INVARIANT TESTS OF EXISTENCE OF THE LINEAR RELATIONSHIP WITH LEFT O(n)-INVARIANT ERRORS

BIAN GUORUI (卞国瑞)* ZHANG YAOTING (张尧庭)**。

Abstract

This paper gives the invariant tests of the existence of a linear relationship among row vectors of the mean matrix of the multivariate linear models with the left O(n)-invariant errors. Some asymptotic properties of these testing methods are also discussed.

§ 1. Introduction

In the multivariate linear models, to test whether there is a linear relationship among row vectors of the mean matrix is an important problem. In the papers [1] and [2], we discussed this problem by supposing the error's distribution is the normal distribution $N(O, I_n, \Sigma)$, and reduced the models and problems to the following two canonical forms:

Model I.

$$Y = M + \epsilon, \quad M = \begin{pmatrix} \theta \\ \eta \\ O \end{pmatrix} q \qquad (1.1)$$

and the hypothesis tested is H_0 : there is a matrix $C_{q \times p}$ such that $\eta = C\theta$.

Model II.

$$Y = M + \epsilon_{n \times k}, \quad M = \begin{pmatrix} \theta \\ 0 \end{pmatrix}_{n-p}$$
 (1.2)

and the hypothesis tested is H_0 : there is a matrix $\prod_{r \times p} (r < p)$, $\Gamma' \Gamma = I$ such that $\Gamma \theta = 0$.

We also discussed the maximum likelihood estimators and the likelihood ratiotests for the previous two models with the left O(n)-invariant errors in the paper [3]. In this paper, we discuss mainly the Model I, and derive several statistics for testing H_0 in the case that the error's distribution is left O(n)-invariant. We also

Manuscript received July 24, 1984.

^{*} Department of Mathematics, Fudan University, Shanghai, China.

^{**} Department of Mathematics, Wuhan University, Wuhan China.

discuss some asymptotic properties of these testing methods in the case that the error's distribution is normal.

Let O(n), $\mathscr{S}(k)$ and GL (k) denote the set of $n \times n$ orthogonal matrices, the set of $k \times k$ positive definite matrices, and the set of $k \times k$ nonsingular matrices, respectively. Let $\mathscr{L}(X)$ be the distribution of $n \times k$ random matrix X. X is called left O(n)-invariant if $\mathscr{L}(X) = \mathscr{L}(\Gamma X)$ for all $\Gamma \in O(n)$.

If the distribution of X is left O(n)-invariant and its density function exists, then the density function will be able to fie expressed as f(X'X).

In this paper, the model I is expressed as follows:

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} \begin{matrix} p \\ q = M + \epsilon, \quad M = \begin{pmatrix} \theta \\ \eta \\ 0 \end{pmatrix} \begin{matrix} p \\ q \\ n - p - q \end{matrix}$$
 (1.3)

 $n \geqslant p+q+k$, and we assume that the density function of Y is the family as follows:

$$\mathcal{F}_{1} = \{ |\Sigma|^{-\frac{n}{2}} f(\Sigma^{-\frac{1}{2}} [(Y_{1} - \theta)'(Y_{1} - \theta) + (Y_{2} - \eta)'(Y_{2} - \eta) + Y_{3}'Y_{2}] \Sigma^{-1/2'}) | \theta \in \mathbb{R}^{pk}, \ \eta \in \mathbb{R}^{qk}, \ \Sigma \in \varphi(k) \}.$$
(1.4)

We are interested in testing the following hypothesis:

$$H_0: \exists C \text{ such that } \eta = C\theta.$$
 (1.5)

§ 2. Several Lemmas

Lemma 1. For any matrix C,

$$(I_n + CC')^{-1} = I_n - C(I_m + C'C)^{-1}C'$$

and

$$C(I_m+C'C)^{-1}=(I_n+CC')^{-1}C.$$

Lemma 2. Suppose A is a $(p+q) \times (q+p)$ non-negative definite matrix, $\lambda_1 \gg \lambda_2 \gg \cdots \gg \lambda_{p+q}$ are the eigenvalues of A, t_1 , t_2 , \cdots , t_{p+q} are the eigenvectors of A corresponding to λ_1 , λ_2 , \cdots , λ_{p+q} , respectively,

$$T = (t_1, t_2, \dots, t_{p+q}) = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}_q^p$$
 $p \qquad q$

and det $T_{22} \neq 0$.

Denote

$$M(B) = (I_q + BB')^{-\frac{1}{2}} (-B, I_q) A \binom{-B}{I_q} (I_q + BB')^{-\frac{1}{2}}$$

Then

(i) Min trace
$$M(B) = \sum_{j=p+1}^{p+q} \lambda_{jj}$$

(ii)
$$\underset{B \in \mathscr{B}}{\text{Min}} \det M(B) = \prod_{j=p+1}^{p+q} \lambda_j;$$

(iii)
$$\underset{B \in \mathscr{B}}{\text{Min}} \det (I_q + M(B)) = \prod_{j=p+1}^{p+q} (1 + \lambda_j);$$

(iv)
$$\min_{B \in \mathscr{B}} \lambda_1(MB) = \lambda_{p+1}$$
,

where $\lambda_1(M)$ denots the largest eigenvalue of M;

$$(v)$$
 Max trace $(I+M(B))^{-1} = \sum_{j=p+1}^{p+q} (1+\lambda_j)^{-1}$

and all previous extremums are attained when $B = B_0 = -(T'_{22})^{-1} T'_{12}$, where \mathscr{B} is the set of $q \times p$ matrices.

Lemma 3. Suppose A is a $(p+q) \times (p+q)$ nonnegative definite matrix, the meanings of λ_i , T and T_{ij} are the same as those of Lemma 2, and det $T_{11} \neq 0$. Denote

$$N(D) = (I_p + DD')^{-\frac{1}{2}} (I_p, -D) A \begin{pmatrix} I_p \\ -D' \end{pmatrix} (I_p + DD')^{-\frac{1}{2}}.$$

Then

(i)
$$\max_{D \in \mathscr{D}} \operatorname{trace} N(D) = \sum_{j=1}^{p} \lambda_{j};$$

(ii)
$$\underset{D \in \mathscr{D}}{\operatorname{Max}} \det N(D) = \prod_{j=1}^{p} \lambda_{j};$$

(iii)
$$\max_{D\in\mathscr{D}}\det(I_p+N(D))=\prod_{j=1}^p(1+\lambda_j);$$

(iv)
$$\max_{D \in \mathcal{D}} \lambda_p(N(D)) = \lambda_p$$

where $\lambda_p(N)$ is the smallest eigenvalue of N;

(v)
$$\min_{D \in \mathscr{D}} \operatorname{trace} (I_p + N(D))^{-1} = \sum_{j=1}^{p} (1 + \lambda_j)^{-1}$$

and all previous extremums are attained when $D=D_0=-(T'_{11})^{-1}$ T'_{21} , where $\mathscr D$ is the set of $p\times q$ matrices.

It is easy to verify the previous lemmas, so these proofs are omitted.

§ 3. Invariant Tests

The hypothesis (1.5) can be expressed as follows:

$$H_0 = \bigcup_{\mathcal{O}} H_0(\mathcal{O}), \tag{3.1}$$

where the hypothesis $H_{\mathbf{0}}(C)$ is

$$H_0(O): \eta = C\theta. \tag{3.2}$$

Therefore, for every fixed matrix C, $H_0(C)$ is an ordinarily linear hypothesis; it has been discussed by many authors and several testing statistics have been obtained by using invariant principle and various criterions. Now we use the Intersection-Union principle on the basis of the testing region of $H_0(C)$ to derive the testing region of H_0 .

Suppose T(C) is a testing statistic of $H_0(C)$ and $T(C) > d_a$ is the corresponding

rejection region. Because the hypothesis H_0 is the union of all hypotheses $H_0(O)$, if one wants to reject H_0 then he will have to reject $H_0(C)$ for every O. Consequently, by Intersection-Union principle we see that the testing statistic of H_0 is

$$T = \operatorname{Min}_{C} T(O)$$

and the corresponding rejection region is

where n is chosen such that the level of significance equals to d, i.e.

$$P_{H_0}(T>d) \leq d$$
.

In the following, firstly various statistics T(C) for $H_0(C)$ are derived, where C is a known matrix, by invariant principle, and then we derive the corresponding T from T(C).

Denote

$$D = \begin{pmatrix} I_{\mathfrak{p}} \\ C \end{pmatrix}.$$

Then

$$DD^{+} = \binom{I_{p}}{C} (I_{p} + C'C)^{-1} (I_{p}, C')$$

and DD^+ is a projective matrix. So there exists an orthogonal matrix U, $U'U=I_{p\times \Phi}$ such that

$$DD^{+} = U \begin{pmatrix} I_{p} & 0 \\ 0 & 0 \end{pmatrix} U'.$$

Let

$$W = \left(\begin{array}{c} W_1 \\ W_2 \end{array}\right) q = U' \left(\begin{array}{c} Y_1 \\ Y_2 \end{array}\right).$$

Then

$$\begin{split} &U'(DD^{+})\binom{Y_{1}}{Y_{2}} = \binom{W_{1}}{0},\\ &\overline{U}'(I_{p+q} - DD^{+})\binom{Y_{1}}{Y_{2}} = \binom{0}{W_{2}},\\ &EW_{1} = \overline{U}'_{1}\binom{\theta}{\eta},\\ &EW_{2} = \overline{U}'_{2}\binom{\theta}{\eta}, \end{split}$$

where $\overline{U} = (\overline{U}_1, \overline{U}_2)$.

Because $\mathcal{M}(D) = \mathcal{M}(U_1) \perp \mathcal{M}(U_2)$, where $\mathcal{M}(A)$ expresses the linear subspace generated by the column vectors of A, it is obvious that $\eta = C\theta$ is equivalent to

 $EW_2=0$. Hence, the previous testing problem may be reduced to the following testing problem: the joint density function family of W_1 , W_2 and Y_3 is

$$\mathcal{F}_{1} = \{ |\Sigma|^{-\frac{n}{2}} f(\Sigma^{-\frac{1}{2}} [(W_{1} - M_{1})'(W_{1} - M_{1}) + (W_{2} - M_{2})'(W_{2} - M_{2}) + Y_{3}'Y_{3}] \Sigma^{-\frac{1}{2}') | M_{1} \in \mathbb{R}^{pk}, M_{2} \in \mathbb{R}^{qk}, \Sigma \in \mathcal{S}(k) \}$$

$$(3.3)$$

and the tested hypothesis $H_0^*(C)$

20 10 82 20 20

$$H_0^*(O): M_2 = 0. (3.4)$$

Let G be a transformation group acting on (W_1, W_2, Y_3) ,

$$G\!=\!O(p)\times O(q)\times O(n\!-\!p\!-\!q)\times GL(k)\times R^{pk}.$$

For every tranformation $g \in G$,

$$g(W_1, W_2, Y_3) = (\Gamma_1 W_1 A' + \alpha, \Gamma_2 W_2 A', \Gamma_3 Y_3 A'),$$

where $\Gamma_1 \in O(p)$, $\Gamma_2 \in O(q)$, $\Gamma_3 \in O(n-p-q)$, $A \in Gl(k)$ and $\alpha \in R^{pk}$, and the corresponding induced transformation acting on the parameter space (M_1, M_2, Σ) is \overline{g} :

$$\bar{q}(M_1, M_2, \Sigma) = (\Gamma_1 M_1 A' + \alpha, \Gamma_2 M_2 A', A \Sigma A').$$

It is easy to verify that the testing problem, described by (3.3) and (3.4), remains invariant under G and that the maximal invariant statistics are the all eigenvalues of the following equation (see [1] and [4])

$$\det(W_2'W_2 - \lambda Y_3'Y_3) = 0. \tag{3.5}$$

Because

$$W_{2}'W_{2} = (Y_{1}', Y_{2}') (I_{p+q} - DD^{+}) \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix}$$

$$= (Y_{1}', Y_{2}') \begin{pmatrix} I_{p+q} - \begin{pmatrix} I_{p} \\ C \end{pmatrix} (I_{p} + C'C)^{-1} (I_{p}, C) \end{pmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix}$$

$$= (Y_{2} - CY_{1})' (I_{q} + CC')^{-1} (Y_{2} - CY_{1}), \qquad (3.6)$$

the equation (3.5) may be rewritten as

$$\det ((Y_2 - CY_1)'(I_q + CC')^{-1}(Y_2 - CY_1) - \lambda_3 Y_3' Y_3) = 0.$$
 (3.7)

Hereafter we assume that $n \ge p + q + k$ and $p \le k \le p + q$. Then $P(\det(Y_3'Y_3) = 0)$ = 0 holds.

Let $\lambda_1^* \gg \lambda_2^* \gg \cdots \gg \lambda_{p+q}^* \gg 0$ be the eigenvalues of the matrix A,

$$A = {\binom{Y_1}{Y_2}} (Y_3'Y_3)^{-1} (Y_1', Y_2'), \qquad (3.8)$$

and $\lambda_1 \gg \lambda_2 \gg \cdots \gg \lambda_k \gg 0$ be the eigenvalues of the matrix $(Y_1'Y_1 + Y_2'Y_2)(Y_3'Y_3)^{-1}$. Because the non-zero eigenvalues of A are the same as those of $(Y_1'Y_1 + Y_2'Y_2) \times (Y_3'Y_3)^{-1}$, the following results hold:

$$\lambda_i^* = \lambda_i$$
, if $1 \le i \le k$, $\lambda_j^* = 0$, if $k < j \le p + q$.

Below, we derive the corresponding testing statistics by various criterions.

(1) Lawley-Hotelling criterion.

The rejection region of $H_0(C)$ based on Lawley-Hotelling criterion is $T_1(C) > d_{\alpha}$, where

$$\begin{split} T_1(C) &= \operatorname{trace} \left((Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) (Y_3'Y_3)^{-1} \right) \\ &= \operatorname{trace} \left((I_q + CC')^{-\frac{1}{2}} (-C, I_q) A \binom{-C'}{I_q} (I_q + CC')^{-\frac{1}{2}} \right). \end{split}$$

Using Iemma 2 (i) and $P(\det T_{22}=0)=0$, we see that the testing statistic of H_0 associated with $T_1(C)$ is

$$T_1 = \min_{C \in \mathcal{B}} T_1(C) = \sum_{j=p+1}^{p+q} \lambda_j^* = \sum_{j=p+1}^k \lambda_j, \tag{3.9}$$

where \mathscr{B} is the set of all $q \times p$ matrices.

(2) Wilks-P. L. Hsu criterion.

The rejection region of $H_0(C)$ based on Wilks, P. L. Hsu criterion is $T_2(C) > d_a$, where

$$\begin{split} T_2(O) = &\det(I_k + (Y_2 - OY_1)'(I_q + OO')^{-1}(Y_2 - OY_1)(Y_3'Y_3)^{-1}) \\ = &\det\bigg((I_q + (I_q + OO')^{-\frac{1}{2}}(-O, I_q)A\binom{-O'}{I_q}(I_q + OO')^{-\frac{1}{2}}\bigg). \end{split}$$

Using Lemma 2(iii) and $P(\det T_{32}=0)=0$, we see that the testing statistic of H_0 associated with $T_2(O)$ is

$$T_2 = \underset{O \in \mathcal{B}}{\text{Min}} \ T_2(O) = \prod_{j=p+1}^{p+q} (1 + \lambda_j^*) = \prod_{j=p+1}^* (1 + \lambda_j), \tag{3.10}$$

where \mathscr{B} is the same as that of (3.9). This testing statistic T_2 is the same as the likelihood ratio test statistic (see [3]).

(3) Generalized correlation coefficient criterion.

The rejection region of $H_0(C)$ based on the generalized correlation coefficient criterion is $T_3(C) > d_a$, where

$$\begin{split} T_3(O) &= \operatorname{trace} \left([Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) + Y_3'Y_3]^{-1} \right. \\ &\times \left(Y_2 - CY_1 \right)' (I_q + CC')^{-1} (Y_2 - CY_1) \right) \\ &= \sum_{j=p+1}^{p+q} \frac{\lambda_j \left((Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) (Y_3'Y_3)^{-1} \right)}{1 + \lambda_j \left((Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) (Y_3'Y_3)^{-1} \right)}, \end{split}$$

where $\lambda_1(x) \geqslant \lambda_2(x) \geqslant \cdots \geqslant \lambda_m(x)$ express the order eigenvalues of the $m \times m$ matrix X.

Because x/(1+x) is a monotone increasing function with regard to x when $x \ge 0$, using Lemma 2 and $P(\det T_{22}=0)=0$ we see that the testing statistic of H_0 associated with $T_3(C)$ is

$$T_3 = \underset{C \in \mathcal{D}}{\text{Min}} \ T_3(C) = \sum_{j=p+1}^{p+q} \frac{\lambda_j^*}{1 + \lambda_j^*} = \sum_{j=p+1}^* \frac{\lambda_j}{1 + \lambda_j}. \tag{3.11}$$

(4) Roy's extremum criterion.

The rejection region of $H_0(C)$ based on Roy's extremum criterion is $T_4(C) > d_x$, where

$$T_4(C) = \lambda_1 ((Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) (Y_3'Y_3)^{-1})$$

$$= \lambda_1 ((I_q + CC')^{-\frac{1}{2}} (-C, I_q) A \begin{pmatrix} -C' \\ I_q \end{pmatrix} (I_q + CC')^{-\frac{1}{2}} .$$

Using Lemma 2(iv) and $P(\det T_{22}=0)=0$, we see that the testing statistic of $H_{\mathbf{c}}$ associated with $T_{\mathbf{4}}(C)$ is

$$T_4 = \underset{O \in \mathcal{B}}{\text{Min }} T_4(O) = \lambda_{p+1}^* = \lambda_{p+1}.$$
 (3.12)

(5) Pillai criterion.

The rejection region of $H_0(C)$ based on Pillai criterion is $T_5(C) > d_x$, where

$$\begin{split} T_5(C) &= \operatorname{trace}((Y_3'Y_3) \left[(Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) + Y_3'Y_3 \right]^{-1}) \\ &= \operatorname{trace}(\{Y_3'Y_3\}^{-1} (Y_2 - CY_1)' (I_q + CC')^{-1} (Y_2 - CY_1) + I)^{-1} \\ &= \operatorname{trace}(I_q + (I_q + CC')^{-1/2} (-C, I_q) A \begin{pmatrix} -C \\ I_q \end{pmatrix} (I_q + CC')^{-1/2})^{-1} + (k - q) + CC' + (k - q), \end{split}$$

Here T(C) is

$$T_5(C) = \operatorname{trace}(I_q + CC')^{-1/2}(-C, I_q) A \begin{pmatrix} -C' \\ I_q \end{pmatrix} (I_q + CC')^{-1/2'})^{-1}.$$

Using Lemma 3(v) for $T_5(C)$ and $P(\det T_{11}=0)=0$, we see that the testing statistic of H_0 associated with $T_5'(C)$ is

$$T_5 = \underset{C \in \mathcal{B}}{\text{Min}} \ T_5(C) = \sum_{j=1}^q (1 + \lambda_j^*)^{-1} = \sum_{j=1}^q (1 + \lambda_j)^{-1}.$$
 (3.13)

§ 4. Some Asymptotic Properties

In this section, we assume that Y is a normal random matrix, i.e. the distribution of Y is the normal distribution $N(M, I_n \Sigma)$, where $M = \begin{pmatrix} \theta \\ \eta \\ 0 \end{pmatrix}$, and $n \ge p + q + k$, $p \le k \le p + q$.

Theorem 4.1. Suppose

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} q \sim N(M_n, I_n, \Sigma),$$

$$k$$

$$M_{n} = \begin{pmatrix} \theta \\ \eta \\ 0 \end{pmatrix} p$$

$$(4.1)$$

Let
$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_k$$
 be all eigenvalues of the following equation (4.2)

$$\det (Y_1'Y_1 + Y_2'Y_2 - Y_3'Y_3) = 0$$
(4.2)

and $\tau_1^{(n)} \geqslant \tau_2^{(n)} \geqslant \cdots \geqslant \tau_k^{(n)} \geqslant 0$ be the eigenvalues of the following equation

$$\det\left(\frac{1}{n}M'_{n}M_{n}-\tau\Sigma\right)=0.$$

If $\lim \tau_i^{(n)} = \tau_i$, $i = 1, \dots, k$, and $\tau_1 \geqslant \tau_2 \geqslant \dots \geqslant \tau_s > 0$, $\tau_{s+1} = \dots = \tau_k = 0$, then

- (i) $\lambda_1, \dots, \lambda_s$ and $\lambda_{s+1}, \dots, \lambda_k$ are asymptotically independent;
- (ii) the joint distribution density of $n\lambda_{s+1}$, ..., $n\lambda_k$ is asymptotically given by

$$C_{1} \prod_{i=s+1}^{k} x_{i}^{\frac{p+q-k-1}{2}} e^{-\frac{k}{2} \sum_{i=s+1}^{k} x_{i}/2} \prod_{i < j} (x_{i} - x_{j}),$$
if $x_{s+1} > x_{s+2} > \dots > x_{k} > 0$ (4.3)

(iii) further, if $\tau_1 = \tau_2 = \dots = \tau_{k_1} > \tau_{k_1+1} = \dots = \tau_{k_1+k_2} > \dots > \tau_{k_1} + \dots + k_{m-1} + 1 = \dots$ $= \tau_{k_1} + \dots + k_m, \quad k_1 + k_2 + \dots + k_m = s, \quad \text{then} \quad (\lambda_1, \dots, \lambda_{k_1}), \quad (\lambda_{k_1+1}, \dots, \lambda_{k_1+k_2}), \quad \dots, \quad (\lambda_{k_1+\dots+k_{m-1}+1}, \dots, \lambda_{k_1+\dots+k_m}) \quad \text{are asymptotically independent and the asymptotic distribution density of } \sqrt{n} \quad (\lambda_{k_1+\dots+k_{j+1}} = \tau_{k_1+\dots+k_{j+1}}, \dots, \lambda_{k_1+\dots+k_{j+1}} - \tau_{k_1+\dots+k_{j+1}}) / \sqrt{2\tau_{k_1+\dots+k_{j+1}}^2 + 4\tau_{k_1+\dots+k_{j+1}}} \quad \text{is}$

$$C_{2}e^{-\sum_{j}y_{j}^{2}}\prod_{i>j}(y_{i}-y_{j}), if y_{k_{1}+\cdots+k_{j+1}}>\cdots>y_{k_{1}+\cdots+k_{j+1}}>0,$$

$$(4.4)$$

where C_1 and C_2 are the regularizing constants.

(The proof of this theorem can be found in [5]).

Theorem 4.2. Suppose
$$Y \sim N(M, I_p, \Sigma)$$
, $M = \begin{pmatrix} \theta \\ \eta \\ 0 \end{pmatrix}$, $n > p+q+k$, $p \le k \le p+q$,

and $rk \theta = p$. Then when the hypothesis (3.2) is true, the asymptotic distributions of T_1 , T_2-1 and T_3 defined by (3.9), (3.10) and (3.11) are the same, nT_1 is asymptotic chi-square distribution with (k-p)q degree of freedom, and therefore the testing methods T_1 , T_2 and T_3 are asymptotically equivalent.

Proof Because $rk\theta = p$, $\theta'\theta + \eta'\eta = \theta'(I_p + CC)\theta$ holds when H_0 is true. Hence H_0 is true $\Leftrightarrow rk(\theta'\theta + \eta'\eta) = p$.

From this, we get $\tau_1 > \dots > \tau_p > 0$ and $\tau_{p+1} = \dots = \tau_k = 0$ when H_0 is true. Using Theorem 4.1 we prove that $\lambda_1 \cdots \lambda_p$ and $\lambda_{p+1}, \cdots, \lambda_k$ are asymptotically independent and that the joint density function of $n\lambda_{p+1}, \cdots, n\lambda_k$ is asymptotically given by

$$c_1 \prod_{j=p+1}^k x_j^{(p+q-k-1)/2} e^{-\sum_{j=p+1}^k x_i/2} \prod_{i < j} (x_i - x_j), \quad \text{if} \quad x_{p+1} > x_{p+2} > \dots > x_k > 0. \tag{4.5}$$

From (4.2), it is easy to verify that $nT_1 = n \sum_{j=p+1}^k \lambda_j$ is asymptotically $\chi^2((k-p)q)$ distribution.

Since

$$T_2 = \prod_{j=p+1}^k (1+\lambda_j) = 1 + T_1 + \sum_{i \neq j} \lambda_i \lambda_j + \dots + \lambda_{p+1} \dots \lambda_k$$

$$n\left(\sum_{i \neq j} \lambda_i \lambda_j + \dots + \lambda_{p+1} \dots \lambda_k\right) \xrightarrow[n \to \infty]{\Pr} 0$$

and

$$T_3 = \sum_{j=p+1}^k \frac{\lambda_j}{1+\lambda_j} = T_1 - \sum_{j=p+1}^k \frac{\lambda_j}{1+\lambda_j}$$

$$n \sum_{j=p+1}^k \frac{\lambda_j^2}{1+\lambda_j} \xrightarrow{Pr} 0,$$

we see that the asymptotic distributions of T_1 , T_2-1 and T_3 are the same and that T_1 , T_2 and T_3 are asymptotically equivalent.

Theorem 4.3. Suppose the conditions of Theorem 4.2 hold. When Ho is true, let F(x) be the asymptotic distribution of nT_4 , then

(i) if k-p=2m,

$$F(x) = \frac{c}{m!} \int_0^x \cdots \int_0^x \det \begin{pmatrix} F_1(t_2) & g_1(t_2) & F_1(t_4) & \cdots & g_1(t_{2m}) \\ \cdots & \cdots & \cdots & \cdots \\ F_{2m}(t_2) & g_{2m}(t_2) & F_{2m}(t_4) & \cdots & g_{2m}(t_{2m}) \end{pmatrix} \prod_{j=1}^m dt_{2j}, \quad (4.6)$$

(ii) if
$$k-p=2m+1$$
,

$$F(x) = \frac{c}{m!} \int_{0}^{x} \cdots \int_{0}^{x} \det \begin{pmatrix} F_{1}(t_{2}) & g_{1}(t_{2}) & F_{1}(t_{4}) & \cdots & g_{1}(t_{2m}) & F_{1}(x) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ F_{2m+1}(t_{2}) & g_{2m+1}(t_{2}) & F_{2m+1}(t_{4}) & \cdots & g_{2m+1}(t_{2m}) & F_{2m+1}(x) \end{pmatrix}^{m} dt_{2j}$$

$$= \frac{c}{m!} \sum_{i=1}^{2m+1} (-1)^{i+1} F_{i}(x) \int_{0}^{x} \cdots \int_{0}^{x} C_{i} \prod_{i=1}^{m} dt_{2j}, \qquad (4.7)$$

where D_i is the subdeterminant corresponding to $F_i(x)$, c is given by

$$\mathbf{c} = \pi^{(k-p)2/2} \prod_{j=1}^{kp} \frac{\Gamma\left(\frac{p+q-k+2)-1}{2}\right)}{\Gamma\left(\frac{k-p-j+1}{2}\right)\Gamma\left(\frac{q-j+1}{2}\right)},\tag{4.8}$$

 $g_j(x)$ is the density function of $\chi^2(p+q-k+2j-1)$ and $F_j(x)$ is the distribution function of $\chi^2(p+q-k+2j-1)$, $j=1, \dots, k-p$.

Proof When H_0 is true, the joint density function of \sqrt{n} $\lambda_{p+1}, \dots, \sqrt{n}$ λ_{k} is asymptotically given by (4.5), where

$$C_1 = \frac{\pi^{(k-p)2/2}}{2^{(k-p)q/2}} \prod_{j=1}^{k-p} \frac{1}{\Gamma(\frac{k-p-j+1}{2})\Gamma(\frac{q-j+1}{2})}.$$

Then, the results of this theorem are obtained soon by using the results of [6].

Theorem 4.4. If the conditions of Theorem 4.2 hold, then testing methods T₁, T_2 , T_3 and T_4 are all consistent tests.

Proof Here we give the proof only for T_4 , the proofs of T_1 , T_2 and T_3 are all similar to that of T_4 . For the testing statistic T_4 , the corresponding rejection region is

$$T_4 = \lambda_{p+1} > C_{an}$$

where C_{an} is chosen such that $P_{H^0}(\lambda_{p+1} > C_{an}) = \alpha$.

When H_0 is true, the asymptotical distribution density of n λ_{p+1} is determined

exactly by (4.3) (here s=p). Then we get $nC_{\alpha n} \xrightarrow[n \to \infty]{} C_{\alpha}$, $0 \leqslant C_{\alpha} < \infty$. However, when H_0 is not true, from (4.4), it is clear that \sqrt{n} ($\lambda_{p+1} - \tau_{p+1}$) has non-degenerate asymptotic distribution denoted by $F_1(x)$, where $\tau_{p+1} > 0$. Hence, when H_0 is not true,

$$P(\lambda_{p+1}>C_{\alpha n})=P(\sqrt{n}\ (\lambda_{p+1}- au_{p+1})>\sqrt{n}\ (C_{\alpha n}- au_{p+1})).$$
 Since $\sqrt{n}\ (C_{\alpha n}- au_{p+1})\underset{n o\infty}{\longrightarrow}-\infty$, we obtain $P(\lambda_{p+1}>C_{\alpha n})\underset{n o\infty}{\longrightarrow}1,$

i.e., the testing method based on T_4 is a consistent test.

For the Model II, we can also obtain results similar to those of the Model I.

References

- [1] Zhang Yaoting and Bian Guorui, A hypothesis testing problem in the linear model, Chin. Ann. of Math., 3: 2(1982), 153—158
- [2] Zhang Yaoting and Bian Guorui, The universal linear hypothesis testing in the linear models, Acta Math. Scientia, 1: 3-4(1981), 387-394.
- [3] Bian Guorui and Zhang yaoting, Maximum likelihood estimators and likelihood ratio tests of the linear functional relationship with the left O(n)-invariant errors (to submit to J. of Mathematical Research and Exposition).
- [4] Kariya, T., Robustness of multivariate tests, Ann. of Statist., 9: 6(1981), 1267—1275.
- [5] Auderson, T. W., The Asymptotic distributions of certain characteristic roots and vectors, Proceedings of and Berkely Symposium on Math. Statist. and Prob, 1950.