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A REMARK ON KOLMOGOROV’S
COMPARISON THEOREM
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Abstract

In approximation theory the theorem of Kolmogorov concermng the compa,rlson
of derivatives of differentiable functions defined on the real line is well-known. It plays
an important réle in establishing sharp inequalities between the norms of - derivatives of a
function. In this note we establish a comparison theorem of Kolmogorov type on a class of
Tunctions which are defined on the real line and can be continuated analytlcaﬂy in a
stripped region containing the real line. As a consequence we have derived an inéquality of
Landau-Kolmogorov type on this function class, and moreover, we have-applied it to get
the exact estimation for the Kolmogorov’s N—widths of the analytic funection class,

§ 1. Preliminaries

In approximation theory, Kolmogorov’s theorem concerning the comparison

of derivatives of differentiable functions is well known™. Tt serves as a basic ool

for establishing some sharp inequalities between norms of derivatives. In this

-remark we will give some comparison theorems of Kolmogorov type for: a class of

analytic functions and will apply them to the computation of Kolmogorov’s width

'numbers As in our previous paper™, we consider the set H;(L,) which is defined
as follows. For 1<p<+o0, f(2) € Hy(L,) &

f(a;)=.2.7;;jo H (@=h()d, o )

LT

:[[k[[,,={ﬁw]h(t)]”dt} <1 (1<p<+o0), [h]. = ess sup |k()|. For p =1,
F@ERT)S |

| | I@=gef Ba-pae, @
‘where A(£) €V [0, 2], f’ |dA|<1. The kernel is

H()- 1+42°‘f£§,8>0- - » ®).
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sint sin(n—1)%)
Denote H,.(f), =tmin[!v f—tulp, Tn = span {1, (n=1) }, H. 1. Axmesep™
nETs

cost  cos(n—1)t

proved :
B, (Hy(L)) o= sup Bo(f)w=(20) 7 By(H)1= [ foslr @
where .
e =—21—J H (x—1) sgn cos ntdt= 4b ,2, (22)10:8[%201]}1_&_2{}) _T:}Dn& ()

We call f,; standard in H;(L.). It has the following properties:
@) fu (w+—»”i)= ~fa@).

(@) 5;0 ————+ T (k=0, +--, 2n—1) are zeros of f in [0, 2m). m;.,=— (Ia =0,

, 2n—1) are extrema,l pomts of f.s in [0, 2m).
@) fro(@) = (=L)*[ frs] -
(4) fns is strictly monotonic in Ak=<k :, -@%1-%), k=0, +1, £2, ---

$ 2. Comparison Theorems of Kolmogorov Type on HsL.

‘Theorem 1. -Let f(z) € Hy(L.) be such that |f]|w<|fusl~ for some positive
'bntegefr n and f (@) =fn.s(a) for a, a € R. Then
If' @ | <|fu@]. - (®)
Proof - Without loss of generality wé may assume g=a. Suppose that Theorem
1 is not true. Then for some f (z) € H;(L..), positive integer n and a € R, we have
1F le<[frsler F(&)=Fus(a) and |f'(a)|>1]frs(a)]. The continuity of f’ -and fus
ensures the existence of p>1, 8E€ R such that ‘

. f(B) 1 (B, Z17 )| > | ® .

‘Denote f (a;) == f (z). We have FEH,(L.) and |fle<|fasle It is enough o

consider one poss1b1e case f (B) =fn(B) =0, f'(B) >fhs(B)>0. Let 4 be the interval
which contains 8. By simple geometrical consideration we see that on 4, the graphs
of f and f.; intersect at least three fimes, while on each of the other intervals
4;(j€{0, 1, ---, 2n—1}\{k}) these graphs iﬁtersect. at least once. So, for g(a)=
fa0(2) — F (@) we have Sy (g)>2n+2. On the other hand, it is known™ that the
kernel H (z—1) is totally positive. Hence it possesses the cyclic variation—

diminighing propexty (CVD). Thus, on acoount of Sz (sgn cos 1t — -%-h(t))g% and

g(m) =5 J H(x— t) [sgn cos nt————h(t)]dt
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‘we have ;S‘“ (g) <2n. Thigisa eontradlohon Theorem 1ig proved :
‘Corollary 1. Let f € Hy(L..) be such that |f.<| f,.aﬂ Jor some ny, amd f (So) =
Frs(m0), F(€D) =fn (971) for €6, &1, 1o, 11 € R, where To, M1 Are contained in one, interval
of monotonity of fas. Then A .
» » | tfo §1I>!770 7’)1' 1
Corollary®. Lt f€H,(Le.) be such that | f“,‘,\l[ f,,aﬂ foa~ somé n* wnd f(fo) =
Sos(m0) Jor &o, nER and Mo € dy. Then : Pl
(1) qu‘ the case fnaclc 4 A;o we have ¢ - P o

f(§°+u) <fn6<770+u): » 0<u<

f(fo—u) >fm5('ﬂo—u);v OISu<ne—— w,
Q) for the case ful in by we have .
FGotn) >fualm+w),  0<u< k

[

1
W"’]O}_ )

f(fo’—‘M)<fna(?70 u), O<u<q70_7l‘;_ﬂ- |
C"“’“MY 3 Letféﬂaaso b such that [ ]<Ifulw for some n. Then

I ' Wesalee - @
i etusput R .
’ -4 sin(2p+1) o Corobalo-
Fra(a) _?Eg (27}8—]%-111)21()3h(2vn—|az1)n8 - P ®

cpo P e

It s obfuq,ous that Fl, (@) =fos(®).
‘Theorem 2. Iet f(s)cH,(L.), and F (@) be a pertodic tntegral of f such thwt
ﬂFﬂw\ﬂF,.&ﬂ for some m, F(a) =F,(a) for a, «€R. Then . . -
(@) | <[fu(@]. L N ON
Proof - The argument ig ‘quite similar to that of Theorem 1 Suppose a=a;
JF’(a) |>1FL:(a)]|. Then *bhere exwt p>1 and @ such that

s as T _F<B) F,.a(B), f‘lF'(B) |> | £, a(B)I | By
For G(z) =F,(z)—— F (w) we have S (G) >2n+2 Hence by Rolle’s theorem
h <G)>2n+2 But for ' s |

’wve have Iust proved S‘ (G' )<2n Thls is absurd Thus Theorem 2 is proved

§ 3 Some Sharp Inequahtles Derlved from the
Comparlson Theorem

- For a 2m-periodic summable fune’alon f denote by _-p( f, t) the non—moreasmg
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‘ rearrangement of |f] (of. [1]). We have
Theorem 8. Let f € Hy(L.) and F be a pemod@c mtegml of f such that [Pl-<
[Fss|o for some n. Then :

J 2(f, t)dt<rp(fm, 5)dt, 0<o<2w. o (10)

The proof of (10) is essentially similar to that given by Kopmeiiayg™ for the
class W’ ‘We omit the details. : :
By (10) and one lemma of Ghong Kong—mmg[51 we have
Theorem 4. Let f€ H;(L.) and F be a pemodw mtegml 0 f f such thwt I!F o<
[ Frsl for some n. Then for every p, 1<p<-+oo, we have | .
A b<Ifasls. - 11y
In what follows we give some apphca’nlons of (11) Oons1der one subset of
H, (La) defined by

Hy(L.,)NT*

{fGH,,(L,,) j f() k dt o k=0, -,n-1}.

Let F be the perlodlc mtegral of fEH 3(L,°) N7 suoh tha,t J' F (t)dt=0. Then:

in ki
we have J F (t) cos bt t=0 for k=0, --«, n—1. It is ea,s1ly seen that F(z) may be

presented by 2:m—per10dic corivolution, in which the kernel i the composi’ﬁion of’

H(z—u) and D:(u—t), where D, (u) = 2, smypu is the Bernoulli polynomial of
=1

degree 1. The composition (H=D,)(w—t) satisfies the Markov—Nmolsky eondmon

Aq(cf™). Therefore we have
NF e[ Fos] ;.
NOW by Theorem 4 we obtain '

‘Theorem 5. - For n— 1, 2 3, dnd p,“i<p<>+°°, , o :
sup  |fl,= I!f»all o | (12)

reHsZLINT5
By applying the duality theorem of the best apprommahon of convolution clags™
‘we have B
Theorem 6 For n= 1 2,8, -+ and p, 1<p<+oo _ o
1,1 N e
| B sup 5, ‘(f)i—feﬂfggw o=l (—57—1). D)
A. Pmkus[‘” obtained some exact relations for the Kolmogorov 2n-width of 2m—

periodic convolution class with a perlodm TP kernel. For the (2n—1)-width the
exact formulas are not obtained, because the inequalities (11) (knows as the Ta,lkov
inequality) can not be ostablished in general. For H (#—#) we have -
Theorem 7. For n=1, 2, 8; -+, any p, 1<p<<-+oo,
(D don-1[Hs(Lp); Lyl =doa[Hs(Lp); Lil=]|fnsls (14y
- H2) a7 [ H(Le); L) =d*[H,(Le); Lyl =|fuslse o (15)
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Proof By A. Pinkus™ we get
| fasllor =dan LH sLp) ; L] <sn-1[Hs(Lyp); La].
Oomparmg with (18) we have
Gan-s [H+(Ly); Li] <E.(Hs(Lp))1=|Fulp:
(14) is proved. T, y1elds an extremal subspace. (15) can be derived readily by
Ydﬁality theorems of the Kolmogorov and Gelfand widths numbers.
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