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Abstract

Perturbations of definitizable bperators in Krein space are studied in this paper.
First, the convergence of resolvents and spectral functions is discussed if a sequence of
definitizable operators converges in a general sense. Second, for the operational calculus
relating to continuous functions, varieus convergences of operator functions are studied.
At last, the relation for the convergence of the sequence of resolvents and that of

- one-parameter unitary groups is studied. The main theorems of this paper can be regarded
as the generalization of the results for self-adjoint operators in Hilbert space,

- In recent years there has been an 1norea9mg amount of interest in permrbaﬁon
theory for linear operators defined in a space with an mdeﬁnlte metric. Several
results have been obtained by H. Langer, P. Jonas, and B. Najman in this
direotion. But thisrthAeory is far from completion. In this paper, we are going to
study perturbations of definitizable operators in Krein space and attempt to
generalize the relevent results on self——adjomt operators defined in Hilbert space
under appropriate conditions. N , ‘ ,

Throughout the paper, the letter H will be used for a Krein space with an
indefinite inner produoct (¢, ) and J P,—~P_ for the metric operator, whers P,,
P_ are two projections which satisfy P_,_—I—P =1, P+P —0. Accordmg to the posmve
definite inner product [+, ] = -,
correspondingly.

The J —self-adpmt operator A is called definitizable if p(A) #0 and there ems'is
a polynomial p such that

(p(Dz, 5)>0, Voc 2(49),
where s =degp. The above—menﬁoned p is called the deﬁmtlzmg polynomial of 4™,

§ 1. Perturbations for the Resolvent and Spectral Function

In this section we shall be concerned with convergence of the resolvents and
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spectral functions if a sequence of definitizable operators {4.} oonverges to A in
some senge. First, we dlscuss the oonvergenee of a sequence of operators in the
generalized sense. : - e
Theorem 1. Suppose that{A,.},,_o és @ sequence of deﬁmtozable oPemﬁws im H the
degrees of all the cbeﬁmtwmg polynomials do not emceed 2k, Ao amd A belong to

ﬂ p(A,.), and they can be connected by a contrmuous curve contained im the énterior of

()P (4. If Lim (o= 4:) A (g Ay, them
h_l’ﬂ(% A)t=(A—40)7h" hm()\ A)r=(—4)7Y
where the limit mre all in the semse o f no'rm t0polog@es or of strong topologies.
qu'oof Gonneet }‘. and ?\,0 by a oon’ﬁmuous curve T Wl'fih.‘ln ‘the interior of

ﬂ p(A,.) Suppose that 2o is in the 1]3."391‘101‘ of ﬂ p(A,,) but does not belong to I.
Since ]Jm(xo A,.) 1= (?\,o .A.o) 1 there ex1sts 0’>0 suoh ﬁhat

=A<, n=0,1, @
Suppose that the deﬁnmzmg polynomml of 4,18 p.(2) = ]:I(z z“")’“"" Denote 7, (z)

= - P (®) From Lemma 2. 2 in [2], there ex;tst consta,nts 71, Vas WhlGh

are independent of n, suoh that for

i ' o .
o ) =, T <71+“’2 ToiGen, 0 (&) nR>) T’
we have , | VA L
| o= 4 <B(e), ‘p=0,1, . ®
Smoe mf dlst(zo, o (4,) nR) >0 1nf d1s13(z0, 2™) >0 it fo]lows from (2) thafa ’ﬁhere
exists a constant 0, which is 1ndependen’s of n, suoh tha.t sup oA (zo) <O From (3)

we have : L S
a0, 0t @
From @), usmg Lemma 2.2 in [2] aga.m, we conolude that there exisb consﬁants

71, 72, which are mdependent of n, ‘such thafu for ra(2) = (; zoz))"b‘ ((? T a,nd
A .

o Rt nO»)I ( TS :Q'(Am)ﬂR)). -
wo have
[ (A= A <8.(A), n=0, 1L+, ®
Where A.GF .

S1m11arly, it is ea,sy to see that sup o (?\.) <+ for ?\,E T and’ Jﬁhu.s inf — ( 7»)

>0. By Borel’s finite covering theorem, choose points 7&0,}\,1, o, 7\,7(,—]\. in F, a,nd take
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7:>0 such that inf 5 (170 >y, (Iig: O, r) (e:l p(4s)s M31€0(;, ). From (5)
4 n \ /v §= B ]

and the choice of
(A—A4,) = — i.‘()‘_x‘)k(An —AM) —+D)
holds for AEO(?V,,, rm) If hm(A h) 1= (4o— M), it is then evident that -

hm(A,. 7‘«:+1) = (Ao 7"_i+1) 4
Using recurrence relations, we have hm(?«.—.-A,.) 1 (?»—-Ao) .

Since o (4,) is symmetric relatmg to the rea,l axis, we have .
(An=2g)~2— = (4o— ?uo) = ('A-ﬂ 7\0) (-A-n 7»0) (4. 7‘0) ~t— (4o— 7‘-0) -]
( 7»0) (4o~ ho) 1 . (6)
Since | (dy—A) " = | (4n27) "
| (4a=20) (4p—20) | = H I—= (h=10) (o= A,) <1+ [A—Ro [C'. O
Now, (6). and (7) imply that ]im(A\.,-Xo)-‘fi = (4o— ko). We note that X and %o can -

be conneoted by a continuous eurve contamed in the intérior of ﬂ p(4,). From the
first part of this theorem, we have hm(h - A,) 1=~ Ao)™ . The theorem is proved.

For simplioity, we only discuss the definitizable opera.tors with Teal spectrum
in the following. Sppose that the deﬁnltlzmg polynomlal -of definitizable operator 4

is p, degp<2F, 20Ep(4).  We call'r, (z) =—r— L &) _ the definitizing factor of
T o )y T TR T

Theorem 2. Lt {4.}70 be a fam'bly of deﬁn@fq)zwblé ofe&;wféa‘s with redl
spectrum, ]Jmﬂ (e—4) 1~ (z— .A4,) 1” ——0 fOIr Im zaéO ,u,Ecr(.A@) Then faa~ wﬁcwntly
large m, w o (4,) and o Co o
fin |Gum )5 e gm0,

Proof TFirst, we may assume that Tm w=0. For ';bé;'p;(.Ad),L"vﬁhéié.:_exists 3>0
- such that [u~3, u+3]cp(4). Suppose that the definitizing fagtor of Ao is r(2).
With no loss of generality, we may assume that 2o, which appeared in the definition
of r(2), satisfies |Rezo— u|>9. As above, for any a>0, there exist constants 7y, v,
such that

-1 | 1 '
H(Z Ao) "<l ()i<71+72 dxst( O'(AO)QR>>

for Reze [pJ d, y,+8] [ Im z|<w Write c——l'a(;;’lza Smoe dlst(,u,—l—w, O'(AQ)DR)

>8 we have ’ .
| (rtiv = 4o) | <o ®)

for real v, |»|<<a. Take v=~——1—, and aésﬁmezl—g<a. In view of

4c
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(- ) (mr -4 ) -0,

it follows from (8) that there exists NV so that n=>N implies

( 3 A -1 <. o
(bt -4 ) |<2 )
Furthermore _ ' - .-
a3 (hmuet A
(= t)== 5 () (4mp=5) 10
holds in a small neighborhood of p)-l— . From (9) we find that the radius of

4e
convergence of the right—hand series of (10) is ﬁét less than —21-0- Henoce u€ ;o(A,.),
and :
lia | (= 4) 7~ (= 40) 7| =0
Thus Theorem 2 is proved.
Theorem 3. Suppose. that {A.}mq s @ sequence of definitizable Opemtors with

real spectrum, QA is the common domain, the spectral furrwtq,on of 4. is B,

[ (4y— o] _
L SUP Lol F o]

and real numbers a, b€ p(4y). Then for any non—negative . utegerr k,
hml[A"E ((a, b)) —ALHy((a, b)) | =

_ Proof Sppose that I' is a rectangular contour with vertexes azé, bzi. By
assumption, I'Cp(4e). It follows from Theorem VIII 1.1 in [8] that (z— AO) =1 are
umformly bounded for z€ I'. Besides, since ’

Ao(z— Ao) Tt =2(z—4o) ™1~

Ao(z— Ao) -1 are uniformly bounded on I". Denote

M =sup(| (=~ Ao)‘lll+HAo(z 40) 7

(A~ A a]
and 8= SUp 1 T Al

1 Aa— Ao) (2= 4o) "o <8, (] (= Ao) 5] + | Aoz — Ao)‘lwl!><M8 [=] @D
for € H. Since z— A, = [T+ (do—A4,) (z— As) ~¥] (z— 4o), We see that for sufﬁclenﬂy
large n such that M38,<1, (z—4,) ~1 exist for €T, and :

(= 472 (5= 47 F (= 40) (o= 4) " 12)
From (11) and (12) we have
1A= G A) = [ - 407 F (4 40 - )T [[

M3,
1-Ms,

. Hence

KM —7—

-0

for zE._Z" . Hence
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|45, ((a, b)) — A"Eo((a, 5)) [ = H—'SE 4% (2 A>-1« (z-_A(,)_l]dz’
P
<‘2§;‘L lz[k” (Z*‘An)'i_— (2—40) 7Y ]dz|f90.

The pnoof is oomplefe.-

§ 2. Convergence of a Sequence of Operator Functlons f

In th1s section, for the opera.honal caloulus relatmg t0 continuous functlon, we
study the convergence of a sequence of operator functions of deﬁmtlzable operators.
Let 4 be a deﬁmtlzable operafor defined in. Kreln space H Its deﬁnl’slzmg

polynomlal is p(4) = H(t )M, k= = max k. The roots of p are no other than the

critical points of A. If closed interval 4 only. contains one root. of D, b, g 8 a
oou’smuous function and #; is ‘@ Zero pomt of g w1th order ki, then we deﬁne

J‘ 9(t)dE;=w—lim g(®) dE,, where H; is the spectral funchon of A From

80 ,[ A\ (Eg~e,tg+6)
[1], it is easy to see that this definition is reasonable.. Thus, if fis a ﬁmcnon

defined on (— oo, o) and has continuous derivative of the &-+1-th order, {A } is a]
system of finite intervals, the elements of {A} do not mtersect ea.ch other and %, is
an mterlor poini of Ai, ’ﬁhen we define

r-[[rm-5 <x>;f (8 - t>nggﬂsﬁz_cnnmL
(13.1)
g(f'('A)) ~{ef[rm - > 1 (x)gf )<t’5>(?\. i)"l A(B,e, w)<oo} (13.2)

Where %4 gre characteristic funchons of A Appa,renﬂy, the deﬁnltlon of f(4) is -
1ndependent of the choice of A; and in (13 1) » by can be subsmtuted by any 1nteger-

which is larger than &;. v
Theorem 4 Let {A,.},Po be a seguerrwe of deﬁmtrbzable opezmtoo"s deﬁned in

separable Kwem space H deﬁmt@zwng polynamml of A, be p,(2) = [[(t &™) W‘ ’ 275(’"
<2k, n=1, 2, «--. If s-tim (z2—A4,) 2= (2—4o)™* for Im 2#0, f is a real~valued.
Junction defined on (— o0, o) fcni;‘h:cenzpact’«support and has continuous derivative of

(2k+1)—th order, then ~ .
o w-lim f(A,) =F (4o).

- Proof First, we may assume tha #§7 <0< <t{“) We claim that lim ¢ =

n-300

for fixed j. In fact, it is not hard to see that for any subsequence {n;} of the natural
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‘numbers sequence, {n}, there must be a subsequence {7, } suoh that hm t§ =14,

where f; 18 a certain real number or mﬁmte Otherwise, one # does no*b equal to
any t;. Take a closed interval 4 such that t(‘” is an interior point of 4 but 4 does not
contain any #; and the endpoints of 4 do not belong to oy (4,). These requirments
can be satisfied since H is separable. For sufﬁomnﬂy large ng,, 65 do not belong to
4. Hence (E®™(d)s, ©)=0 for any s€H. By assumptmﬁ, ' s—hm (z— A,) ™=

(z— A) ‘ where Im z=;é0 It follows from [2] tha:b s—Hm E""(A) E“”(A), 50 that

n—)u:‘. .

(B ( A)m w) >0, Whlch contradicts the faot that t“’) ig an m’cermr poln’ﬁ of 4.
Therefore im P =t (j=1, «:, D). L : A :

fn—>c0

Take a closed interval 4; such 'hhat £ is its interior pom’ﬁ and its endpomts do
ot belong o’ a',, (do), €A+ ). Since s—hm E™(4;) =E© (A,), we see that

I i (e A) B0 (4) = (- 4 ) 1E<°><A @
holds for Imz#O Moreover, 1t i ev1den‘ﬁ that C —_— |
ETET s_l:,m z"’i(I E(ﬂ) (A,)) - z"l(I E(O) (Aj)) e - e (15)
me (14) “and (15), we have L

s-lim(a— A, (4)) = (o AOE“’)(A))'i S ¢ )

Apparenﬂy, 1;0 oomplete the proof it w111 suﬁice 10 show that
o 'w—hm FAED (L)) =f (4B (Aa)): j=1, l

Hence, We may assume that the definitizing polynomml of 4, 1s 13,,(#) ([ t )’“"
b <2k. Now, let us eprénn that we may assume that all &, equal to &, k<<2k.In fact,
from &,<2k, it can be seen that we may take (¢—t.)% or (¢— ) %1 ag the
definitizing polynomial of 4., If there are 1nﬁn11ie number of 4, with definitizing
polynommls (t t,.)" then. from 'I‘heorem 3.1 in [2] (t- 1)F is a definitizing
polynomlal of Ao For our purposes, 113 Wﬂl be suffice ‘oo cons1der the ‘relevant
subsequence of {4,}. In the followmgs, ‘We dssumé p,,(t) (t t,.)ﬁ For brevﬂ:y,
assume to=0. By what has been proved above, lim £,=0.

ol '.

Suppose s>0 We should prove thafs for @ € H there exists N suoh th.a.f.

l (f (An)w, w) (f (Ao)w, W) l <&
for n>N. . .
. Take 2, Imzss0::Pub ru(z)= = zo> é’;)_ "o)” :. Then for z#zo, Zo, We .have

lim 7, (2) =r0(z) . Denote do= (co,. ,80) s Where —ca<lap< 0< Bo< 0, o, Bo Ep(Ao)

n~>cs

Since s-lim B (4,) = E‘“’(Ao), in a way s1m11a,r to (16), we have
s lim (e A FV (40) = (= AEO (4

n-vos,
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which implies : _— ' :
s-lim A,.E("’(Ao) (z2— A, B® (Ao))‘i— s-lim [z (2~ E"‘) (do)) ™ —
—z(z—AoE<°><Ao>)-1 r
= 40F (40) (e— AEO(4))S (A7)

Suppose that r,(z) = Zw(’% (z zo) ~H(y— zo)"’“ Then lim af=a{®. In view of (17),

A—oa

we obtain o
ol 7 (4B (L) =i &l (4,549 <AﬁE<'~><Ao>—zo> -
(-AnE(”)(Ao)—Zo>_k .
= 20l (4al () (405 () =) ™ (o (Ao) T

= ro(AoTO (). e
From [1], there emsts a monotone 1ncreasmg functmn a(“’ (t) such tha,t ,
Eo@en=[ 0
holds if £, is not contamed in A Suppose 'lshat n is sufﬁclenﬂy large so that ¢, E
(e, /90} Denote 4y = (—e0, ao], Az—(lgo, +°°) Then
£ dcr,i") (1:)

o (a0) — 0 (— 00) = j Mt)dj A

N ON
-—I_wa" (t)d(E(”)(—oo t)w, as)
=G (Mf»)(ztl)w, D). (19)
Ina snmlar faghion, we have - - -
o (+00) — o (Bo) ('rn(AﬂE(”’ (Aa))w ). (20)
Besides from [1], o"")(—{—oo) a‘“)( oo) (fr,,(Aﬂ)a:, m) Usmg (19) (20) the.n we
have

o0 (B~ o (@) = (ra(AEM(4))m @) (21)
From (18) and (20), it follows that there exists a constant K >0 such that A
q.‘(;b) <BO) _\_Gén) (%) <K: -n,= O: 1) "t V (22)’

| Set

B lfoo gof““")cx,t,o*
gn(“‘)'_: q"n<7\4)

= .f.(%ﬂ(é;—fl()%' te)) (A— tny(}“" zO)kO\a—ZO)k S -

where 0<<6,<1, I>1. Since. f‘”““)(t) is bounded for 4€ [ao, Bol, there eXJS‘ﬁS a
constant M >0 such that : .

Take Adcdy,, A= (a, B), a, BEO‘,,(AO) such - that a<0<B, 8- a<6MK By.
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assumption, ,th1s can be done. Thus, there oxists N ;>0 such that
10 <z VrELs B
for n=0or n>Nj. From (22), we have
f, o <x>da<n> ) |<—

Efence .
l(j [f(?») 2 f( )(tn) (?\. ) dBP 5 — f [f(?\,) 2 f”(O) N]dE“”a; a;)‘ |
<], =®dor [+ U PMIPW|<E (29
holdsfor n>N. ’ ‘

Now, consider the sequence of deﬁmhzable opera,tors {A,.E(“)(A)} It is evident

| tha‘b o—(A,,E"‘)(A))CA From [1], we see ’ﬁha,t A%E(")(A) is bounded. Take §>0

arbltra,r]ly By I' we denote tho recta,ngular contour Wlth vertex a— 8+8@, B+0
+6:i.Then I” Cp(A,.E<")(A)) By Theorem 1, we find that

= A A vs—]Jm(z AE(”)(A))'l (z AoE(O)(A»_I

~ still holds for z=a—3, B-+3. Thus from Theorem VII1.2 in [3] (z E""([]))‘1
uniformly converges to (z-—AoE‘(‘” (4))~* for €I in the sense of strong operator

topology, and hence =~ . . _ ‘
lim AL (A) —s-lim 1 35 ‘z"(z—AﬂE‘” (4))~*dz

R nves - 20510
*—2,11,-7; 3€P # o 4o B (D)= AL (@
holds for any natural number g ‘ | - o ,
Since fo (t Y—>FD(0) (O< j<270) as n—>oo, form (24) we have
. ]Jmﬁk] f(’ (tn) (Ao t)’E@(A) 2 fG (0) A]E(O)(A)
n=>oo §=0 ] )

Heneo theére exists N 2>0 suoh that
/2 L) @ oo
(2'“ IO (4 4y B (- 3L j@ AHO (L), w)1<—§- 25)

j—o
for n>N,.

- At last, let us prove fw—-hm f (A,.) E(") (A‘"’) = f (AQ)E“”(A‘) ‘Suppose that supp
f< (s, b). With no loss of gﬁe;n‘eralﬂlty! we may assume that a<a, b>8, @, b €0,(4o)-
‘We note that A o o
| o ()~ <a>‘= (4 E®(a, 1))z, @),
" and therefore ' '

hm[v‘"’ ORI (a)] = (W) -0 (a),

if AEo,(4,). Moreover, wo note that
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‘but 0,(4o) is at most a denumerable Setz Tt is not hard to generalize the ordinary

- f) . fO)
1}33 a.Ia?ia Ii] Tn (?\,) ro(A) =0

1imi$ theorem of Riemann-Stieltjes integral, which proves that

lim | {((7;3) o) =tim | L a0 1) o (@)

o we Jo ,.(?\.)
£ L ,,{c%,)) d(ch’)(?h) o-é‘”(a)) J / ((?;?) dO.(O)(w. (26)
In the same way . o e
f(%) o f(?») © '
im [ SO 400 = [, LG o ><a>5 e

From (26): (27), we have o
lim (f(4) B(&)a, a) =2im | LI aop @y = | L0 a0 1)

e (?\.)
=4I EO W)z, 0). (@)
‘Suppose that R o o
(A ED(L)g, 2) — (F(A) BO(4)s, o) <¢ @
for n>N,. Oonsequenﬂy, it follows from (238), (25), (29) that } "
| (f(4n)z, ) — (f(do)w, 2) [<e (30)

for n>max (Ny, Ny N 3) which means fw~11m f (A,.) f (Ao), so tha} the theorem is
“verified:

Suppose that A i3 a definitizable operator with real spectrum, and the
-definitizing factor of 4 is r(z). For @, y € H, it follows from [1] that there exists a
bounded variation function o,,,(¢) defined on (—oo, 0o) such that

(r(2) (= 4) 'z, y) = [LTeall)

Z—1

iBuppose that | fis a continuous funotion defined on (—oo, ), and Itlm @) =0.

Define (rf) (4) by o | L

" (o) (W, 9) = [fDdoas(®. (31)
Tt is easily seen that if f has a bounded support and has continuous derivative of an
appropriate order, the definition of (rf)(4) agrees with the operational funetion

gwen before Theorem 4.

- Theorem §. Sugypose that {4} is @ sequence of definitizable operators with
-real spectrum, the deﬁmmmng polynomml of A, 15 n, deg D, <2k, llm max[ Pa(2) —0%(2)|

CErALCRENL
defined on real awis, sapisfying llm f(t) O

(i) If 13_13‘;:[[(z'—An)‘1 (z Ao)” 1“-—0qu’ Im 20, then

=0, 2 ﬂ p(A,,,) Im zo% 0, rﬁ(z) 2:(2) , cmd fisa conbinuous funcmon
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L () () — (ref) (4e) | =0
(ii) If s—hm(z A) = (- Ao) fOrrIm .4-7&0 than

M@ @ =N ]
Proof (i) Since A4,(z— A.,,)'i ~—z(z A)7h i Imz#O we. see that-

A,.(z A,.) -1 are bounded opera.tors, and then it 19 eagy to see “$hat fr,.(A.) are:
bounded opera%ors ‘Besides, sinoe h.ml[ (z=A.)7 1—— (z— A4,) ™3| =0, we have

lim || 4,(z— 4,) 7~ Ao(z Ao) | =lim[e(e— 4,)7 2 (z— Ao)~*| =0.
Sinde lim Iay |2, (2) po(z) | -0 by an a,rgument hke that glven in (18) , it now~

n—oo (gl

follows that _A R e
e e hmllfr,.(A%) Sro(A) =0, (82
Hence, 'ﬁhere exxsts a posmve number M sueh that
r(4) <M, n=0, 1, 2,-

- For any fixed s>0 from Siaone—Welerstrass theorem, there exxsts a polynom;lal‘
of two va.nables, P(u, fo), such that

max_ lf(t) P((t+@)ﬂ (t w)'i)l<

 Tor wGH, oIt doncte 5= T4~ P (AT where P@)
P((z+i)7%, (@—4)~). From [1], it follows that there exists a bounded variation:
function 0, (#) on (=, ) such that .« - . .
) (A) 2 (raP) (ATl e
= ([(rf) (4) = (rB) (4:)]1s, yn) )i ~

S JECRR OO
3MJ o, @) | <557 (re(4)e, 5)F (1, (A s )T -. -
<37 lIrr,,(An)ll IIn(A,.)ﬁ H[(rnf)(Aﬂ) (*”nP)(An)]mﬂ"-"‘"
3 = [(CN)) (A,J (a»,,P) ( Aﬁ)]m"

Theréfore - | .
@) (A = (rP) (4)] <g» n=01 2 o ey
T4 is eagily. verlﬁed that: - - L : o am

: o (qf',,P) (-An) Tn(An>P((An+‘Z)- » (An ’1'>—1)
By assumptmn and (82), we have N

(A=D1, GRS G0
Thus, thare exists N sach'that = E T s T R
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| (P (%ﬁ‘fﬂcTOP)GAO) gt (34)

for n>'N. From (33).and (34) : '
N - (o"of) <Ao> ||L<e :
Jolds for n>N.' o R Y
~(ii) can be proved in a fashion ana10gous o (1), 80 we omit these statements.
“‘The theorem is proved. - ‘ : R SR SRS
~ In order to discuss the oonvergence of a sequence of operator functlons, we
“infroduce 4 new eoncept ‘which'i§ called the condition for umformly equlvalenoe of
induced.norms. Suppose that {4,};, i3.4 sequence:of definitizable operators with
Teal spegtrum, the deﬁmtlzmg polynomlal of A,, is P, and the spectra,l funotmn of
A, is B®. A1l the roots of Dy aTO contained in (a, b). Denote A (a, b) Then E H
-is an orthogonal complemented subspaoe and : K
I E(n)_I_E(n) : )
‘Define an inner product on H : o
- . [ w]“— [E(")a; E("”m] +(E(")m, , &"’w) _
Then H is a Hilbert space, and the topology mduced bjr [, ],, Acomoldes with that
" induced by [+, -]. Denoting the norms by |- [I.,., H |[ respecmvelj, we see that there
-exist m$®, M >0 such that o .
._ wPl <l <MLL
If Jhere exist ma, M s O<m4<M 400, Wthh are mdependent of n, such that
© mal - Lo |<MalJo n=0,1,2,
-then ‘we say the norins induéed ‘by E(’" satisfy the conchtlon of umformly

-equivalence, or, simply, the condition (U). .- . .. : :
Proposition. The condition (U) gs wndependent of the, chowe of 4.
Proof Suppose that AQDA1 Wnte [a;, :v] R [E“%, E )w]+ (E‘"’a: E®w), and
i there exist my,, M, satisfying

“the condition- (U), i. e.

malI9< 12, n=0,3, 8,

“For brevity, we omit indegesn for the ‘moment. Denote 4= 45\ 4. For a:E H,
[2, 2] ®=[Bio, Buz] —I—(E'Acm, B o) <M} (B4, B ](1)-%- (E‘,ow Edua;)
"MAl{[EAlm, EA;‘U] + (B, Edw)} + (Hg @5 EA° “’) o N
; <max(M ¥ 1) {[Ea2, Edlm] +. (Edem,‘ E’Aam)}
' —max (M‘,l, 1) [z, 2] .
In the same way, wo have '

[z, ©] a’<max( 1.

A;

> [m m] (2)

“From the above estimation and the condition (U)"re"'lat:ing to Ay, it follows that
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™M 4y

max (M4, 1) I-1P< max(
The same argument can be apphed to other cases for A1 and 4,. We omit these

)" |1®, n=0,1, -

statements. Our theorem is proved.

Theorem 6. Let {4,} be a sequence of de ﬁmtrz/mble operators with real spectrum,
which are defined in a separable Krein space H, the deﬁmtrbzmg polynomial of A, be Py,
deg p,.<2k hm max[pn(z) po(z) | = s—h‘m (z—A4,)t= Ao) 1, “where Im 250,

Tn (z) = 2 ';52) _ T fwhea"e Im zm—O If {A,.} swtwsﬁes the condwtwn (U) cmd f is
(z—20)*(2—%2)

a bounded continuous function in {— 00, 60), then s~11m ("r,, ) (4) = (rof) (4o).

Pmoof ‘Take a sequence of posﬂnve numbers s a.k /’oo akEO-,, (Ao) Deﬁne'.
functions P on (= oo, ' o0): ; ' '

1, A <a, ]
?k(}\‘) = linear Gk,< ! A ! <@k+1,
O: (;\‘l >ak+1 i .
Wlth no loss of generahty, We may assume tha,’ﬁ the Toots of all Do are eon‘samed ins
( ai, al) Denote 4= (—as, G1) and - o : | | -
' o [0, 2], = (B, BPa] + (AP, BPw).
By assumption, there exist positive numbers my, M, such that
m} [, m],,\ (@, o] <M4[m ‘2]., Vo€H, n=0,1,
Slnce s—hm(z——A,,)"jl (z—Ao)‘i and h_m!nlﬂax | a(z) — po(z) { e 0 we. have
zl<l
s-lim 7u(Ay) =10 (Ao)and hence sup) Il ro(As) | <+eo. For xEE there exist monotone
increasing functions o (¢) such that , ' e
() <Aﬂ>m, DIE | f@)do @) |< sup | £() ljld0'<'°> <t>’ |
. =sup| @) | (ra(d)a @)

Therefore sup| ((rof) (4.)s, o) | <400, Oonsequently, sup|(raf) (4s) H <M < oot
where M ig a certain constant.:

Fo rfixed » € H, estimate q;l\,,(A,‘)a; o| as follows. It is easily

seen. that

lou(4a)z— wll<l!E‘”’(|M>wk+1)m =+ Lk<m<am(q)k(?\,) 1)dE~'<”)ml| |

< { 1B amalt|] o) - 1>sz<n>mﬂ }
<HABO(|M > okt | B @< 1] <andal}
VI B> el <L V1 LI, IIE‘”’(IM>%)@|I

Since s-lim BP(|A| <aw) — I, there exists a pos11;1ve mteger % such that
’ . koo L . ) . . .
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LB >a)al <5

Besides, since s—hm E™(|A]>ar) = BO(|A|>ay), there exists Ny such that -

B> 0ol <335

for n>N,. We note that fpy is a continuous function defined in (=0, ) with
compact support. From Theorem 5 it follows that there exists N, such. ’sha,t

| (rafon) (An)m (fof 1) (Ao)a <—
for n>N,. Summanzmg what have heen proved, we have
[ f) (Aw)a— (ro f) (Ao)a|
<[((raf) (An)z— (rafpw) (An)s]| + | (o f) (Ao)w (rofor) (4o)a]
-+ H (rafon) (An)a; (rofos) (Ao)‘”“ '
< (o f(4) [ Jo— pu(A) ] +] (FoF) (o) | o — g (o) ] +2 5 <e.

In the preceding estimation, we have used the relation (rofow) (A,.) (fr,. ) (A,.) qD;,(A,.) -

which can be verified easily. The theorem is proved. . i
_ Rema.rk In fact the eondmon s—hm (z A,) = (z— Ao) ™,V Im ##0, has

already ensured the existence of m, appeared in the condltlon (U) The reason is as
follows. Denote B,=EPJE® +E™. Then
=, 2]u=(B.a, 2).:
Since s-lim B, exists, there must be M >0 such that sup HB I <M <+co. Therefore» 1
N le. el <M[z, a]. |
So we can take my, =M 2. V |

§ 3. | One—Parametex_f Unitary Group

Let 4 be a bounded definitizable operator, and )r(A) a definitizing factor of A.
As before, for € H there exists a monotone increasing function o, (¢) such tha,t B

((4) e~ 4)7im, @) = |~ L=

£—1
It f is analytic in a neighborhood of o(4), I' is a J ordan contour within the-
analytic region of f and ¢ (4) is surrounded by I', then

G (Wf (W, w)=———g€ (r(A)f @) (= 4) s, i

=3 I_Jg IO @ % 4o (1) J F@) do-,,(t)

Theorem 7. Let {4}, be a sequence of bounded definitizable operators with real
spectrum, sup | A,|<+oo, and the definitizing factor of A, be r.. Then for any z€

(Im 2£0), w-Hm r,(4,) (2~ 4,) " =10(Ao) (2~ Ao) ™ holds if and only if supra(4a)




%48 oy sty ¢ - OHINGANND OF MATH, ¢ »r % % 0 -V Vol. 7 Ser: B

<+oo cch w-lim r,(4,) e”‘" =10 (AQ) gitde fozr t€(0, 00)

N~

-Proof . First, sappose tha‘ﬁ w—h_m rn(A%) (z—-Aﬂ)"_— 10 (Ao) (2— 4o)7Y, VzE

o -

(Imz+0). For a fixed complex: number z with nonzere 1ma,gmary pa,rt by Banach-
‘Stemha,us prmcxple, supl[r,.(A,.) (z A,.) 'i||<+oo 50 that

S . Supli'l‘n(An) I <SUP Ilm(Aa) (- Aﬂ)'iﬂ ([ I +SHPHA»H)<+ .

Take a cirele I" with centre O and radms = suple,.l[ +1 ‘Then we have

Tu ( A,.) 6“‘4"' = 1 § u;z n( .A,,) (2 A,.) "1dz
’Therefore PR
[ (A%)@“"‘w z) = (fro(A») 6‘“‘50 w) 1

<[ 1) = AT, 8) = (o) (o ), Y de] >0
holds for a;EH i e. w—hma'“(A”) gHn=rq (Ao)g’m

¢ qmpoon L

Secondly, suppose that w—hm ra(An) e =1y (Ao) e”"*, sup ﬂ Tu (A,.) ll <400, Imz

0. Write Q,.(z A,.) ((A,,—z)‘i(a’,.(A,.) a~,.(z)) For wEH from [1] ‘and the
dllustration given before the present’ theorem,: 'bhere exists.'a monotone increasing
function o™ (¢) defined on real axis such that . '

(o= )7, &) =[S (@G e, 0

1 (= | (w j: minegint d?\.) do® (£) + ( 5 (é,,(z, Aﬂ) @, w)

- 70(2) )~

=Tqéz)- ,: e_wa G (1) )d}\,—{_ o) (Qn (z, Aﬂ)m, w)

PR :

I irs (,',. ' (./L) 6”"‘”:1: w) an

| fr,,(z) o
"( ) ((’rn(-An) f)‘,,(Z))(A,, z)—lml w)

Hence '

Ja e L

(rude) (= A" s, 2) —@j -mor <Aﬂ>eﬂﬁnm a)i. | (35)
‘Thus, we have the es’ﬂmatlon » B RSN
| ra(4e) (= 4,73, &) = (ro(4e) (= 4o 4, Sk
<| o= (rr,.(A.,) fA»m, a;) (fo(,%)emm @t
Moreover, we'note that ' R ; §' - e i
|(,,. (.A,.)e“‘"m o) [= U mt;pda.m)(;\‘) !<J da“"’(h) o-(n)(+°o) o-("’)(—oo)
(= (n e <n el

;Smce supﬂrr,. (45) | <00, it follows from Lebesgue dominated convergenos theorem
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“that

| 'w—hm n.(Aa (e~ - 4) 4—a~o<Ao> (o A0>-1

The same argument can be apphed ‘0 show that wn(A,,) (2—4,)™* converges to-
To (Ao) (#—4o)™* in the sense of Weak operator topology for Im z>0 The theorem is
proved. R Lo smgn T ey T et

- In Pontrjagin space I, all the. selfadjoint operators and unitary operators are-
deﬁmtuzable operators, The followmg theorem is a. s;mple genera,hza’mon of the
classmal Von. Neumann theorem o . UL T CER

Theorem 8. Iet U@) be a 'wewkly 'mewswrable one~pa,mmetea~ umtwry group in
separable Powirjagin space II,. Then U(t) is stro«ngly continuous 5f and’ ‘only q,f there
ewisis a>0 such that sup lT@ <+

te[0, :
Pa'oo The necessﬂ; is evident. Let us prove the sufﬁmency Flrst for any
y

13 SO ‘W claim that sup |U(5)[<~+oo. In’ fact, 'if §<na, where n 1s a natura]l
€ [~£,5] ‘ A

number, then L
 sup }U(t) u < sup [T@ |+ max |U (ia) | <+oo
€[0,a] N Y Y77

€10,¢1

holds. Since U(=8) =T ()", we have

sup IIU(t)H<+°° e
te[~£,1 S o

For , | yE II,, we notice that -
| [ @, e |< Jolw©iateliy).

Thus there exists 3/; il 2 for any o€y, s uoh that

e = T, .

Now, We estimato the difference (T (£)q;, @)~ (9, o). From &ireet o;,ic‘uii;s .
| e )~ @ w)l—U (@E+D-TEw, e |
U W@y, )3x|+ [} T, w)dn.-]

<(T@I+1) U 10 ax | [sf -

Since lim J "U(T) H d'v O We eonclude that A _ _
10 VY U

) - hlﬂ(U (ﬂ% fv) (ﬂa zv) e (36)"

Pmkmg an orthonormal system {e;}@_lc H " such tha,t R

[-IF=(, ) +2 El"(;?:e;)‘l"té,‘ R

' ; e P LS =

we have: '+
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that )
'w—hm,.(A%xz A,,> 1—a~o<Ao><z Ao)-i N

The same argument can be applled to show that o, (A,,) (z A,)™* converges to-

o (Ao) (2— Ao)~ in the sense of weak opera,tor topology for Im z>0 The theorem is:
PI'OVOd . ,' . . ) . , . -;;: i PR f";"v N, ron

- In Pontr3a.gm space II}, all the selfadjoint operators and unitary operators are-

definitizable operators. . The fqllowmg theorem is a smnple genera,hzatlon of the:

classmal Von, Neumann theorem el . R o T T T

" Theorem 8. Let U(t) be a fwealcly measwa,ble one—pmmmetea" umtwry group .

separable Ponirjagin space IT;. Then U(t) 'z,s stmfn,gly continuous if and only @f there

ewists a>0 such that sup U@ <+

) Prroof The neoessﬁy is evident. Let ns prove the sufﬁmency F1rs’a for any
£350,'we claim that sup [U@) < +o0. In fact, if §<m, Where n 1s a naturaE

numl_:_)er, then . : | ' .
 sup HU(t) u < sup HU(t)]]- max NU(w) [[<+oo

€[0,£1

holds. Since U(- t) U (#)", we have

tesru?allU(t)ﬂ<+°° e . i

For @, ‘yeﬂ % We notice that S
| i @@e gt |<[w@tattativt.
Thus there exists y;EII % for a,ny w €1, suoh that
=[Oy o

Now, we estimate the difference (U (£)ys, )~ (¢, 2)- Frozﬁ dizeot cgleulus .
| U D ) aat—U (e -Tegaar |
<|[" @@, w)dz-j +|f, @ m)df[

| <aqu@l+n | j U fax [nw [ls1.

Since .limJ ”U('L’) ﬂdfv 0 We conolude that o
- =0 ) 5 e T R
| o | hm{U (t)y;: w) (y;, w) T )
Plokmg an orthonorma,l system {e;}i_l'c II ;ﬁ such tha‘h o R

I-I°= ¢, >+221<- ww



450 o - . . CHIN. &ANN, OF MATH. - o Vol. 78er. B

HU(@?/f—?/fﬂ (U(t>f’/£ ?/a U(*)Z/e y£)+22[(U<t>y£ Yes e‘)[
=2<y;, ve) - <U<t>yf, ve) — (W5 U(t)y;)

ST O e
‘Usmg (36) and taking limit in the both sides of (37 ), we have . =
| Hm[T @ge=gel =00 T 0 (89)

Wn’ﬁe F= {yly€lly, € >0} By an argument like that g1ven for umta,ry group
in Hllbert spa,ee[‘”, one can prove Z II . Now applymg sup HU(t) ﬂ <+oo and -

(38), We have G
s—hm U(t) = I

=0
"The theorem is proved . L . ‘
| Gorollary I FU() isa weakly contmuous one-paq"wmetea" umtwfry group, then
‘U(t) 48 strongly contimuous. ‘
Pq'oof Since (36) holds for any @, y € Hk, by the saIne way as (87) we have
o hmIIU(t)y y]=0, Vg€l

Remark. For this corollary, the space need not bé-’sép"a;fraible. o
By the way, we discuss the self-adjointness of symmetric operators in Iy
Theorem 9. Let A be a symmeiric operator in I z be a complew number,
Tm 2+ 0, both z and 2 do not belong to the apprommwte pomt spectrum. The following
propositions are equivalence. -
(i) A is self-adjoint. Gl
(ii) A is a closed operator and Ker (A*——z) Ker (A*— z) {O}
(iii) ran(4—z)=ran(4d—z)= ;. -
Proof Suppose that z=wx-+iy, @ and y are real numbers, y+0..
(D)= (i) Oerta,mly, self—adpmt operator Aisa elosed opera’sor and
Ker(A*—2) =Ker(4—2z) = {0}, Ker (A*—- 7) =Ker (A 7= {O}
(11)=>(111) Suppose that condition (ii) is samsﬁed Then
ran(A 2) ——ra,n(A—z) I,
;So to complete the proof it will suffice t0 show that both ran (A—2) and ran(4--2)
are closed subspaces. Suppose that (4—2)%—>v. We have . .. - S
((A-2)u,, (A—ZM) ((4-2)u, (A—z)u)+ I:e/i (u.., w) (39)

Assume that {e}%- )+2 2| (e, e¢) |2 From (39), it follows that

H(A 2)u|* = 22I((A—Z>um es)!"‘ -
= (A-2)m|*+|y|*|u]® 22{1((A w)um 3i)l2+1y‘ | (s €0) |7} ., (40)
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By assumption, {(4—2)u,} converges. Since zE04(4), {u:|} is bounded. Besides,
it follows from |(A—2)u,[|<|(A—2)u |+ |y|[un] that {] (4d—z)u.|} is bounded.
Thus, it is not hard to see that for our ‘purpose we ma,y assume {((4d—-2)u,, &)}y,
{((A &)Uy, &) Y1, { (U, e._) },,=1 (1<@<k) all have finite llmlts Substitute U by
Ut in (40). We find that both {(4- a;)u,.} and {u,,} are Oauchy sequences in IT,
.space. Since A4 is a closed operator, we know that ‘there oxists U € I, w—>ug and
(A-2)u~>(A—2) u. Henoe (A—2) up=o. In the same way, One can prove
ran(A4—2) is closed. Thus (iii) is proved. '

(iii)=>(i) Since ran(4—z)=ran(d—7z)=1I;, for any u€P(4"), there exists .
W ED(A) such that (4—z)v=_4"~72)u, 50 that (4*—z) (u—v)=0. But Ker (4*—2)
=ran(4—z)*={0}. Hence u=v€ P (4) and therefore Z(4) = Q(A*), i e. A is a
self-—adjomt operator. The theorem is proved _ .

Let 4 be a symmetric opera,tor in Il space. If 1ts closure is self—ad;omt then
we call A essential self-adjoint. Besides, it is obvious that 2 belongs to the
-approximate point spectrum of A if and only if z belongs to the approximate point
spectrum of 4. Thus, we have the’ followmg result which is similar o that for
Symmetric operators defined on Hilbert space.

Corollary. ILet A be a symmetric operator in Iy, % be a complex number,
Im 2% 0, both z nd z do not belong to the approsimate point. speot/rum of A.Then A is
&ssent@al self«wdjomt of and only if Ker (A*—z) =Ker (A*—- z) ={0}.
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