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ON ADMISSIBILITY OF VARIANCE
COMPONENTS ESTIMATES

Yr OmNax (4 Z&)*

 Abstract’
Suppose that there is a variance components model |
. {E Y =XpB,
axl nxp pxl
DY =cVy+0iV,, - ,
~ where B, of and o} are all unknown, X, V>0 and V2>O are all known, r(X) <n. The
author estnnates simultaneously (¢, o3) . Estimators are restricted to the class 9={d(414,)
= (Y AiY Y'45Y), 43>0, Ay>0}. Suppose that the loss funcinon is L(d(AI, A.g) (o-i, o))
= ——(Y’AIY —od) + -—-(Y'AEY o) ThlS paper glves a necessary and sufficient

condltlon for ol(Ab Ay to be an equ.lvana.nt 9—admlss1ble estlmator under the restnctlon
“ ’171—172, and a sufficient condition and a necessary conchtmn for d (Al, Az) to be
'eqmva.rla.nt 2-admissible without the restriction.

§ 1. Introduction
Suppose tnat the distribution of random variable X has density p,(z) with
respect 10 a ¢ finite measure u, where # €@ is an unknown parameter, X and 9
may be multidimensional. Let R(8) e the function of parameter 6 to be estimated
with it estimate ¢ (X)), a function of observation X. The expression L(k(6), (X))
denotes the loss function, whose expected value R(d, §)= B[L(h(6), 4¢(X))|6] is
called the rigk function of ‘the estimator d(X ) of k(@) An estlmator do(X ) of h(é’)
is said %o be better than dy (X ), if |
R(d, ) <R(d1, )N . o
for all 6’6@ and for at least one point, say 6o, of @ o - |
| R(do, 66) <R(ds, o). |
If there is no eshmator ‘better than do(X ), then do(X ) is sald o be an a.dmlsmble
estimater. Suppose that we confine our estimators 40 a certain class 9. If do(X) € P

and do(X) is admissible within 9, do(X) is called Z-admissible. In recent years,
admissibility of point estimator hag received much attention.
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.- For linear models, ‘the admissible problem of estimable linear function of
regression coefficients in a class of linear esfimators was solved by‘ Cohen™ and
Rao™, For some specific linear models, Wu Qiguang, Cheng Ping and Li Guoying.
gave a necessary and sufficient condition for the admissible estimator of error
variance in a class of estimabors of nonegative definite quadratic form™. In this
paper, we deal with the admissibility of variance componeni;s estimators in a
variance components modle.
Let

=X :3 +X1 &1 +X2 82,

aXl nXp pX1 axpy pyX1  mXps paX1
where X, X; and X, are known, n>p, g1= (&, &13, ***y Eip,), o= (a1, €29, ***, Eap,),

811, Bia, ***, Eipy, Eai, a3, *°°, &ap, ATO mdependent of each other and
E(e1) =0, B(ed) =02, E(su) 0, E(en) 301, 5=1,2, -, py,
H(es;) =0, E(ed;) =03, E(s};) =0, E(82a> =803, j=1, 2, -+, pa,
BER?, 0<a2, o3< oo, are all unknown. Set X3, X} =V3>0, X.Xp=Vs>0 (We use
the convention M >0 and M>0 to denote that the ’squareb mafrix M is positive
definite and nonnegative definite respectively). Above hypothesis is denoted by H.
Under the hypothesis we obtain a model
(EY =X,
{ DY =ciVi+0oiVa.2V. 7
For. the model,. the estimators of linear combinations of of and ¢} which have
various best properfies have been discussed™®. Here we need to estimate .
simultaneously (% of). The estimators are restricted to the class P={a(4i, 4s)
=Y'4.Y, Y'4;Y), 4:>0, 4,>0}. Suppose that the loss function L(d(4y, 4s),

(63, 03)) =—14—(Y "4,V —ot)? +%(Y’ AY —c3)2 We obtain the risk function
2
R(d(Aix Aﬂ); /3) 1s 0-2)
—EXAXE) 4K by Ty A XA 4T (4 L)

(4 L )_1]2 _mr( Aig%.)” — X A b+ (X 4,XE)*

48X A, ; A3X§2+2;¢;XA2X§2 tr( Ay %)4— [tr( 4y ;2;-)—1]2
‘+2tr<A2 ’Z) 28, X Ay X s, - @ 1)

where &3=24/014, 52 =pB/ca, and tr (M) denotes the trace of the square matrix M

In § 2 of this paper we suppose that the rank of matrix X, +(X)<n. Under
hypothesis H we consider the equivariant P-admissibility of estimator for (o2, o). -
We give here a necessary and sufficient condition for d(4s, A,) to be an equivariant
D-admissible estimator under restriction ¥Vy=V,, and a sufficient condition and a
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- mnecessary condition for d(4;, 4s) to be equivariant D-admissible without the -
restriction.

§ 2. Equivariant 2-Admissible ‘Estimator Under
Condition 7(X) <% in Variance Component Model -

First, we prove a few lemmas.
Lemma 21. IfMisa nonnegatwe deﬁmte matrie which is not gefro—matma;
then

e s} M) Chr (M) 1P<tr (M7) (2.1

and a nicessary and sufficient condition under which the egualz.ty sign holds true is that
the non—zero—eigenvalues of M are all equal.

Proof Because M is nob zero—matnx, r(M)>0 and formula (2.1) has exact
meaning. Suppose that the non—zero—eigenvalues of M are Ay, As, +++, A It follows
from Schwarz inequality that

7(1[‘-[)_ [t (2112 ~_-%. é}“ )2 <§ A2 = tr (M)
and a necessary and sufficient condition under which the equality sign holds is that
every eigenvalue is equal to the same constant. ,

Lemma 2.2.  Suppose that A and B are two square matrices of equal orders. I f
A>B>0, then tr(4)=>1r(B) and tr(4?) =>1tr(B?) (Hea‘e we use the convention A>B
to denote A— B>0).

Proof Because of A—B>0, tr(4)—1ir(B) =tr(4—B) >0, rcou‘s‘equenﬂy"
tr(A) >tr(B). From A>R we obtain ‘ A ‘ :

4°>4*BA* and BIABTSB.

Therefore A o _
(A7) Str(ATBAD) = tr(BAB) >r(BY).

Lemma 2.3. - Under hypothesis H, if r(X)<n and Vi=Va=1I,, the equwarrmn#
D—admissible estimator of (0'1, o3) has the Jollowing form

-¥'e(I-X XY, Y'[a:(I-XX*)IT),

where ay rmol as are nonnega;twe real numbers (;S’e,gn X * denotes the geneml@zed imverse
matrio of X in the sense of Moore).

Proof ‘Suppose that there is a transformation in the sample space-

‘ Y->Y +Xa, B

where a is any vector in Rf. It leads to a- correSpondlng transformatmn in the :
parameter sPace | IR S

‘ o B=>Bta . S RISV UL
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and
" (O'%, 0’%)—)(0'§’ G‘E)-
In the decision space of estimators for (o, %) there are
(Y+Xa>'A1(Y+Xa) =Y’A1Y

(¥ +Xa) 45(¥ +Xa) =Y '4.Y. | (22)
That is, 27’4, Xa+a' X 4;Xa=0 and 2V'AsXa+o' X' 4;Xa=0 for all ¥ and a.
Because of this formula, it is clear that a necessary and sufficient condition under
‘which formula (2.2) holds is 4. X=0 and A, X=0. Namely, the equivariant
estimator d(4;, 4;) for (o3, q‘%) satisfies 4;Y =0 and 4, X =0.
Thus the risk function is equal to. (see (1.1))

R(d(41, 45), B, o3, 02)

(1+ >trA1—1]2+2tr[A1(1+—2—:§->] [<1+%)trA2 1]2

and

o? ) 2
+2tr[A,(1+-;§_ I
“For any d(4s, As) €D which satisfies 4, X =0and 4,X=0, where 4; is a

. 1
non-zero-matrix, we write Aj=ay(I —X X*), where a;= tr[42(J-XX%)

1 __
n—r(X)
] Obvmusly, A3X =0. Tt follows from the fact that a trace of 1dempotent matnx
is equal o its rank and (X X "')2 X X*, that
i [n—r(X)] =t [4F (T — X X*) AF] =t [Ai(I X X*)] =tr(4y),
and
(4D -—-tr[al(I——XX*)] s [n—tr (X X*)] —as[n—r (X XH)]
=agyn—r(X)]=1tr(4y).
Obviously, tr[(41)*] =ai[n—r(X)]. Therefore -
-R<d(A:L: 4s), B, o1, 0f) — R(‘Z<A1, 4s), B, o, 0'2)
" =2(1+-—) tr(41) —2(1+ ob ) L _(wrafQ —XX“")A%'j}’-
‘ o1 ! o}/ n—r(X) t '
Lot r[4F (I~ X X*) 47]=g. In view of g<n—r(X) and Lemma 2.1,
R(d(4y, 4s), B, o3, 0%) —R(d(43, 49), B, o, o)

>2(1+——) tr [4F (I- XX*) AF]*- 2<1+02)

'—q- {ir [4F (1 - X X¥)4F])
>0 : | (2.8)
for all B, of and ¢%. A necessary and sufﬁcmnt condition under which the equa,hty
pign in formula (2.8) holds is that ¢=n—r(X) and A1 (I-XX* )Al has equal |

non-zero—eigenvalues

=Ag—-remAge (2.4)
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Therefore 1f d (A, _A.g) is an equivariant P-admissible estimator for (o*l, ),
then the equality sign in (2.8) holds and consequently fomula (2.4) is also ture.

Seb Ag=Ag=++- =hg—a;>0. Because (I—XX*)4;(I—XX+) and Af (I-&XX*)A?
have the same eigenvalues, the eigenvalﬁes 'Sf -—l-—(I -XX ) Ai(I — X X*) are equal
1o 1 (altogether ¢=n— rr(X ) in number) and 0, and it is a symmetric 1dempotent
matrix. It shows that — (I XXNA4;(I-XX *) is an orthogonal projection

operator along w(X x +) to w(I—XX*) (Symbol w(M) denotes a linear space
gpanned by the column vectors of matrix M ). It is well-known that I— X X* is an
orthogonal projection operator along y,(X X*) to w(I—XX*). On account of the
" uniqueness of orthogonal projection operator, we obtain - |
~ _%(I~XX%)A1(I—XX+) ~ILXX*
Therefore , ~
Ai=(I—-XX+ 4+ X XA (I- XX+ X XT)
(- XXA(I—XX*)+X X 4, X X*
+(I~XX*) 4 XX+ XX+ 4y (I— X X¥)
~(I- XX 4T -XX) —a(I-XX*).
‘When A1 is a zero—matrlx the couclusmn is olear.
Similarly, it can be shown thab 4, has the form of a, (I-XX*), where a2>0
Theorem 2.1. Under hypothesrbs H, if 1(X)<n, Vi=Va=1,, then a necessary
and sufficient condition for d(As, As) to be an equivariant D—admissible estimator for
(01, o) és that (A, 4s) has the form of (¥ [ax(I—XX*)]Y, Y [a:(I-X X*)]Y),

1

‘where @10, a:=>0 and @1+ @< n—r(X)+2 .

Proof (1) Necessity: . .

According to Lemma 2.8, it is known that if d(4y, 4s) is an equivariant
Z-admissible estimator for (of, o2), ’ﬁhen Ai=a;(I— X X*) with ¢,>0, i=1, 2. For
the sake of sm:phcl’ﬁy we seb d(ay, @)= (V' [a(I-XXH)]Y, Y'[ee(I=XX* )]Y)
and denote its risk function by R(d(ai, @s)): Through calculation we obtain

R(d(ay, @) = [A+R)a(n—r(X)) —11°+2(1+k) % (r—7(X))

C a 2
+[(1+ D) am—r@)-1] +2(1+1) @@-rx)),
where k=0%/03, 0<k<<+oo. '
~ If there is an other estimator d(bs, bg), then '

 R(d(ay, a2)) —R(d(bs, b)) o
= (1"‘7“) (a1 —b1)(n—r (X)) [(14+5) (a1+01) (n-——rr(X) +2) 2]

+ (1+ 710-) (da=ts) (n—r (X)) [.(1+ i}ﬁ-) (as-+b2) (n— f(i:) +2)-2].  (@5)
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First, we prove that if d(a,i, Gz) is an equivariant Y—admissible estimator, -then
it is true that T
__*l___

| —r(X)+2°

Were 'bhlS conclusmn not right, we Should have D o>
1

@ a> T
and by such that 'a1>bl>

<< 1 and O<ag<

S n— fr(X)+2

mﬂ—z and/or

1
m—m—. Choose b1
by=aa. By virtue of (2.5) we obtain‘

‘We shall only prove the case ay>
1 ,
—r(X) +2 ’
R(d(ai, as)) — R(d(bi, b))
= (1+k) (a1—by) (n— —r (XD [(1+E) (a1+61) (n— lr(X) +2) —2]1>0

for all k>0, that is, d(bs, ba) is better than d(as, a@s). This conclusmn confradicts
the fact that d(as, @s) is an equivariant P-admissible estimator.

1 0<Gz\——1—-—
—r(X)+2’ n—r(X)+2
d(ai, a@y) is nob an eqmvanan’o Q—adrmsmble estimator.

Secondly we prove that when 0<a<— bub

1
(X)+2’
A erten (X)) +2=0. Make d (b4, ba), where byj=ay—3, 0<3< a1, ba=ay—Jz,
0<2d<a. . o (2.6)
- Then (see (2.5)) S '
B(d(as, a2)) —R(d(bs; ba))
=(1+Io)8(n—-a~(X))[(1—!—70)(2(&—8)0-'2]

k2 (l—Hv)a;S(n a*(X)) [(l-l—k) (2@—:58)0 2k]

'“1+42>

or ‘

kﬁ
(1-!—70)8(71, r(x)) [R(d<“1: “2)) R(d(bb bﬁ))]

=F[A+k) Car—8) e —2] +a[(1+F) (2as—28) c— 2]

=1*2ay—8) o+ [(2ay—8) e —2]1F*+ [ (2aa—2d)c— 2]a;k+m(2cv2—-m8)o 2.7)
2

In order to show that there exist 3 and «,” which satisfy (2.6) and make (2.7)
positive for all ]c>0 we consider the following cubic equation |
3 [(2@1 Ne—2] .5, [(2as—ad)c— 2]03 w(Zag mB) '
‘ b+ (2@1—8)0 B+ L (2 -—-8)0 k+ ay—3 O ,(2'8)
e (201-9) [(2ay—9)
_[(2a3—3)c—2] _[(2as—a2d)c—2]w
] a(m’ 6) (2“ ""8)0 H b(ﬂ'), 8) 3 (20;1_3:)0 b4
(2a5— mS)w
| B e(m, d) = R Py S | |
Make transformation k%lé—:gl— d(a;, 8)‘. Then (2.8) becomes L o
L Bp(w, O)4g(w, 8)=0, @ . . (2.9

where p(z, 8)= -% @(a, 3)+b(s, 8), ¢(&, O) =—227— a*(z, 8)‘——31— a(, 3) b(a, 8)
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+e(2, 8). By calculation we obtain

7* (=, 0) (=, 0)
2 To7

- —1)32 —_ —1)2 —q\2 2 9.4
108(a, 0)* {%%0 (@26 —1)3%°+ [ (aio‘ 1)2(asec—1) . +27a2ale
—18a4a4 (ai'c —1) (asc—1)c*] w44 (ay6 —1)%asc}

On the basis of 0<wic<1, 0<@sc<1 and (w1+w2)o>1, wo obtain A<<0, A=B2—4A4D
>0 and B>~/4. Therefore A2+Bs+D =0 has two unequal positive roots

—Bx4 (—B+\/Z‘ —B—~4 .
| —ai | . For a.ny "€ VR 34 ), there is always

* 0\ .8 ‘ ‘ .
cf‘(wll,‘ O, p (w’; 0 <. (2.11)

It i seen easily that when aic =1 or a,c=1, also there exists 2">0 Whlch malkes

formula (2.11) true.. Becausa g (w %) +2 (a;7 ) is a continuous function of 3

with 0<8<a1 and 0<a"d<ay, ’ahere exists 8*>0 (with 3" <@y and 8*z*<as) which

satisfies
PG, 80 | B, 8
4 27
Accordmg %o the property of cubic equation, if p*=p(z*, §*) and q =g(m &%), then

equation I°+p7+¢*=0 has only one real root. That is, cubic equation
B+a'%+b"k+e=0 ' (2.12)
also has only one real root, where a —a(a; 8*), b*=b(a" 8*), ¢"=e(a*, 8%). But on
_(2a3—2"8")a"
2ay—98%
k*+a"k?+b"k~+e">0 for all k>>0. Write b} =ay —8*, bi=as—8"z". Then
R(d(as, a2)) —R(d(b5, B3))
_ {@+k)8* (n— T<2X>> (2a;—8")¢c
k

account of ¢* >0, equation (2.12) must have a negative root, that is

(B+a" B +b"k+¢") >0,
for all k>0, that is, d(b3, b3) is better  than d(ay, vag\). Consequently, when
0<ay <%—, 0<a2<—1'— and. a1+w2>%, d(ay, ay) is not an equivariant D-admissible

estimator. ’ o

(2) Sufficiency (by the Bayes method):

Since we are discussing the problem of admissibility, the same conclusion will
be reached, whether under risk R(d(ay, as)) or under risk %2+ R(d(ay, Gg)) Write
EB(d(ay, @2)) =F?R(d(ay, az)) Then

R(d(ay, 22)) =K [(1+F)ai(n—r(X)) — 1]”—1—2].75’(1+lo)2 ai(n—r(X))

+k2[(1+ )ag(n——m(X)) 1]’ +2]ﬂ2(1+1)a2(n —£(X))
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= (24812 +k) (n—r (X)) (n—r(X) +2)a§—2(k”+k3) (n—r(X))a,
+ 282+ (14-2k+02) (n—r (X)) (n—r(X) +2)ai
=2(k+#*) (n—r(X))a.

Suppose that n(k) is a certain prior distribution of % with M ;=r Fan(k) (i=1, 2,
. . 0

3, 4). Then the Bayes risk of d(ay, @s) With respect to n(k) is

| B,(d(a, o) = | B(d(ay, a2))in(h) |

=(Mg+2M3+M4)(n T(X))O(Il—Z(Mg‘i‘Ms)(n ’I‘(X))(11+2M9
+ (1+2M4+M,) (n—r(X))oas— 2(M1+M2)(n r(X))aa.

(2.18)
Formula (2.18) has the absolute minimum point at
| 4= Ms+ M,
(M2+2M3+M4)o
g = Mi+ M.
(A+2M+Mz)c”
Now we shall show that for a4, as under the condition a;>0, a,>0 and ai+as

<%—,, d(a1, @) is the only Bayes estimator corresponding to a certain prior

distribution n(k) of k.
Oase I: ¢,>0, a;>0 and ai+a2=%.

Set M 1=7 agc ; Clearly, M;>0. Suppose that n(k) possesses a one—pdint

distribution wh_lch satisfes P{k=M;}=1. Then M,=E(}), M.=E(*) =M},
M;=E(®) =M% and M,=E(k*) =M31. It is easy to show directly that d(ay, as) is
the only Bayes estimator for (of, o%) with respect to n(k).

Case IT: ¢;>0, ;>0 and ai+ag<l.

We give proof for the case 1—2a3¢>0.

Mi+ M,
(1+2M1+M2>0

Mg=

From o= we obtain

asc+ (2as0—1) M. 1
1— 220

In order 30 find a range of M, which satisfies Ma>M 2 we consider equation
(1—'a20)M2'— (2asc—1) My —asc=0.

(2.14)

Its two roo’us are —1 and “20 (>O) Therefore When O<M1< 1_ it i true
that , : - :
(1 - (120) M2_ (2@20 —1>M1—(226<0,
namely : - :
Mpm ot Qoo DMy e (g5

1—asc
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After My and M, are found, make -+ R —

‘ Me=IMZ2. - - 7 oL (2.16)
. . Mo+ My o
{>1, AIS %0 be determined). From ay = (Ti+ 25 e we obtam |
_({d- aio)M 2+(1 2@10)1'[ 5. (l—czic).Mg-!—(l 2@10)ZM2 ‘
s a6 ) (2 17)
) _

We shall select suifable I and M, 1 such that M 1 M 9, My and .M 4 not only Sat1sfy
(2.14), (2.15), (2.16) and (2.17 ), but also Satlsfy N ’
- M4(.Z‘[g .M2> +M2(M1M3 ) Mg(ﬂ[g M1M2>>O

M, Mf>o (2.18)

erte M — (1 a;ic> -M2 =+ (1 2(110\) _2112/2
L ayC

Substitute (2.16) into the first formula of (2.18), we get
M (M~ M3)+Mo( MMz~ M3) — My (Mo~ MiM,)
=M (M5~ M3)+2M Mo M2 — ME—12M5
= —BME+2M MY U4 My (Mo — M3) — M3 q
> —PM3+2M M52+ M, (Mo~ M2) — M3, (2.19)
The wo zeros of expression (2.19) taken as a function of I are '

li= MMy — \/<M2 1>(M4 —Mz)
1 3" =

From 1— 2a10>0 e know M4<M4.

and

7o M1M2+«/ (Ms— M?) (M4 Mz)
Yo = ] Ma/

It (Ms—M3) (My— M 2) >0, then expression (2.19)>0, when ly<I<l,. Write

.o @6 77 aso+ (2asc—1) M, =< asc ) _ A2 B e
Mi 1_(120, -Z‘IB 1“@20 .1'—020 Ml, Ms Mz :’

and

. — My(1—ay0)+ My(1— 2a50) _ (50)*(1—a@10) (1 —as0) + (@a0)*(1— 2@10)
* asc - ae(1— agc) 8 ‘
It is seen easily that M,> (M;)*.

The value of M3M,~ M2 as a function of M i a‘u-tﬁe point M, = 132220 is equal

to o - o

MiM,~ MZ(M4 — %) >O

Therefore there exists My, € (0, M) Whlch Satlsﬁes M2 mM sw— M3 20>0 where M 0 anc};

Moo aTe values of M, and M, resPectlvely ab the pomt M, Thus we obtam "
M20<M20 o>2<M1o(M4o M30) (M oo— M3).

M3 <M10M20+\/(M4o Mo)(Mzo me)
Mo Mw. ; )

"Consequently Take I, such that it

satisfies
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MY MyMay— ~/ (M 10— M) (Mzo Mla}
1<Max{ T T .,

M10M20+'\/(M40 o> (M:o— M3 o)
- M3 e
Such an lo validates not only (2.19)>0 but .also the second_ formula of (2.18),

hence both formulae of (2.18) hold.
Thus we obtain Mg, Mao—= 25T (2a50=1) Mo ) Moo=IoM32 and

1-— aaC
(1 - (Zﬂ)) Mgo -+ (1‘— 20510) ZOM%Z .
a4C

They possess the following property
0 < M 10 <

1 — M20>M10)
M1°M3° _‘M2° —M1° ZO M3/2 Mzo = M3 (ZOMIO Mm) >0

and
M 4o(Mao—M30) +2M10M oo M 59— M3+ M3,
: > Mao(Mao—M3o) +2 Mo Moo M go— Mo — M3,>0.
Consequently, all the five principal minor déterminants of
1 0 My 0 M
0 My O Myp O
My O Ms 0 Mg
0 Ms O Map O
Mo 0 My 0 My
are positive. Hence there exists a random variable Z which satisfles F(Z2%1) =0,
E(Z%) =M, s=1, 2, 8, 4 (see Theorem 2.1.1 of [7] on page 43). By setting k=22,
the distribution of % will be denoted by (k). Then E (B) =M, s=1, 2, 8, 4.
Clearly, k>0. Thus for given ay and ay, d(as, @) is the only Bayes estimator
corresponding %o the prior distribution 5(%) of %. S
‘When 1-— 2adc<0 because of 0<aic+ase<1, it is necessary that 1 —2ay,0>0.
From the sy_mmeﬁry of ay and as, d(as, a;) will surely be the only Bayes estimator

for a certam prior dlstrlbu{non of %

Combining the two cases, we see that when @3>0, @3>0 and a1+a2\% d(ai,
ay) surely is the _only Bayes estimator for a certain prior distribution < of & or %—) s
and it ig the equivariant P-admissible estimator for (o2, o3).

Now we show that when O<a1<%—, O<a2<%— and at least one of @y and ag is

zero, d(a1, @2). also is an equivariant P-admissible estimator.
‘Without loss of generality we shall show only the case of a3 =0.
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R(d(0, as)) —R(d(by, bs)) .
=A+k) (n—r(X)) (—by) [(1+E)bsec—2]

N (1+lc) (aa—bs) (n—1r (X)) [(14- >(ag+bg)c 2]

If 5, 0. then the coeﬁiment —bf{(n—r(X))c of term %?is negamve When % becomes
large enough
R(4(0, as)) ~ R(d(bs, bs)) <0,
If b;=0, then
R<d(0 a3)) —R(d(0, bs))

=1+ (@b (e—r(X)) [ (1+ ) (@a+82)o-2 |.
- It is seen easily that in the two cases by>a, and by<as,
R(a(0, 4)) —R(d(0, 35))<0
holds, provided % becomes small and large enough respectively.
The above argument shows that when @,>0, ¢2>0 and ay+ ag<%, d(as, ay) is
an equivariant Q—admissﬂolé estimator. |
Corollary 2.1. Under hypothesis H, if r(X)<n and Vi=VAV (>0, then a
necessary and sufficient condition for d(As, As) to be equivariant D—admissible estimator
for (o3, 03) is that
-1 -1 -1 -1
Ai=aV o P I- Vo ? X) (Vo2 X)*IV, %, i=1,2,
1
n—r(X)+2"
Theorem 2.2. Under hypothesis H (V1 may be unequal to Vs) and r(X) <n,
of

ay=

where ¢:=>0, ;>0 and a;+a.<<

) OiMq -+ _M'-'bl‘ (.Dj_)
M,O%+ 2 Ot (D) + Mo [or (D) 12+ 2M 05 + M g (D2) + 0 M 767 (D)

as= .Mj_'bl'(.Dg) +01M2 :
['bl' (Dg)] 2+M20§ +2M101tr(D2) +2tr (.D2> +4:M1tl' (D2> +2M201

whenre

01=n—q-(X) D=VIVII- it X))V, |
Dz——V1 ]72 [I—- (V22 X) (Vz—fX)'*]szVl and My, Mo, Mg, M, are any set of real

numbers, which satisfies
Mi>0, My— M7>0, M1Mg— M3>0, M4(M2‘M§>+2M1M2M3—M§— §>0

or
.M1>O, .M2=.M§_, M3=M§, M4=M%, '

then (¥ '{a,7'7* [I- (V1% X) (Vi X VIR Y, Yial st -7 ) (73F 1)+

-1 ,
V 22}Y) is an equivariant D-admissible estimator for (o, o3).
By a method similar to that used in the proof of the sufficiency of Theorem 2.1,
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the above result is obtamed easﬂy :

Theorem 3.3. Under hypothesis H (V1 may be wnegual to V;.), if r(X ) <m,
then a necessary condition for d(41, 4s) to be an equivariant D-admissible estimator
Jor (o1, o3) is that

1) 4X=0, 4,X=0,

2)  2Mm(ALV ) +ir(4aV 1) <1, 2&1 (4sVa) +ir(4aV o) <1
(Expression A,(M) denotes the maximum eigenvalue of square matrix M).

- Proof

- 1) The proof of 43X =0 and 4, X =0 is similar to that of Lemma 2. 3.

2) Bocause of the symmetry of 4; and A,, it suffices to show that 27«.1(A1V1)
+r(AV )<L | - -

Lot 2\ (A,V4) +1tr(4:¥ 1) >1. Select an orthogonal matrix P such that

77A1V7=PAP’ where A=diag (Ast, *+* dary 0, *=+, 0), Auz=H1(4sV) and Auy>has

=>-->M1;>0 are non-zero—eigenvalues of V1 A1V1 (or A4Vy) (Symbol diag (O,
Os, -+, 0,) denotes a square matrix of order n, which possesses elements O, Oy, -,

o along the principal dmgonal and zero elsewhere).

Select a« so that if Satlsﬁes O<a<?x.1(A1V1) and S +2 A;>1. By setting
D=diag(oq, Ma, - ?\,m 0) B;= 171 2PDP’V1 and Bg—Ag, obviously, A>D.
Now we show that d(Bj, Bg) is better than d(4y, 4a). '

R(d(Als -A2>) 18) 0-% 0‘%) —R(d(Biy Bﬂ): B) G?.) 0% » ,
=2tr [Ay (V1 + 4V 5)1*—2tr[By(V 1 +kV 2) 17+ {Ir [41(V1+kV )] -1}
—{tr[Bs(V41+FkVa)]—1}2
=212 [tr (AaV 2)? —tr (BiV 5)?] +4b [tr (41V 241V 1) —tr (B1V231V1)]
+2[tr <A1V1)_2 —tr(BiV1)*] ,
+ {4 (AsV 1) +1r (BiV1) +k[ir (4aVs) +tr(BV 2)1 =2} ;
{'bl' (A:LV:L) ir (Blv;(_) +k [‘bl‘ (A_-LVg) —1tr (B 1V2>] } . (2 . 21)
From A>D, it follows that A3>B; and Vz Ain = Vz 31V2 According o Lemma
2.2 we obfain

i (4,Vs) =tr (VfAiVﬂ > tr (VzBlV ) =tr(BiV3) (2.22)
and
' tr(4iV2)?>tr(BV ). (2.23)
Also from - :

| B N
52 (AsV7s) —tr (B ) =tx (VT PAPV IV s) 42 (Vi*PDP'V; *75)
— 4 [VTTP(4=D)PVTV)
= (M.r-a) ir [VI%,PB Y P'V;%Va]
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- (where ¢/ =(1, 0, --+, 0)), we have
Ir (AIVOA:LVI) tl' (.B 1V2BIV1)

e (P PAPY IV P APT IV et PDPYS Wi PDPYIIVY)
—br (AP'V;2V TP 4) —w (DPV V¥ PD) | -
—tr (V12 PAPV V) —e (VI PD PV 7))
= (M=) tr (V3? Ped PVTIVS) '
= (kn+ o) [tr (44V5) —tr (31V2>] _ - (2.24)

' We note ‘thab tr(AlVi) = 27»1,, tr[(AiVi)2] = tr(4?) = ;%1,, ’ﬁr(ﬁlVi)
—oo—l-z Mgy tr(BlV1)2—a9+2 M;. According to (2.21), (2.22), (2.28) and (2.24)

we obtain
- R(d(41, 4s), B, 01, 03) —~R(d(By, Bs), B, 0, of) » -
- =28°[tr (A1V 3)® —tr (BiV s)*] +4k (s +a) [tr (4,V5) —tr (BV )]
- 20— o)+ {tr (44V4) +ir (BiV:L) +k[ir (44 ,) +tr (-B:LV2>J 2}
* Az —a+klir (447 s) —tr (BsV2)1}
=>4k (A +o) [t (4aVs) —tr (Bng)] +2(Ats—a) Qs+ a)

| +£2 ?w+2ku+a+k[tr(A1V2)+tr(BlV2)] z} |
o {Az—a+k[br (4V5) ~ - (BJ@)]} |
{2 Adj +2 Mj+a-+E[tr(41V o) +ir(BiVa)] — 2-(—2(?\,114-“) }

=
{7b11‘““+]0[t1' (A:LVs) tr(BiV-z)]} >0
for all 7o>0 that is, d(By, Bs) is better than d(d4;, 4,). ThlS contradicts the fa.ct
that d (Ai, 45) is an equivariant D-admissible estimator
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