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ON THE LINEARITY OF TESTING
PLANARITY OF GRAPHS

- Liv YANPEI ( ;a] 3 {):ﬁ()"’

' Abstra‘;ct

In 1978 the author pubhshed a pa.per in Whlch a charac’censtm theorem ‘of plana,rlty ‘
of a graph was promded as determining if another graph has a fundamental circuit with
‘& certain property. However, the new graph is with, at worst, quadratic’ order of the
vertex number of the original grapht, - ' T : .

This paper presents a new criterion of testmg planarlty of a graph based on what the
author obtained before. Fortunately, it is equivalent to finding a spanning tree in another
graph with only linear order of the vertex number of the original one in the WO:g-ét case. .

§ 1. Introduction -

In the seventles, W. Wu dlscovered ’ohafa testmg pla.narlty of a graph can be
-‘bra,nsformed into solvmg lmea.r equa.tlons on GF (2) based on cohomology theory in
.algebram topology™. Then, Y. Liu found a criterion of planarl’uy which seemed o be
much smlplerm In fact, the only thmg that remamed for tes’nmg pla.na,rlty Was to
solve such linear equa.tlons on GF (2) m eaoh of which there were. ab most two
variables. Furthermore, the problem was transformed int¥o ﬁndmg a clrcmt Wl’nh a
-cerfain property or a tree in another graph H related 130 G the or1gma1 one.

In the 1979 Montreal Conference on Oombmatorms P. ROSensmehl proved the
‘result again in an algebraic vva,ym In a prwate commu_mcamon P. Roqensmehl told
Y. Liu that he and his collea.gue obtained an algorlthm in hnea.r tlme However he
‘had not mentioned what me'bhod ’ﬁhey used. Of course, the ﬁrst hnea.r time algorlthm
.on this topic was due to J. E. Hoporoft and R. B. Ta.r]an whose pa,per was publlshed
in 1974, The depth—ﬁrst search tree teohmque they used plays a substantlal role
4in the mmphﬁcatlon '

This raper provides a new criterion which, in fact, is a simplified form of the
r=one we obtained in [2]. Fortunately, from *bhls 0r1ter10n a linear fime algorithm for
testing planarlty of a graph and embeddmg a planar graph into the plane can be
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deduced. However, the procedure has been described for 3-regular graphs with a
depth~first search tree being a path.

§ 2 A Crlterlon of Planarlty

Let G=(V, E) be a graph with V bemg the vertex se’ﬁ E the edge gset. Or G is
treated as a 1-complex in Euclidean space with G°=7V as O-simplex se’ﬁ G=E,
1-simplex set. I' denotes a spanning tree of @, T=(T° T*), T°=@G°. Here, only '
depth—first search trees are considered™, - T'= (T°, T1)=(G°, @*—T") is the cotree:
eorrespondmg to T'. Let Tp(G) be the set of all the depth-firgt search trees of G. And,
for T ETH(Q), let -< be the part:al order on Q° determmed by 7. N

Proposition 2.1, For any TETD(G) there ewists a unique orientation of
the edges of G, e. g., e=<u, v r epresentfmg w to v'such that - - o

(i) u<w, ife€T? : o

(i) ‘up-w, 11".’@3ET1 ‘ »

Thus the vertices of @ can be labelled so that ~ becomes <. In what follows,
all the vertices are treated as non-negative integers. For ¢CT", there is a unique
cocircuit Co(T'), called a fundamental cocireuit, with all the edges in COL(T) being
in T save only for one edge. And, for a € T, there is a u_nlque circuit 0, (7T), called
a fundamental circuit, with all the edges 1n oL L(T) being in T* except for . A
circuit O or path P with all edges in 01 or P1 having the same d1ree’s10n is sald fo
be a dicircuit or dipath respectlvely '

‘ Proposition 2. 2. For TET D(G), all the fundwmental cwcwbts of G are
dicirouwits and eaoh Jundamental cocirouit of G has wll its edges fwrbth the same direction
saving Only Jor one edge which belongs to T1 ‘ '

The vertex with the mm1mum label is said to be the root The mmlmum label
is always set to be 0, |

Proposition’ 2 3. Fozr Lu, > ET?, we azw‘ézgs' have

(i) 0<y<<w and 2€ P%0, u) for all {u, v)EC’}u,w(T) At each vertew, there
is emactly one incoming edge im T emoept for the root. And, fo¢ 2-connected graph Q,
the root has wlency lonT.

For’ 'vEV let H,={cle€ E and ¢ is incident to v}. From Proposmon 2. 3 we
have A . _
| Bome, UB(T) UET), ey
where e,, is the tree edge commg to v, B, (T) E ﬂT1 E,(T)= E r‘lT1 Now 1et us
introduce variables on GF(2) '

Dp,s=1s,1, T5S, o (2.2)
for s, or tEE, (T') and the other in E,(T)UE, (T) at each vertex v €V. If both
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s,t € H,(T), then ;,, is said to be a tree variable; otherwise, a cotree variable.

For any two fundamental circuits Cu(T'), Ox(T), a variable @, with s€ O3(T),
¢ € OL(T) or vice versa is said to be covariable of O : (T and Cp(T).

 Proposition 2.4: For anytwo fundamental circuits Ou(T), Cp(T) with a, BE
T* having no end in common, there are, if any, ewactly two covariables

Proof If CiN0%=@, then no covariable exists; _otherwise, there aTe only two
possible cases. ' x ~ ‘ , : L

Case 1. 03N Gl = {v} By symmetry, Wwe may suppose the tree edge coming to v
to be in O,. According to Proposition 2.2; only two configurations possibly appear as: -
follows. In both configurations, a,,; and @, are the two covariables(in Fig. 2.1).

Eo

: t ! N B/—‘_—
;e?*) Cﬂ ' \v» G l Ca :V.. Cs
Sk S b\ _ '; st

Fig. 2.1 ' . Fig. 2.2

COase 2. .0, 0g=P<u, v). Similarly to Case 1, we may also suppose the tree
edge coming to % o be in C,. From Proposirion 2.2, the only possiblé 'conﬁguraﬁoh
. js as in F1g 2.2. In this configuration, only @, and @y, are the covanables

For TETH(G), we define a T—um:nersmn of G as such a plane representatlon
that two edges o, B cross only if o, BET? and have no end in common. Acoordmg 1o
Jordan Axiom, it does exist. Let D= {(a, B)|a, BET1 and no end in common} and
was be the characteristic of «, B crossing, i.e., wa,s=1, or 0 aocordmg as o, ,8 oTOSS,
or do not for (&, B) €D.

Criterion I, A graph G is planar iff for any gwen TeT D(G) and @
T—imvmersion, the equation system on GF (2) 7 .
T a(a, B) +y(a, B) =a,s, for (3, £) en, (2.8)
has a solutwn, where x(a; 8), y(a, B) are the cowrrwbles of Oy and OB,
z(a, B) € X={a|corresponding to an angle with two -
edges having different directions},
y(a, B)EY = {ylcowespowdmg to an angle with two .
edges having the same dweotwn} T

are said to be @ forward, backward variable, respectively.

Remarks. 1. Equation (2.8) is defined by Proposition 2.4. ,

2. The existence of & solution of (2.8) does not depend on -the choice: of T €
T»(®) and a T-immersion. Thus, a proper choice. of I' and a I'-immersion are
‘allowed o make the system simpler. ’
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§ 3. Some Results Derived from the Criterion

Lot Z be the set of all variables which occur in (2.3), ie. Z=X Y is thg
“vertex set, and two vertices are adjacent iff the two corresponding variables appear in
‘one equation, or, say, are covariables. The resultant graph, denoted by H7 (&), is :
said to be the first auxiliary graph of @ for the T-immersion. Each edge of H} (G) is
-assigned a weight as the constant term of the corresponding equation. -

A circuit in H3(Q) is called a 1-cirouit if the sum of the We1ghts of all edcres on
it is 1 (mod 2). ' '
Lemma 3. 1 Equatlon (2.8) has a SOl‘ll'ﬁlOl’l iff there is no 1—01reu11; in
L(@). o o . | -
Proof Neoessﬁy If not, suppose 0= a;lhlmz asshsaa to be a l—olrcult in Hi (Gr'),

i.e. an,-—l (mod 2). However

0=31(s+2:2) =2 h=1 (mod 2),

2 eontradmtlon -appears. ‘ | |

- Sufficiency. Let A(H ) be a spanm_ng tree of H} (G) Then since no 1-011'01111;
‘appears in HL(@), any soluhon of the equatlons determmed by A(H ) can be '
‘extended into a solutlon of (2.8) determined by the whole H}(Q). ’

Theorem 3. 2, G is planar iff Hy (G) has no fundamenml l—cwcmt

Pq"oof Smoe the sum of O—clrcmts does not conta,m a 1-—011‘011113 from Lemma,
8.1, it follows. '

Lemma 83. Hi(®) has no l—cfbrrcmt wﬁ” the set of wll the edges 'w?/th we@ght 1 ds
@ cocycle of (@), -

Proof Let W, be the set of all the edges W1th We1ght 1in H (G)

Necessfsy Since no 1-circuit ocours, “for any spanning tree A(H) of Hy(G),

Y

l

‘there exists an edge A€ A and in, =1 exoept for the trivial case of no edge wzﬁh
“weight 1, in which W= is a cocycle. And we have

Wa= 31 CHA.

heAr and wp=1

‘Therefore, W, is é;';'cbcyc‘:le of H %(G) R

Sufficiency. From W, b’eing a;édeﬁéld for any'circuit C, we have

’ [WiﬂOl O(mod 2),

i.e., 0 1s not a 1-circuit. SR .
' Theorem 3.4%, Gis ;plamw @ﬁ" Wi is a cocycle of Ht (G).

Proof A direct conclusion of Lemma 8.8 and Theorem 3.2 . :

Generally, as it is only need to consider the number of edges of G not -greater
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than 3n—6=0(n), both the numnbers of vertices and edges in H%(G) are O(ni‘)»,..

Where n i3 the vertex number of G. However, for a 8-regular graph, or a general one:

with T being a path, it is-easy to see that the number of vertices in H%(G) becomes.
O(n) while the number of the edges in H%(G) still remains O(n?).

- For 8-regular graphs with 7' being a path, let S(@) be the variable sequence.
in the order of occurrences along the direction ‘from :the root on the path 7. Of
course, the variables at the root can be omitted. And, for convenience, let da, ¥a
represent the two variables related to the cotree e&ge a, 2, EX, Yo €Y . A subsequence
Doy 5Y+Ya Of S (G) for o, 8, 7, and O being cotree edges is said to be a forbidden
subsequenoe if @€ [wy, Ysl; ¥s € (s, 4,], Where [z, ¥) (o, (a; ¥1) denotes the segment
of §(@) from & to'y with y (or, ) being not included.

Lemma 3.5. For 8-regular graph & with T being a path, G is plcmaa‘ wjf there:
8 no foa*b@dden subsequence in 8(Q). '

Proof The necessity is obvmus since any forbldden subsequence leads ’ﬁo a

subgraph of H} 7(@) in which there is a 1-circuit. - s ""‘\\' L
The sufficiency can be derived by a direct or an 2 -~ 7\‘!' boe SN y’,,

indirect way. However, the "’foll‘owing seems much ‘l\\ \\‘i oY ar B

simpler. Since 7' is a path, for any subgraph J which ' \\::_j ‘:‘_,‘/”

is topologically equivalent to K 3,,3’ all the vertiees are : F:g— 3.1

on I'. And on account of the 8~regularity of G, J only has the configuration indicated
as Fig. 3.1 in which «', ¢’ are the two terminals ¢f T, € [&/, b]—a, v € (¢, ¥']1—d,
and both o and y are (or neither of # and y is) in (@, d). , o'(y, ¥’ as well) are
allowed to be one vertex. The solid lines represent tree edges, and broken lines, cotree.
edges. All the solid lines consist of J. Hence, we can see that a forbidden sequence-
always happens, in gpite of whatever happens to o, v, if any J in @ exists.

Now we construot a subgraph H? of H3(&) as follows. The vertex set of H is:

Z, the same as H%(@). And, for each a €T, e. g., a=<Ya, %), Wo may also use y,,
‘ @, here ag vertices of G without confusion, if there exists BE T, B=<{ys, wsy such.
that 2,<@,, Ya<ys, then (., y.) is an edge of H. 1, FParthermore, let
@ =min{s|v.<2;<Ya, Y:>Va},

‘ Uy =max{y | s <¢; <Ya, <}, - v
then (m,,,yv), (25, Ya), and (@4, y,) are taken as edges of Hi. The Welgh'ﬁS of the:
edges in H} are défined as the same as H#(GF). ‘ ' .

- Theorem 3.6. For. S—Iregulm graph @ with T bemg a pa;th G ‘o8 planar fbﬁ"
there is no fundamental 1-circudt in HL. e .

" Proof From the procedure of produomg HY, we can see that H; is a spanning:
subgraph of H%(G) and that Hj has a forbidden subsequence iff so does H7(G). Im
consequence, the theorem follows by Lemma 8.5 and Theorem 3.2. .
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Whenever a noticing that both the vertex number and the edge number of H;
are O(n), for 8-regular graph with T’ being a path, an algorithm in lmea,r ‘mme for
testing planarity can be found according to Theorem 3.6. -~ e ,

4 Gorrespondmgly, since the equation system on GF (2) related can be solved in
linear fime, a linear algorithm for embedding such a graph into the plane can alse
be found by using the method simﬂar ﬁo +that giv’en in [3] . '

§ 4. On the Lmearlty

. In order to attach the lmeanty, we uSe an approach like tha,’ﬁ for . 8-regular
graph with T as a path. The ﬁrst th1ﬁg we should do is to reduce the order of
B (6). :
Lemma 4.1. If the equamon system (2.8) has @ solutwow, tﬁen it has at least two
solutions. L
Proof By noticing that if (2. 8) has a soluhon ‘ﬁhen the eomplement of the
solution on G'F (2) is also a solution of (2.3). the lemma thus follows.
Let Ei(X ), Eg(X ) be two equatlon systems on GF(2); E«(X, ¥), EQ(X )
be the set of solutmns. '._of E:(X,Y), Ey(X) respectively; and let

BT/ Y= D ERE DY (4.1
Two equation systems Hy (X Y), B, (X ) are said to be inferchangeable if
' B X Y)Y/ Y =Hi(X). ] L (4.2)

Lemma 4.2. Equation systems B1(X, Y; y)={wm+yi=w;, =1, 2, ---, and
y+y;=c for a fiwzed j} and Hy(X, Y) ={m: +y:i=w;, i=1, 2, -} ere interchangeable.
Proof Obviously, B4(X,Y; v)/ySH:(X, Y). ;
Conversely, for any (X, Y) € Hy(X, Y), we have (X, Y;y;+¢)CBi(X,Y;y).
Therefore (X, Y)ECE( X, Y; y)/y, i.e., Bo(X, Y)CE(X,Y; y)/y.
- Let D, be the set of pairs of cotree edgés a, B with O, ﬂOB——PQu vy, usFv. Of
course, D, D. AR , : :
Theorem 4.3. @ is planaa’ off for T €T D(G) and a T—wmmerswow, the equatfwrn.
system on G-F (2) , - SR :
“’(0@ B)‘:HU (“,‘ B)..-=’Wms) (e, ﬁ) E Do h (43)
has a solution. ' Tt .
Proof By applymg Lemma 4.2 fo the equatlon system (2 3) one by one for
(«, B) €D satisfying 0, 0g={v}, from the finiteness-of such pa1rs of .edges «, ,B,
the final equation gystem is just (4.3). , v » \
. This theorem - makes ~H%(G) rather simpler by ozmttmg all the edges
corresponding fo the equations related o the pairs of ‘cotree edges a,: B. satisfing
O0,NO0s={v}, and. the veriices corresponding to the forward variables with angles



No. &£ | . 'Ly, Y. P. ON LINEARITY OF TESTING PLANARITY OF GRAPHS . 431

each of which congists of one’cotree edge I" and.one tres edge not on Cj.

Lemma 4.4, Equation systems on GF @) Bi={y;4+o=w, i=1, 2, -, n} and
_Eg%'{y¢+yi+1=w¢+w;+1, v=1, 2, +--, n—1]- are imterchangeable.

Proof For n=2, it is easy o check that B:(Y; @) ={y;+ao=1w;, Yato=w,} is
inferehangeable with By (Y) = {y1+y2 =wit+wgt. . . : :

In general, we have, by induction, that By (¥; z) = {g/i+g/3=w1+w2, Yit+o=10,,

=2, 8, - g} ig interchangeable with {y1+y2=w1+w2; Yt Y = Wit wygg,
=2, 3, LY n—A1}=E'2<Y). I e C '

For a tree variable s, let B(Y'; @) be the set of all the equations in (4.8) each of
which involves s, it ig just the form indicated in Lemma 4.4, Suppose the two tree
edges :r-elated 0 o 1o be <w, v} dnd <u, w>. We denote the branches with the respective
root v, w by B,, B,. And all the cotree variables in B(Y; #) are ordered in a fixed
way, e. g., the order of occurrences of the cotree edges of the angles- correspondiug to
thoge cotree variableg along the dipath P<0, u) from the root and the rotation at each
Vvertex. .. . BT R L : :

Theorem 4.5. @ s planar iff, for TETH(G) and a T-4mmersion, the following
wguation system on G-F (2)

Yityua=witwi,y, for all y, reated to any pair of branches;
1 2(a, B)+y(a, B) =w,,s, for a, BE Dy and the four ends of a, (4.4)
‘ B being on the same path of T from the root,
Hhas a solution. | |

Proof By appling Lemma 4.4 one by one to the tree variables, (of course,

@ach of which corresponds 4o a certain pair of [v/2] vertices

branches), from the fiiniteness, the final ' /_’,:—::: \\\ v—[v/2]

equation system is just (4.4). : —. ::\.\ oy \\5 vertices
The importance is that, in (4.4), no tree N

variable is involved. Therefore, the amount of \ Fig. 4.1

variables are markedly reduced from (4.8). However, the number of variables is
still O(n?), e. g., 1t is shown in Fig. 4.1. that there are ([n/2]-8)+([n/2] —2).
(n— [n/2]) =0(n?) variables in the graph. BT

For a graph @, if, for T p(@) and a T-immersion;, each of cotres ‘edges is
subdivided by a new vertex, then the resultant graph G’ is said to be an
extended graph of G.. And if the new edges incident to the tail ends of he original
ones are set as tree edges, then 7' is extended into I"eTp(@) and the T-immersion
of G becomes a T"-immersion of G ‘ o

Lemma 4.6. @ js Planar iff G is planar.

Proof In faet, @ is topologically equivalent to G. Naturally, the lemma,
follows, )
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Theorem 4.7. @ :is planwfr wﬁ, fo:r T'ETD(G’) ‘and & T’—@mmefsrbon, ‘the:
équation system.on GF (2) < p wE e S, S
y‘+y;+1=='w‘+w¢+1, for éach. pa/z,er of bmmkes S R (4 5)
has @ SOMEEE0M. . e wam gy e e G e T
Proof From Lemma. 4. 6 th1s ig a~direct result of Theorem 4.5 since:in G “all.
the variables are forward ones, no: two cotree edges ;"B can have all their: ends on:
the same dipath of I". - s T VT IR E T S oo B
Tor convenienoce, lot us have all the variables ordered 89 Wo, “U1, Yay ++e; Say; im
order -of “the ‘ocouriences : of Gotree edges aldng T ePy(@) from the root. Two
variables gy, y;-ave said to :be adjacent if they .are successive -in .the: sequenoce. of’
variables related to:a pair of branches. And,:for a T’~immersion, g, y;-are’said to be:
on the same side, or differentisides according as so are the corresponding aﬁgles of the:
dlpath on T" from the roof passing through both the vertices of the angles. "
. Lt h(¥;), b () be the head, tail ends'or their 1abels of the:corresponding -cotree:
edge of g; respectively. For any adjacent pair i, s with 8(y), b(y;) being:
non-corivparable; - (i. e, there is a pair of: branches that b(y;) or b(y;) (bub no’ﬁ both):
is on each of them,branches we consider the following three types I, IE, III as showm:
in Fig. 4.2. =+ s 0L St o S S Tt

Typs I- h(y,) —<h(g]j), and iihere exists g such:thab- h(yk) -<h(y;) and b(y,..,),
b(y;) are on the sarié branch. ' :

Type I1. " h(y) =h(y;) and there exist Wi vi-Such that max(h(yk), h(y;))—(h (y;)
and b{w), b(y,) ‘aré on different branches related t0 b(w), b(¥)+ e

Type ITI. h(y)=h(ys), b (@), b(ys) on the same branch and thére exasts ) yk
sueh $hat hly,) <k (s, b(ys) on the other branch. e ' i

-Now, for a T ’_immersion :and an:adjaeent pair i, y,, le’s s 'write’.
. 01, if gy are in Type I,

“or in Type IT and on’the same side;

or in Type III on dlﬁ'erent s1des
O otherwiss. IR
which s ealled a crossing function. And, an adjacent pair g‘/;,cfy,-': withi'Ay, ;=1 ig said
to be a causing cross pair for the T'-immersion. B
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- I Criterion IL. @& és planar off for any. T'—immersion of G, T'eETr (@), the
Jollowing equation system. - =" - . + B S
Yityi=M,;, for all adjacent pairs y;, y; (4.7)
Jhas @ solution. o o _
" Proof..Since, for any T’~immersion, ‘all the ‘adjacent. pairs possibly. are in
"Type I, Type I, or Type ITI, by Jordan Axiom; i$ can be.exhaustively checked that
Wit w;=2»MA,; » (4.8)
for all adjacent pairs ¥, ¥i» The criterion follows from Theorem 4.7,

- If all the Vertices represent the variables, two vertices are adjacent iff so'are the
-corresponding variables, i. e., they appear in an equation of (4.7 ). The resultant
.graph, denoted by H2(®), is said to be a second auxiliary graph of G. Of course, the.
weight of an edge in' H3(@) is taken. as the constant ferm- of the’ corresponding
-9quation. R S R R T R

Theorem 4.8. G is planar off H#(G) has no fundamental 1-cireuit, or, say,
-all the edges with the weight 1 form a cocycle in H #(@.
Proof - Acoording to Lemma 3.1, Theorent 8.2, -Lemma 3.3 and Theorem 3.4,

“the above theorem follows immediately.

Fortunately, since each eoties edge corresponds $6 at mast one variable in (4.7),
ithe number ef varjables'is not greater than, 8n—6=0(n),, here, n is the vertex
number of @ as mentioned above.} In other words the vertex number of H7(G) is

il Lo

" "As'for how fé‘dé%éi‘r&iﬁe'th“e suﬁgi'éPhﬁH 2 ofH"}(G) “guch that the number of
redges of HY is also O(n). and H%(@)),can be replaced by HZ (i. e., H? has a
fundamental 1-cireuit iff so does H% (G) one can make a series of simplifications
through removing edges such that the existence of 1-circuits is invariant. The detail
‘will be fund in a forthcoming paper.

‘The original derivation of Criterion I from which Criterion IT has been found as
:above was in [2, 8]. There, a natural procedure from a theorem expressed in terms
of cohomology theorey™ fo an equation system on G.F (2), and finally to (2.8) in -
‘Criterion I wag shown through a series of transformations and simplifications of
-equations on G'F (2). Or, we take a theorem expressed in torms of grbup theory™ ag
#$he starting point of the same procedure as just mentioned. However, proofs in view
«of general, or algebraic graph theory also existi®,

Since the depth-first search tree technique plays a substantial role in attaching
the linearity to the computing complexity, thig research suggests at sight that all the
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characteristic theorems of testing planarity of graphs, e. g., Kuratowski’s,
Whitney’s, MacLane’s, et al. can be simpliﬁed to the linearity. ' B
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P __P(;stsc;'i'pt L
After finishing the writing, the author finds the result obtained by H. de
Fraysseix and P. Rosenstiehl in the paper: A depth-first-gearch “characterization of
planarity, Annals of Discrete Math. 18 (1982), pp. 75—80. However, the main
theorem in their paper can be derived from Criterion TI here, and seems still to be

much greater in the order of the vertex number of H there.
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