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REMARKS ON HYPERSURFACES WITH
CONSTANT MEAN CURVATURE
‘ IN A HIGHER DIMENSIONAL
| PSEUDO-SPHERE*

- SHEN YIpmG (;‘y'z,——,,ré)**

Abstraet

A necessary condxtlon to be satlsﬁed by the metric of an n—mamfold muumally L
immersed in an (n+1)—pseudo—-sphere is obtained, and a sufficient condmon fora complete ,

hypersurface in a pseudo—sphere Wlth constzmt mean curvature to be tota.lly umblhcal
is given.

§ 1. Introduction
Let H™** be an (n+1)-dimensional unit pseudo—spb:qre,iiex.} a complete sﬁnpiy
connecied space with constant seotional curvature -1. In this note, we give a
necessary condition to be satisfied by the metnc of an n-dimensional Rlemannla,n
manifold minimally immersed- in H""‘i, and give a sufficient condition for a
complete hypersurface, in H" Wlth ~constant mean curvature fo be totally '
umbilical. In [1] Barbosa and Do QOarmo proved that if g is the mduoed metric of a
minimal surface in H® and K is the Gauss eurva,ture of g, then the Gauss curvature
K of J= —Kyg satisfies k<1 (ef. [I] PI‘OpOSl‘ﬁlO]l 2. 2) “We extend it fo h1gher
dimension as follows: S
" Theorem 1. Let g be the imduced metric of a minimal haypersur face én H™* and
let R denote the scalar ourvatures of g. Then the scalar curvature B of the conformal
metric g=0og, where either o= —Ror o= =R~ Zn(n -1)/8, swtwsﬁes

o " ‘B>2n-3. s @

On the other hand, as a generalization of the Hilbert-Liebmann Theorem, Yau
proved that if M is a compact hypersurfa,ce in H which has constant scalar
curvature and positive sectional eurvature then M ig totally umbilical ([2],
Theorem 11). Now, by employing Omori-Yan’s maximum principle, we prove the
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' fo]lowmg theorem.
Theorem 2. Let M be a connected complete haypersurface im H ""‘1(n>3) with
constant mean cwrwtwre k. If the soalwr cua"fuatuq e Rof M swtesﬁes

'2152 : (n 2)(n+1): | | @)

R>

then M is totally umbmml , N
Moreover, it ig possnble to generahze Theorem 1 and Theorem 2 to higher
codimension, and we shall discuss it in another paper.

§ 2. Fﬂndainéntal Formulas

| "Throughout this paper, we follow closely the notations and the exposition in
[2], unless otherwise stated. Let M be a hypersurface in H™? and 1ét ey, -, €nes
be a local field of orthonormal frames in' H+1 such that, restricted to M, the vector
Cnsi 1s normal o M. Then the second funda,mental form' B and the mean curvature
k for M can be written as (ef.[2])* ' ‘

B=2 hi:i&’i&)i@ﬂi, 75 =— 2 ku

The Gauss—Oodazm equafﬁlons for M are

Rm—anam—ams,z+hmh,z—huhm, e

C =P o o Gy

IJﬁ follows from (3) ’ﬁhat the scalar curvature R of M is LT -
5 ‘ R=—nm—1) 4wk~ |BJ2, - (B

where ][B]]B E(ht,)z We denote by 4 the Laplacian rela,tlve to the 1nduced metrlo
on M. If k constant, then- (cf [8]) .

L aqBP=|vBI- |B]*-n(|B]? +nk2>+nkW @

\whei:e | ' R s :
: " VB il2=2 (h;,-;,)s-,' W=Ehea‘ha'k]lm-' T L (7)
-Setting- S o o ‘
l;;,——eh;,-‘-—tk&;, L=='<lca'), f 2="."1' Lﬂ(f ?0);- S (8)

we have tr L=0 and f?=|B|?*—nk?, so that M is totally umbilical iff f2=0
_identically, Repeating the same calculation as Okumura has done in [8],0ne can get
1 Ma pa ] ‘ n——2 : pal
— Af?>=|VB|2+ 2{ .702— P a kI f— 2}
2 2 - n k n ](;2 1 } O 9
S i 7= oo @

Here, as shown in (8), fisa nonnegatlve funotlon on .M

* We shall agree the range of La,tm indices with {1, 2, }. ‘
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§3. The Proof of Theorem 1

First of all, for a minimal hypersurface M in H ”*1; it follows from (5) that
— R>0 and that —R—Zn(h; 1)/ 3>0, Thus, we ‘can define a conformal metric
§g=0g on M, where-c=—R or ¢=—R—2n(n—1)/3. As well known, the scalar

.curvature R of g satisfies™

cR= R (n 1)A10gc——-—-(fn 1)(n 2){Vlogo=[2 ' (10) -

“We now, for preciseness, " consider the case that ¢=—R. From (5) and (10) we
have _ :
—ob= cr+(n 1) +(n 1) (71406) |Va~[2 el (1)
Where mA v1ew of (5) | | N o - '4
O |Ver= V(B I°= 42(2%-,» N )
At any pomt of M, let h,,—?n 8,, From (5) and (12) it turns out that N
L1V |~ S )< B () < (e (13)

at that point,
On the other hand, from (4) and (7) we have

| uwsu2>32hm+zhm—22%4—2}»«& 1
For a fixed index %, using the condition that M is minimal, one can eagily get .
2 hmk 2 hwk+ (Z htm) 2<E (1 + (n 1) 2 hf’ok - n 2 h%k . (15)

‘Summing for % in. (15), we have
| . Eh%k>— 2 (17
‘which together with (13) and (14) yields- _
IVBPS (a+2) [ Vo | /dno. (16)

’Tnus it follows from (), (6), (16) and k=0 that
L so=1 4B = vB]- I!Bli‘*—nllBll

=|VB|*~o*+n(n— Do+n(n—2) HB[[

> (n+2) |Vo |?/4no —o?,

i.e., L
do /o= (m+2) |Vo|?/2nc®—20. an
Substituting (17) into (11) wet get

—oBRz0—-2(m—1o+ (n—1) (n—2)°|Vo|?/4no®>0— 2(n 1o,
which implies (1). This proves Theorem 1 for the case that o= —R. For the case
that 0= —R—2n(n—1)/8, we see fr?m (b) that ¢>0. In this case, (11) will be
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replaced by the following

. ) - ) _ _ k2
-—O"R\=a'+2n(n——1)+(n—~1) Ao + o1 (Zaze)lva'

Sor(n-1) & <n-1><’;(,6>f‘7“"“ j

The remamder of the proof is Just the same as the above, .and we omlt 1t here.
Hence, Theorem 1 is proved completely.

54 The :Proof of Theorem 2

The proof of Tneorem 2 is based on the following

. Generalized Maximum Principle (Omori-Yau)™®, Let M b a complete-
R@emanman manifold with Ricci curvature bounded below and f be a C°-function.
bou«nded above on M. Then, there emists a sequence {mt} (=1, 2, ) on M such that

hmf(ma) =sup f, 11m{Vf!(fvt) =0, 11m4f(mt)<0

We now prove Theorem 2. By Vlrtue of (5) the condition (2) is equlvalent to

S (18)-
where f?= | B|?~nk*>0 and f>0 as in (8) -
On putting L :
BE=n—4(n—1), | (19)-

we see from (18) that b2>n2k— 2n(n 1) >n(n-1) fﬂ for n>8, so we can assume-
that 6>0. Then from (9), by a direct calculatlon, one can easily get

3 4= |VBlP- g {f+§7¢%-5[<n42) Bl+81}
><{f+-——-2\-/ngz_1)'[(n—2>|70l—bj} -

O B
Using the fact that n|k|b<nk?—2(n—1)for n>1, we have

Ml T zaca_ ) 2_
S —1) (n—2)|k|o< STy P (- 202 n+2,
ie., |
T ' N ya ;[_ NNy -_> 2
o S v A 2”,7.“”.
for n>3.

Now smce ]c 1s oonsta,nt there ex1sts a posmve number &, . suoh that

9 A 1/2
(2w -) <z Ty B 2) (41~
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-which together with (18) yields
— 21
sup f<< 2 \/ (n 5 —_—[b— (n 2)\70[] 8. (21)

On the other hand by using the result of [7] ‘we see that the inequality (2)
‘implies that the soctional curvatures of M are nonnegative. Furthermore, the
inequality (18) shows that f? is bounded above. Thus, we can apply Omori-Yau’ s
:generalized maximum principle to f2, i.e., there oxists a sequence of points {z}
(t=1, 2, ---) on M such that , S ‘

lim f*(2y) =sup 72, 'lti_glvfal (mt) =0, }gg Afﬂ (m) <o0. (22)
:Since f is a nonnegative function on M, we have sup f2=(sup ). Thus, from
(22) and (20) we conclude

0> (sup f2) ST+ (=) b1 +sup f}

2\/

{m[b (n 2){#[1-sup f},

~which together with (21) implies that sup f2=0, so ‘that f2=0 on M everywhere.

“Pheaefore, M is totally umbilical and Theorem 2 is proved.
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