t$, for $t \in D$, where $(Y_t)_{t \in D}$ is a T-uniform ordered potential. Forthermore, for each $t \in D$, Y_t is the L^1_E limit of $(E^t X_\tau)_{\tau \in T}$.

Theorem 7.3. Identicat to Theorems 2.8, 2.9, 3.2, 3.4, 5.2, 5.3, 6.3, and 6.4, with T' replacing T^s and T^c , L' replacing L, V' replacing V, and T-unifrom ordered amart replacing T-uniform amart.

Proofs of Theorems 7.2. and 7.3 are analogous to that of Theorems 2.6, 2.8, 2.9, 3.2, 3.4, 5.2, 5.3, 6.3, and 6.4.

References

- [1] Bellow, A., Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains, Zeit. Wahrs. Verw, Gebiete, 41 (1978), 177—191.
- [2] Bellow, A., Martingales, Amarts and related stopping time techniques, Lecture Notes in Math., (1981), 860.
- [3] Bellow, A. and Dvoretzky, A., A characterization of almost sure convergence, *Lecture Notes in Math.*, (1979), 709.
- [4] Chatterji S. D., Martingale convergence and the Radon-Nikodym theorem, Math. Scand., 22 (1968), 21—41.
- [5] Dvoretzky, A., On stopping time directed convergence, Bull. Amer. Math, Soc., 82 (1976), 397-349.
- [6] Hayes, C. A. and Pauc, C. Y., Derivations and Martingales, Springer-Verlag, New York (1970),
- [7] Krickeberg, K. Convergence of martingales with a directed index set, Trans. Amer. Math. Soc., 83 (1956), 313-337.
- [8] Millet, A. and Sucheston, L., Convergence of classes of amarts indexed by directed sets, Can. J. Math., (1980), 86—125.

Barbara de la compansión d

The second of the second second second second

[9] Neveu, J., Discrete Parameter Martingales, North Holland, Amsterdam (1975).

ng kanangang didili yang bila