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' Abstract
“In this pa;pef,' the author considers the general” initial bouﬁda.ry‘ value problem of
hyperbolic—parabolic coupled system and gives the normal form of boundary conditions, -

sufficient and necessary for the BVP and the conjugate BVP to be well-posed. Furthermore, _
. th_e author proves the existence of differentiable solution in Sobolev spacés of highro"rder,

§1. Introdu”ctioin‘ :

" Let O be a domain in R, W1thboundary89 Suﬂieiehﬂy’ smooth. In the region
QX% R}, we consider the following hyperbolic—parabolic coupled system:
o= Pu+ Av+Fy,
{at'u=Bu+Q'v+F2,
where u, F; are p—dimensional vectors, v, Fy are ¢g—dimensional vectors, P, Q, 4

(1.1)

2

B are matrices whose elements are differential operators. The elements of 4, B, @
are 1st order operators in R", and the elements of P are 2nd order operators in R",
satisfying:
1, du= Pu+F4 is a second order Petrovsky parabolic system;
{2, Ow=Quv+ F, is a 1st order Kress’ hyperbolic system.

Here, a hyperbolic system is called Kreiss’ hyperbolic if there exists the correspon—
ding Kreiss’ symmetrilizer. Specifically, the strictly hyperbolic systems and many
symmetric hyperbolic systems encountered in physical applications are Kreiss’
hyperbolic (cf. [6]). |

In view of the various physical phenomena described by this kind of systems,
e. g., the hydrodynamics of viscous ocompressible fluid and the radiative
hydrodynamics, more and more attention is paid recently to its research. For the
case n=1, there are already many diseussion on the general boundary value
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problems of (1.1), and quite a few good results are available. For example, the
summary article [5] has given a systematic and detailed exposition in this case. But
- for the case n>>1, the existing literature is rather limited, because of the failure, in
general, of the method of integration along the characteristics. Most of the articles
now available are concentrated on the discussion of the hydrodynamics equation for
viscous compressible fluids. For this concrete system of équaﬁons‘, in [12], Tani
proved the existence and uniqueness of local solution for the Dirichlet boundary
value problem, while in [8], under certain restrictiohs, Matsumura a,nd‘ Nishidai
have even proved the existencelanc’i uniquéness of giobal smooth solution. But their
discussions are confined o the Dirichlet ‘problem, and their methods, ag pointed dut
in [14], depend on the fact that in the special system they considered, there is
exactly one hyperbolic equation. For the more general system (1. 1), where the
hyperbolic system is assumed to be symmeﬁrlc, in the frame of Friedrichg’
admissibility for symmetric positive system, Zheng Songmu?i“’ has proved the
existence and uniqueness of a local solution for the initial-boundary value problem
with ¥ =0 on the boundary, . : ,

In [11], Strikwerda has for the first time -considered the -general initial-
boundary value problems for the system (1.1), i. e.; the boundary conditions for the
. parabolic and hyperbolic variables are all of Lopatingky’s type. But in his paper, he
only proved that L? energy estimate for the linear problem. We want in this paper
o prove the existence of H* solution and the corresponding energy estimate for the
linear Strikwerda stable boundary value problem, in order to pave the way for the,
discussion of quasilinear problem in [7]. It is noteworthy to:point out that, the
general boundary value problem here includes (for the parabolm variables) the
Dirichlet condition, Neumann condition and the conditions which are the mixture of
the above two conditions. In dealing with such problems, in general, one cannot treat
hyperbolic and parabolic system respectlvely and is obliged to consider them as a
whole. And this kind of mixed problem is exac‘oly what one meets in physics when
considering the isothermal shock waves, which will be discussed in another paper.

In this paper, section 2 is devoted to the .a,nalysis of the result of Strikwerda in
[11] and the typical form of the stable boundary conditions. In section 8, we prove
the a priori estimate of hlgher order, and in seotions 4 and 5, the existence of
differentiable solution is proved with Q being a halfspace and a bounded domain,
Tespectively. - | |

§ 2, Notations and the Result of Strikwdrda

In this section, unless otherwise stated, 2 s always assumed to be the halfspace:



410 . CHIN. ANN. OF MATH. . Vol. 7 Ser. B

Q={(z, y); v>0}, where y=(y1, ¥2, ***, Yn-1).
Rewrite (1.1) as follows: ‘

Uy — Pouww'— g Piﬂlby, - 2’ Pﬂiiuﬂcw - AOQ)@: - 2 A-i'uw
— Oou‘, — 2 Oo,'uy,. - Ou'u,— 012’1)‘= Fi) (2 . 1)
— Bou,— 2 -Bﬂéy, - Qoo — 2 Qi’vy, — 01U — 0w = Fa.
Here one ¢an assu_me without loss of generality, Qo——dlag (Qo, ), <0, @G>0
are dmgonal matrioes of order ¢~, ¢* respeotlvely It is evident that the terms Ogu,,
OO:'uy; Ouu 012'0 Oz, Osav in (2 1) are of lower order, so we will omit them in the

following dlSCUSSlOD
On the boundary #=0, we give the boundary conditions:

{Tiu;,—l—g T oty + 810+ Tou= gy,
\Tu+Sv =0, |

2.2)

where T'y; Ty, 81, Ty are matrices with by rows, 7', S are matrices with by rows. In
(2.2), we may assume bi+bs=p—+g¢~ and the former by equatiions to be linearly
independent with respect to the terms containing derivatives. It is easily seen that
thogse assumptions are necessary for the well-posedness of the problem.

At t=0; the zero initial condition is imposed: - )

ST 4]120=0, ¥|ro=0. (2.3)
The general case with nonzero initial conditions can be easily changed into the zero
one if a little stronger regularity is. imposed on the initial values. :

+ For n>1, we introduce the usual hyperbolic n—-weighted norm

- 276:; 1oy 2,—2nt
Ipltn=, 5[, 0™ D 0|7 dady . (2.4)
lﬁplk.n [kﬁ%<k[?ﬂx!&1 ngk‘lbk’gvlﬂe'g"tclydt:’ | (25)

The éorresponding inner products with k=0 are denoted by ( , ),and { , >,
respec’ﬁlvely ‘ . | |

~ Denote the dual variables of (y, t) by (@, 7), s=iv+n, o= (w?+s)7, and &, &7
are t};e pseudo-differetial operators with symbols.c, o2, |S] is the pseudo-differential
operator with symbol |s| and V' is the gradient with respect o the.space variables
(=, ¥)-

For the linear problem (2. 1) (2 3), followmg [11], we set the following
definitions:

Definition 2.1. The fpa"oblem (2.1)—(2.8) ds called stable if: there are constants
1m0, Oo=>0 such that for n=mno, the strong solutions w= (u, v) of (2.1)—(2.8) sat@sfy the

Sfollowing d prioré estimate
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- Ro(y, E)q+Re(Us, &)y +0]0[8,0+ | 8 ta|8,0+ w]3,
<Oo(|E72g1|2nt | ol H |2 [0+ Fsld). - (2.6)
Definition 2.2. The problem (2.1)—(2.3) is called strongly stable if: there are
.positive constants mi, 01 such that for n>ni, the strrong solumons w= (u v) samsfy
the following a prioré estimate: :

Re (v, éa.lSlu>n+Re (Vﬁ, EVU) 4 t+nlo ﬂOvn+! ISI Zulom'l‘ ‘wlom
<O:(|g[8+F[5n- o (2-7).
Here we have made the abbreviation g= (g4, ga), F= (Fi, .Fg) '
‘ Let = (v~, v*)7, with v~ the first ¢~ components of v, v* the last ¢* oomponents
For the time being, assume that the problem (2. DH—(2.8) have constant coefficients.
- Let Py - —2 Pijw;, Ps(w)= ZngJC&){&)g, B. w—-JZ Bjw;, A-w= EIA,Q, We
“introduce the following definitions: _ : S ’
‘ Definition 2.8. (u, v) will be called the pa,mbolw e@gemectow of (2 1) (2.3)
wt (w, 8) %0 Re $=>0,. %f : : .

1) v§=0, n €0 ue L*(R} ),

2) su=Pyly+iP1coUy— Pz(w)u

3) Tty +iTsu=0, Tu+Sv=0 at v=0. :

Definition 2.4. (v, v) %0 will be called the hypefrbolw eigenvector of (2. 1)——
{2.8) at (o, s), ®#0, Re s=>0, if:

1) O=_Poum+q‘,P1—wu¢—P2(co)u;

2) sfv=Boum—l-fz}B"-cou—{—Qo%—!—@Q-cofb;_ ' '

8) Tiug+iTs wti=0, Tu-+8v,=0, at ©=0. :

4) u€I?*(RY), and vE L*(RL ) when Re $>0, and if Re s=0, v is the limit of @
serves (fv,,) with each v,€ I2(RL), v, satfbsfymg 2) with Re 8,0, s,—>s.

“Asin [11], one can define the strongly pa,rabohc elgenveetor and hyperbolic
eigenvector. This paper will be confined: to the study of the stable problem,
while for the strongly stable problem, similar theorems are valid and more easy to
prove. '

First lot us state the main results in [11].

The case of constant coefficients: : L

Theorem 2.5. (Strikwerda) 1) The constant coeﬁic@ents problem (2.1)— (2 3)
-is stable (or strongly stable) if and only if: by<<p (or b;>p) and there is mo (or
. stfrongly) pambolw and hyperbolic eigenvector. ’ :

'2) When by=p, the stability is equivalent to the sirong stability, and i egmfuaslent

to the well-pesedness of two seperate parbolic tmd hypeq‘bolw pa‘oblems obtained bg.
setting A, B, S1, T all equal to zero. : :

Transition fo the case of variable coefficients: - -
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Theorem 2.6(Strikwerda).'. In the variable coefficients problem (2.1)—(2.8),.
suppose the coefficients are homogeneous of zero order with respect to |o|, |y|, [¢] for-
|| + [y} + |t sufficiently large. If,at every point on QX RL, the Sfrozen coefficient.
pfr;oblem is stable, then, the variable coefficients problem (2:1)—(2.8) is stable.

When @ is a bounded domain, from the stability of frozen coefficient problem at.
every point on the bouzida_ry, We can deduee the following estimate .

VT lulf bl ol <o(L it ol +inF1n%,q+uF2no.,,) @8

and for strongly stable problem we have

7}" ”09ﬂ+ "vuuoiﬂ+Iw,O’ﬂ\O<,gl%’ﬂ+ﬂ HO ’7) o (2 9)
Now, we are going to a.nalyse the stable bounda,ry oondmons and to rewrltea
them into the typical form.

In (2.2), rewrite Tu-+8Sv="Tu+Sv™ +S'v"', where § is a 62XQ matrlx S is a
b2 % ¢* matrix. From the definition of stability it follows easily ‘that q ~<b; and the
rank of § is ¢~, otherwise we would have(0, vo) # 0 which is a parabolic eigenvector..
Therefore we can solve #~ from the boundary condition and Tewrite (2 .2) as

Tttt 3 Togty, + 810+ Touu= g, o |

Tu-+8v* = g, | - @10y

v~ +8t+ T —"-‘;9'22: ‘ | o |
where T3 is a (p—b4) X p matrix. -

Suppose rank T'3<p—by, then we have less than P boundary conditions from:
Tlux—l-ng-cou 0 and T3u=0, and the system of p second order ordmary differential:
equatlons

| su=Pou¢;+@Pi-;ouw-P2(w)u |
~ must have noﬁiero I?(RY) solution, i. e., there exists a parabolic e1genveotor.,
Thus from the s‘ﬁablhty it follows that rank Ty =p—b;.
Slmllarly, rank 7';=>5y. Elge, at =0, the system
. ‘ su=Pouy,
" has only less than P boundary conditions, and this implies the existence of parabolic-
eigenvector. :

Also, T'yu, Tsu must be linearly independent. Otherwise, one may perform an.
invertible linear transformation of v, so that Tyu= (us, -+, %y, 0, -, 0), Teu=
0, ==, 0, Uy, *=*, Uty_14p-vss Oy =, 0). At =0, take Uy=-+=u, y=0. Then it i
easily seen that there isa u,% 0, u, € L*(RY), satisfying su= Py, i. o., thers exists a.
parabolic eigenvector. |

From the above discussion, without logs of generality, the boundary conditions:
for the stable problem (2.1)—(2.8) may always be written as



No. 4 . Li, D. N. THE GENERAL IBVP FOR LINEAR H-P SYSTEM 413

r

up+ > szuy5+81@+ Tou=g1, |
'+ 850" = gay, . S @2y
_ v+ 80+ T =g,
- “where u= (/, u'"")”, u' the first b; components, u' the lagt p— by components,
~ To prove the exis’ﬁonoe of solution, we should consider the adjoint problem of

2.1)—(2.3). ‘ ; B

Proposuzlon 2.6. The stab@loty of tha problem (2 1), (2.2), (2 3) 78 equomle‘ntv
10 the stability of its adjoint problem if amd only if: Sg=0. Cs :

Prroof Without loss of generality, we may assume S;=0 a.nd TO—O To deduce
the form of the adjoint problem, for (u, v), (gu, 4:) €0 (xR ) integrating by
‘parts, one gets '

(u;— Pu— Afv ?) —[—(‘vt Bu—@Qw, )
=(u, —@— Pi@ou— EP 1/Pay; = ZP 5:iPyws+ Bo lPx'-l—;}B?ng)

+(Q), “¢t+QO¢§+$ Qj‘l‘y;+‘4~ m+2A§¢w)

+the terms of lowe'rorder + the bouneary term on =0,
where . . - | |
B the boundary ferm =<u,, P> —<u, (Pop) m)

— <, SPLp) >+t Bib>+<, Qb+ Adp>.  (2.11)

By the homogeneous boundary condmon Samsﬁed by (u, V), subsintumng the
expressmns of u, u'', v~ info the above equaﬂnon and no‘ulomg the arbitrariness of uZQu’,
%, wecan find the form of the adjoin equations and the adjoint boundary conditions.

Omitting the terms of lower order, the adjoint equations are
— @1~ PoPes —2 P a{i?w;fg P ;ii%gw"l“B ‘!’m'l'B 4’#:
- 4’t+Q§4’w+$ Q;Jfl!’yj—{_A:;@w'l‘? A;QDUJ:O'
“The adjoint boundary conditions on =0 are
(Pip)"'=0,
— (Pig)e + 2 T2(Pop)yy, = (P1s9)y) =0, o |
(Qo4f)++ (A5p)* — (S2(Qad)~ +S4(A0¢) Dk Ss[(Tw(Pocv) (P’Iqu)y,-)"
— (Pip)a+ (B — (T(Qip) ™+ Ti(4op) ™ )”] 0. (2.13)
"The anti-initial condition on {=1%>0 is .
@limte=0,  Ple=t,=0. | : . (2.14)
- Tf 8350, the third equation in (2.18) must contain. the components of (Pip)n,

*Whmh are linearly independent to (Pip)) in the second equation,Noting that the first
equation of (2.13) contains no terms of ¢, so in the equations of (2.18) which

(2.12)

contain no derivatives of @, the equations containing the terms Q) *=Q¢Y™ must
be less than ¢*. From the above analysiss of the stable boundary .condition,
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(2.12)—(2.14) could not be stable.

On the other hand, if S50, (2.12)— (2. 14) could not he strongly stable. Im
fact, the strongly stable problem has nothing-to do with T in the boundary
condition Tu+Sv=0, i. e, the first relation in - (2.18) plays no role in deciding the:
strong stability. In order to have p+¢~ boundary conditions, the dimension of ¢'"
must be zero, i. e., p=5,, then we have Sg-—O and the orlglnal problem is also>
strongly stable.- S ‘ : |

On the -contrary, if Sa—-O from the definitions of parabolic and hyperbolic-
eigenvectors, it is easily-deduced that the stability of the orlgmal problem is reduoced:
0 the well-posedness of following two independent problems:

U — Polye— 2 P:L.'rua;y 2 Pawuyw, Fy, ‘
'M' +2 Tzauy =g u' —!]21: Qn = 0 . " (2.15):

'Mft_o—'o :
{ Qo’vcc 2 Q:'vy; F 2

N +S4’U ’w—o—gaz, 'v,t—0=0
Notice that we now have §3=0 also in the adjoint problem, and that ‘the-
correspondmg prmclpal pa,rﬁs 1n 'lshe ad301nt problem are the adjoint equations and:
boundary conditions When the hyperbollo and pa,raboho problems are ‘separated.
V From [1, 4, 97, the adjoint problems of umformly Lopatmsky Well—posed hyperbolie:
or parabolic 1n1t1a,1—boundary value problems are themselves unlformly Lopa,tmsky
Well——posed Therefors, (2. 12) (2 14) is sta,ble When ;9'3—

(2.16)

In what follows, we’ will always assume ;8'3—0 in the problem 2.1), (2.2)",.
2. 3) : : A

§3. A Priori Estimate of Higher Order

Let Q be an open set in B*, with boundary &Q suﬁiclenﬂy smooth. Gonsuder the-
fo]lowmg initial-boundary value problem: :

” {2_23_22;2 ini>0,2€0, B
' +To(@)u+S1v+ Tou=g,,
u'=gs, o on 1>0, s€oQ, ST (8.2).
Ssv+ Tsu= g, C . S
: : - wlieo=0, - R (3.8)
“where P A4, Q, B are the operators described in § 1, 8, denotes the differentiation in:
‘the direction normal to 2, and T(3) denotes the first order aifferential operator-
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tangential to 6Q. _ : ,

_ First, we want to point out that by Theorem 2 .5, under the assumption of
Theorem 2.6, we can have stronger estimate than that in Theorem 2.6, even when
£2 is a bounded domain. For this, we introduce again the operators & and &-. When:
Q is homeomorphic o half space, the operators ¢’ and &~ can be defined globally.
Bus for bounded domain 2, they have to be defined 1ooa]ly by the decomposition of |
unity. In the boundary patch, &, €% can be defined naturally, while in the overlap
of boundary patches we take the same coordinates. In inner patches, we can simply
take &=n. So if 2 @a=1 is the corresponding decomposition of unity on @, then & is

defined by Eu= 2 &(pau), and define

Hf = 2 I ‘i%ulln , |
From the proof of Theorem 2.6 (cf. [11], Theorem 6. 1) the energy mequahty
is proved by localization. In .every inner local patch, the errors invoked by
 localization can be estlmated by ﬂul],,, while in every boundary local patch the errors
1nvoked by localization ea,n be controlled by 2 ”(0 i(qnﬁu) Ao’ ‘

So in fact, we have :
| Theorem 3.1. Suppose that the pfroblem (3 1) (3.3) sa,t@sﬁes the cond@mon in.
Theorem 2.6. Then, we have the followmg a priori estimate
Re(u, €u)+Re(ts, &) +u|o|2+ | & ", |24 |w]2
<OUE R+ P+ |63+ 10alD. (3.9
According to. Friedrichs™, we construct the tangential differential enlarged:

systerms of (8.1)—(3.38). Using Theorem 3.1, we are going to prove the following:
estimate of higher order: ‘

Theorem 3.2. guppose the coeﬁowents o (3 1) (3 3) are suﬁ?owntly smooth
and are zero. deg/ree homogeneous in of (%, cv) for large [t[ + fm[ At each point on the:
boundary 20 % R1, the frozen coeﬁ‘wwnts p¢oblem with flattened boundary 48 stable. Then.
its smooth solution w= (u, v) € OF (2 X R3) satisfies the estimate:

Blolto+ Ml o [Eelft [0l
- <G| G Fu|E A Falht [ €720l En+ 1000 (8.5}
Proof Aeccording to [2], let {D,} be the complete system of first order
~ tangential operators in Q. Add D;=&; into the system {D,}, again denoted by {D,},
it becomes the complete system in QxR!. TUsing {D,}, wé can define the
corresponding Sobolev spaces Hy(2 % R}) and Hy(0Q X RY). Denote the corresponding:
hyperbolic n-weighted norms by |D¥s|, and |D¥p|, respectively. H;(Qx RL) is the
same ag the usual H*(Qx R}) except that the function in H;(Q X RL) may nét have
the I? normal derivatives near the boundary Evidently, H,(0Q x R1)=H"0Q x R})..
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Consider the firgt order enlarged system of (8.1)—(8.8) with regard .to {D,}.
In local coordinates, omitting thev terms of lower  order, (3, 1)—(3',3) can he
rewritten as . : .

{ U — Poum—EPigumy 2 Ps,,um, A@QJ‘,—-ZA iy, =Fy, :
' . (3.6)

Bo'u'w 2 B.’zuy; O’Uw 2 Qa'vy, -Fﬂ:
(% +2 T2ﬂuv;+‘gi'v .‘71: R o
T = ga, - - ’ o o (3-7)
v +S4Q)+'+T4u—'g22, . '
w l =0 = 0. . B ) (3 8)

Locally, Dy=a(z, 9)9,, Do=2-a(w; v) 9o, here a(z, y) is the unity decompos1t10n
function. D, acts on the first equation of (3.6):

"(-Dcru)t'”,-PO(Dou>wwv?ztpii<Dvu)bﬂj;\zP255<D725>y;!l! o
- —AO(D,,'U)‘,, 2A(D,;u),,,+,/¢1(fw) DF1, o (3 9)

Where .///1(10) is the lmear oomblna,tlon of w, Dow, (Dvu)y, (D,,u) o Yse and % The
first four terms are ewdenﬁly of lower order in the first order enlarged sysisem Since
Py, Qo are 1nver1nb1e Uy, can be expressed by the linear combmamon of th first four
terms and v, can be expressed by the 11near combmatlon of w, .D(,fw u,, Fg To sum

up; '
M1 (w) =the terms of lower order+ h1F1+h2F2 (3 10)

D, acts on the second equation of (3.6):
(Da'v)t Qo(Dov) e — ZQ:/(-DU")):U : Bo(DaU)z Z B; (Dou)url-v%(’w) =D,Fy,

(3:11)
‘where .#,(w) is the linear combination of w, Dow, Uy, V. Since the first Atwo terms
:are of blower order, the stability of (8. 6)"4 (3 8) is independent of u,, and v, can be
expressed by the linear combma,tlon of the ﬁrst three ferms and Fg by mvertlblhty
of Qo, s0 we have" : -
‘ e%g (w) =terms of lower order ;Fth'." | © (8.12)
From (8.9)—(8.12), the principal part of equations for (w, Dw) in the first
order enlarged system ig a block diagonal matrix with-every block exactly equal to
“the prineciprl part of the original pr'oblem So the assumptions on :the equations in
section 1 are safisfied for the enlarged system. ; S
Now turn to the boundary condition. D, acts on the la,st two equa’amns of: (3 7)
Tt is easily seen that the principal part of the boundary condition with regard to
Dow remains unchanged. In order o make sure the stability: after uniting with the
conditions for w, one needs only fo take n sufficiently large (equivalent to the
-introduction of a small factor in D,, cf. [2]). Since the set of all ,c;oeﬁioien‘as;deoiding
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stable boundary conditions is open, we can thus guarantee the stablhty for the first
order enlarged System '

‘D, acts on the first equahon of (3 7), we can easﬂy see that the form of the-
principal part for Dow is unchanged,and other terms are of lower order, notaﬁ"ecﬁng
the stability of the system.

From all the above discussion, we know that for (w, Dw), the estimate similar-
o (8. 4) is valid.. Repeamng the same procedure and oonstructmg the k—th order
enlarged system We can prove

‘Re(D', &D"),+Re((D¥u),, & (Du)g) , —l—'n[lD’*’fu[[ + | Db |2+ |<a@‘1(.D Wela

<OL(| EID*F |2+ | D¥F 4|2+ | £2D%gy | 2+ ID" { | (3.18)
Consequently - B

n? | Dul2+0F | 2D, 2+ | DFol3+ | € D4y, |+ | Dhu |
<G (|7 DF i+ | D*Fs 5+ | €7 D5+ [ Dhgs[D). - (3.14)
- That @, is invertible implies that o, in the first equation of (3.6) can be-
expressed by Dw, 4, and F,, and that P, is invertible implies that u,, can be-
expressed by Dw, Du,, 1, a.nd Fi. To ach with 8, suoccessively, one gets the estimate:
for |&- Ty, |x,7 consequently the estimate for |w|s,, Using the second equation in.
(3.6), [v]s,, can bo estimated by [uls, | D], and [Fass0
Adding the above norms involving normal derivatives into (3.14), noting that.
we have differentiated (8.6) k—1 times to get the expression of the h~order: normal.
derivatives, i. e., we have used the norm [Fi|; 1,,<O|&€ Fu|s,, and |Fslp_1,,, we-
get immediately the energy estimate (3.5). . '
From the definition of the strong solution and the operator &2, the following two-
corollaries are straight forward: B S
- Corollary 8.3. Assuming the conditions in Theoq'em 3.2, (F 9) EH(QXRL)
X H*(0Q% RY), and their iraces up to order (k—1). are zero at t=0, then the:
diflerentiable strong solution w of (8.1)—(8.8) satisfies the energy inequality (3.5).
Corollary 3.4. Assuming the conditions in Theorem 8.2, the solution wE&
O3 ((@x RY) of (8.1)—(8.8) satisfies

\/—-”unkm'l"‘\/_”’v”km‘l',"”]m,n
<O IRt IRt L sl (alh). @1

In the estimates (3.5) and (38 .15), the space derivatives of u is one order lower:
than in the usual energy estimate (cf. [14]). To raise the space derivative for one-
order, we must raise the regularity of the boundary value g. In fact, we have |

Theorem 8.5, Under the assumption of Theorem .8.2, the solution w&
Oy (Q % Ri) of (8.1)—(8.8) satisfies the follow estimate: ' ‘
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[V2uliostn? o+ |02, |
<o"’( ﬂFiﬂk.n+ﬂF2!lk.n+ | 93180t |92 l2, +fg22[,c,,,)’ (8.16)

Pfroo f For the k—1 order enlarged _system, from the well-posedness of
parabolio problem (cf. o. g. [1]) ‘
[V2D* |2 | D¥ 2], - |
‘ i _ ~ 1. 1 ' , , -
<0 (| D]t | D=F 2+ | P Falatoalbn le%,ﬂ+lynli+%.,)-
' (8.17)
Here We have employed the inequality |<;o|“__,” < 2 lo]2,,.
- From the m‘u‘erpolatlon formula

n vy <] VQD"'luﬂn-lrnll D*=tul),

the left side of (3 17) can be added by n ﬂ VD* |3 Differentiate normally the .

parablioc equation 5—1 tlmes, because of the noncharacteristics of the boundary, one
gety the estimate:

72| VuE s, <0( o %.n+vn'Fiu%-1.'ﬂ+qu-nz-l.,,nL-}?-vigll,%.ﬁ—,,)l— (ol20+1gml2,y,):

. (8.18)

Uniting (8.18) with (3.15) gives (3.16).
The result of this Theorem will not be used in the remaining pa,rt of our paper.
Remark. In proving (8.5) and (8.16), we have made use of the already
-obtained tangential estimate (8.14). If in (8.2), the boundary oondltlon for u is
simply u=0 or the Neumann condition oorrespondlng to the opera,tor P—8,, then

- “we can prooeed as in [14] to treat the hyperbolic part and parabolic part separately
‘o deduce the desired estimate similar to (8.16). But for the general Lopatinsky

.conditions of parabolic. verlable (e. g. the mixed Dirichlet and Neumann condition),
we can’t deduce (8.16) by treating the parabolic and hyperbolic part separately,
even if the parabolic and hyperbolic variables are separated in boundary condition.

‘Then, the uniform treatment of the parabolic and hyperbohc part as a Whole is
negessary.

§ 4. The_ Existence of Differentiable Solutions
The Case when Q is Halfspace

Let T

Q={(=, y); #>0, yc B},
H"‘(QxRi) {u; e‘”"ue H’"(Qle)},
HM(0Q % Ri) is deﬁned similarly. .
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Consider the boundary-value problem

w—Pu—Av=F;, . '

‘ in Qx R 4.1
{ —va-—Bu=F2,‘\m;' e , S
u’$+;nguyj+Slfc)=gl,

1 = gai, a on =0, (4.2)

v”+ 80 +T =g, ,

Theorem 4.1. Suppose the problem (4. 1), (4.2) swt@sﬁes the conditions in
Theorem 2.6, F€ HY (2% R*), g€ HX(0Qx RY), (F, ¢)= 0 in $<0. Then (4 1),

(4.2) has @ unique strong solution w& H® (Qx Ri), sat@sfymg the estrbmate (3 5), and
“tdentical to zero im £<0.

I fgn€H, s (02 x RY), then the stfrong solution sat'z:sﬁes the estimate (3 16).

Proof By the results of § 8, we need only to prove the existence of solutions
of (4.1), (4 2) for smooth (F;, g;). Let the sequence of smooth (F;, g;) oonverge to
the given (F g)- Then the corresponding solution sequenoce {w;} oonverges to the
desired solution w. -

Our proof follows Sa,ka,mo’uo"-“" inproving‘ the existenoe of hyperbolic syétems
of higher order. '

Denote the adjoint problem of (4.1), (4.2) by

{ W= —u; — P*u*— 4A*0*=F},

in 2>0, | (4.8
g;w*= “"Df‘“Q*'U*—B*’M*=F;. 1 ‘ 2 ) ( )
T~ *H—x—; T +80° =gl
on =0, (4.4
T’ =T"u* +8"* = g},

Correspondmg the ad]om’o problem, mtroduoe the spaces H ,,(Q X RY) and

H*, (a@ X RY). Let A be the pseudo—dlﬂ'eretml opera,’ﬁor Wlth symbol *+n’+ || 2)7
Then Vs€ R, if Aw*C H*(Q2%XR*), by the definition of stablity, because of the
equivalénce of the stébﬂity of the original and adjoint problem, we have
~ Re (4w, @m/lsu*)_,,—f-Re(Asum E M wy) | A2, + | At |2, 4 | £ 4% 2,
<SO([E7 L1 (A" |2, +] LE(Aw™) |2,+ | DT (Aw") |2,+ | TH( A7) [2,).

Now we examine the following commutators. : (4.5)

D) [Z] 4] -

1) The oommu’ua,tors of the firsh order tangential opera’ﬁors in &7 with 4* are
the s—order tangentla,l operators, which are evidently controlled by the leff side of
(4.5). |

2) The normal derivative of o* in %} can be substituted by the tangential
derivatives, the normal derivatives of u* and & »w*, on account of the hyperbolio
equation. So the commutator consists of the s-order tangential differentiation of w*
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(same as in 1)), the (s-1)-order tangential differentiation of vy and Liw

| &7 4|2, is controlled by Re (4, éa‘lAsum) _, of the left side, while the
(s-1)-order tangential dlﬁ"erentlatmn of Z3w" oan be absorbed by the term
|4 L3z, * | '

- 3) [Pzam,A] is an (s+1)~order tangential opera,tor and it has a% most (s-1).
order in 8. So &' [P3d,,, A°] is an s-order tangem‘ﬂa,l operator, whioh can be~
estlmated by Re (4*u*, &Aw* )_,, on tne left side of (4.5). e
v 4) [Plam, A°] includes ‘s—order tangentlal 1-order normal dlfferenha,mon so
“can be estimated by Re (A%, &A%

~ 5) Using the parabolic equation, [Poam, /1] can be expressed by the terms
already treated above and tne (s—1)-order tangential differentiation of Ziw*. The
latter ‘can evidently absorbed by ﬂ EA L],

IO [Z3,4°] -

1) The I-order tangential operators in ;27 2 are estimated as in T), 1).

2) The 1-order normal operator in &% is estimated as in' T ), 2), by use of the
equation. The term |A*~'u}|_, is evidently dommated by Re (A"um, E A,
“though there is no action of operator &1 here.

III) [, 47] |

1) The commutators resulted from the tangential operators in I'% are s-order
tangential operators. After the action of &, they can evidently estimated by
[dow™|2,.

2) The commutator of 9, and A* is an (s 1)-order tangential operator. After
the action of &1, it is controlled by |& 1A% :

IV) (L3, 4% is an (s-1) —order ta.ngentla,l opera,tor dominated by |A%w*|Z

From I)—IV), denotmg the norms on the left side of (4. 5) by || 45w [ﬂ_,,, we-
have -

Il 4%w* _,,<O(|]A’$ w*|2,+ | 45 L s |2+ | AT w" |2 +IA3T§fw* ). (4.6)

So for w*: A°w"€ H2,(2x RY), the right side of (4.6) is a norm for w*, which
will be denoted by «w*,_,. The complete space in this norm is denoted by A, -

Taking s= —%, we can prove the existence of differentiable solution. Since

I(F:b w) | <| (A¥Fy, A7%0*) | < | 74 ] x,n ] A *00* "-q (4-7)'
[ (Fay w*) | <|Fa|s,n Ocar* 4, s (4.8):
<90 | <| g|un 14~ *w| <O g |3 <w »—k.-m (4.9)

s0; (F, w*)+<g, w"> is a continuous linear functional of w* on the space H_y, s
consequently it is a continuous linear functional of (F*w*, I'* w ") on HF(QxR))
x HZ5(8Q x RY). From Riesz Theorem, V(E wh, I*w*) € HIx HZE, I(w, w) EHY
X HY such that '

- (F w') g, wD = (w, L) +<w, T*w*. (4.10)
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Taking w*€ 05 (2% RY), it is easy to see that w satisfies equation (4.1); taking
w* €05 (2% RY) such that I™w*|s0=0, we can deduce that w satisfies the boundary
condition (4.2). w=w|,p follows from the arbitrariness of w*.

The solution w thus obtained has only the ’ﬁangenhal regularity. Fo]lowmg the
prooedure in the proof of Theorera 8.5 and making use of the Well—posedness of
parabolic problem for » and hyperbohc problem for v, we can see that w ‘has certain
normal regularlty Normally dlﬁerentlate the equatlons sucoesswely, one gels wE
H*QxRY). » - |

To finish the proof of Theorem 4.1, it remaing o verify w=0 at £<0.

Lot @, € 0= (RY) with ¢,=0 when- f>e; @p.=1 when t<0’.“Subsﬁ’ﬁIiﬁng‘ W= QW
into (2.8), we get (4.11). - ‘ ' ‘)

VT | j |0e|% QﬂtdQnt'—l-I.j [, |‘2¢;2"fd8d%

<0 (%j j o s g -wdodmf j | g Fs |22 4Q dt
+-917—j [ 1o e 2""d£2dt+j | 1pgalterasa
+[ [ 1 @pyul -=+aaar |
<constant (independent of n). T o (4.11) |

Consequently | o S
\/ﬂ" [ ]ws|{ggdi=\/"nj° [ lw[raeai<o.

Let >0, and we have w=0.in $<0.

| § 5. The Existence of Dif’ferenfiable Solutiohs
| ~ the Case When Q1is Bounded

Here we W]ll glve the outline for the proof of the ex1stenoe when Q is a bounded
domain. ‘ '

Firgt we define the operator 4 and give some of its properties.

According to Friedrichs™, let {Q,} be the finite covering of Q, {p.} be the
corresponding decomposition of unity. We construct the complete system of tangential
operators {D,}, including D;=&;, and consequenily the spaces H;,,(@X R*) and-
H,,, (02 x BY), the norms |+ 4., [« ] %rae -

Define A%= 3\ 4™D; ---Dg D

Cigs™ Texg
k +7Gz-—70
G1s oy 0ka

operator of 2% order. We list some of its properties in the following:

v Dy, . Tt is a degenerate self-adjoint elliptic

1) A% igan isomorphisin from sz,;;, %o Ho. ., ifs inverse denoted by A%,
2) Define the negative norm o ’ :
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[ (", w) |

[w* ” gy ™= sup [l m (simﬂarly is defined ]fw*']_g;ﬂ,u‘_,»,) .
17 : L _

Then A% is an isomorphism from H 0 80 H o gp,upe
8) Denote by Hb,,, the space of functions which are 2lc+ Ta tlmes tangenha]ly
differentiable and 7 fimes norma]ly difierentiable. Then A”‘ is an isomorphism
from Hiyiry, sy 50 HE, 1o :
4) Let #* be an 1-order tangential operator, then |
[47=[4%, Z* 1w o, -, <Ofw*[o,
The properties 1)—4) are only what we need in the following. The proof of 1) ig
similar to Friedrichs in [2]. In fact, if taking A% = (n? +2 D*D,) we can simply

quote the results of [2]. Here, to make the notation simpler, we take A% o be
self-adjoint. The property 2) is straightforward from the definition. By the
isomorphic property of 1), 2), it is not difficult to duduce 3), 4) (of e. g., Xu
Zhengfan™® for details).: _
Using the operator 4%, we are now gomg to prove the existence in bounded
domain Q. ' ' '

Ag indicated in the proof of Theorem 4.1, we. need o prove the existence for
Smooth (F, 9).

Flrst we prove the localized dual negative norm inequality.

For smooth w, let w=A"%y= 2 gz)a'w——E q. Oonstruct P, €05 (2,), Po=1 on

v supp @a. Applying to W, the mequahty for the dual problem, similar to (2 6) Since
W, is defined locally, all the terms in (2.6) make senge. We have S
- Re (ua: @@ua)—n’}'Re(uaw &~ 1uaw) -—n+77””)n"2-n+ [ g |25+ l'wa’—n
<OO<](9@_1I'1'ww —')+IT wa' n+flg—lglwaﬂ—n'l‘”392%”51:)-' ' (6.1)
Denote the left side of (5.1) by lall,, the right side of (5.1) by |4 *w.|x.
From [11], we have “ | '
Ill«//*@ulll%<o< Thpudl "o+ [hatb]2,+ hbawl_,,)

<O (lped Mol o2+
+IH%A’Q"EA”",%M*J@III%). N (5.2)

The last term on the right side is éstimated as follows:
III%A'Q" [A%, ol TN <Iipud LA, Yo *Jw0al% |
+alpa, A~#LA%, potT10)2. (5.8)
Consider the two terms on the right side of (5.8) separately.
D) lpad A%, YotV 0all=[rad [ A%, AT 00u3.
1) [4%, I'3] is a (2h—1)-order tangential operator, so
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| had™2 [ A%, TE]'wal-n\0‘~—— Iwa[—fz;
2) [A%*, I'1] is a 2k—order operator which has at ‘most one order normal
derivative, therefore :
(A A, mwag?_,,<0( [wali,,+-;)—-]é"‘1um[ )
3) In 4%, .5”1]
604, 25012, 0( [l b |6l b S 1 23012,).

Noticing that [/127‘ Pia‘,y] is (2k+1) —order, where 2k order is tangential, with

©; at most of 2k —1 order. So
| & AL A%, P’{é’aulual!—n<0(!l<o” ac 2 n+"u¢="
And [A%, P39]] is a (2k+1)-order tangenmal operator, which hasr at most 2k—1
prder of &, thus | | V R
(& pad” 2’“[/1% Pzaﬂuall-n<0 [ -
Using the equation, we have
[[ E NP A~ [ A% Pio7] &a nz

<Ol b Ll b | L2 |62 30 2,).

4 Bod (4% F3in]t,<0 ( |6 1umnaﬂ+nwauiq+ 120l )

Summlng up 1)-4), we get A ’ |
&wr A% (S PE DI 1

a4, ot Jwat|iﬂ<a(——ﬁ

D) lulpe, A 2[4, ot 1]0)2. -

For inner local coordinates patches 1#“,// *isa tangenma,l operator [Aﬁk Y]

is a (2k+1) order tangentlal so it is easy to see that [%, A~ [ A%, o #*]] is of zero
- order, therefore - .

Aie ol A L
It Gl ), 6w

Walpe A-HLA%, o TSRO B[
For the boundary patches:

D |¢alpe, A™[A%, pI5110|2,< !w!_,,’; |
2) |8 M pulpus A LA™ ITB 12,0 (——wi D lfo“"luml-ﬂ) !
8) [dulpe, 4774, sbazmwn-,,\o(uwn w——;ng- bl 4 | L3012, )

O 16 Ml ALY T ool [0+l 251
o S el + 2 6 u L1, ).

Here 1), 2) is evident, the estimates of 8), 4) is similar to I), but in the norms
involving operator &%, the estimates in £, should be combined with the estimates
of the neighboring patches to have the global estimate (This is exactly why the way
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" we have defined the operator ca@ globally)

Combining 1)—4), we have

e [pes A-[A, o dt* 1100l

<O (ORI 5 13 ) 6D

Subsmtutmg (5.8)— (5 5) mto (5 2), makmg summamon of the mdlces a, for

7n>1, we getb

[

In (5.1), maklng summation of « and substltutmg (5. 6) into (5.1), we have
7 |o)?2 n+lwl-n\0(llfl’2"$§wn #HA'”‘«S”WII n'+|/1 w2,

B P IO R (4.7)

Notlomg that o= A%, we know that (B.7) is exactly the global dual mequa,lﬂsy

T4 03<O(F Mgl Mo wli LNl + L SARIR). (5.6)

we seek, which is similar to (4.7) in section 4. Using (5.7), as in § 4, we can prove
the existence of differentiable solution. We omit the details.
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