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THE REGULAR COMPONENTS OF THE
AUSLANDER—REITEN QUIVER OF A
TILTED ALGEBRA
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Abstract

Let B be a connected finite-dimensional hereditary algebra of infinite representation

" type. It is shown that there exists a regular tilting B-module if and only if B is wild and

has at least three simple modules. In this way, the author determines the possible: form of
regular components. which arise as a connecting component ofthe Auslander—Reiten .
quiver I'(4) of a tilted algebra A. The second result asserts that for a tilted algebra 4,

any regular component of I'(A) which is not a connecting component, is quasi —serial,

Let k& be a field. A finite dimensional k-algebra A is said to be a filted algebra
pr0V1ded 4 is the endomorphism ring End GT) of a tilting module 5T over a finite
dlmensmnal heredltary k—algebra B(seo [10]). A component of the Auslander—Relten
qu1ver I'(4) of A4 ‘which does not contain mdecomposable modules which are
prOJectlve or injective, is said 0 be regular In this paper, we are going to determine
the structure of the regular components of I"(4), when A ig a filted algebra.

So suppose B ig a finite dimensional connected hereditary k-algebra of infinite
represéntation type, 5T a tilfmg module, and A=FEnd (z7"). lf BT is preprojective or
preinjective (so that A4 is a concealed algebra) the regular components of A correspond
10 the regular components of B, thus all are quasi-serial 15,21, S0 we may assume that
A is not a concealed algebra. In this case, A has preclsely one connectmg componentm’,
and the connecting component is regular if and only if 57 is a regular B—
module. If the connecting component is regular, it is of the form ZA(B*) where 4(B*
~ is the valued quiver of the opposite algebra B*. Our first Theorem will give the
precise conditions on B for the existence of a regular tilting B-module; in this way we
determine the possible form of regular components which arise as connecting
components for tilted algebras. This theorem has been announced, under the additional
assumption on % to be algebraically closed, at the Puebla conference 1980. Qur second
resnlt asserts that for a tilted algebra all other regular components are quasi-serial.
The proof follows rather closely that- of the corresponding result for hereditary
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algebras. The combinatorial part of the proof is separated in Section 2. Note that
according to [15], an algebra 4 is a tilted algebra if and only if the category A-mod
- of all A-modules contains a slice.. In an append_lx ‘we present a ‘modification of the
definition of a slice which shows directly that the notion of a slice is self-dual. The
terminology used in this paper follows rather closely [15] '

§ 1. Existence of Regul_ar ,,’lfiltzipg Modules

Theorem. Let B be a connected finite-dimensional hereditary algebra of infinite
representation type. Thére exists @ regular télting module if and bnly 4f B s wild and
has at least three simple modules. _ .

Proof If B ;h_as' precisely two simple modules, ‘any indecomposable . regular
module X -satisfies Ext'(X, X) +#0 (see. [12]), thus there cannot exist a regular
tilting module. If B is tameé, and X is a regular tilting nﬁodule', then dim X lies in
the proper subspace of Ko(B) given by all vectors with zero defect, whereas the
dimension vectors of the indecomposable summands of a tilting module will gehérate
Ko(B). | AP

For the proof of the converse, we will need some preparatlons The following
lemma is well-known. (Let us remark that one may strengthen the conclusmn
conmderably (see [6, 14].) For the convenience of the reader, we sketch the proof.

w; Lemma 1. Let C be @ connected finite-dimensiondl hereditary algebra of fmﬁmté
represenmtfz,on type. Let P P’ be indecomposable projective O—mod/ules Then dimy Hom
(P, v"P") is unbounded, for n €N.

Proof Let Py, «-+; Pp, be the indecomposable progectlve B-modules, Qy, *+, Qm
the indecomposable mjectlve B-modules, with top P;=soc Qi, for 1<i<m. Let z;=
lun d_1m,, Hom (P, 27"Py), an element in N U {oo} Since C 1s of 1nﬁn1te representatlon

type the length of the 1ndecomposable preprojective O'—modules is unboundedm thus
not all 2i; can be finite. Let rad®(P,, P;) #rad(P,, P;). Then, the Auslander-Reiten
sequence starting in. 77"P, has 7 "P; a8 a direct summand of its middle,term, thus 2;<<
2z for all ¢. Also, the Auslander~Reiten sequence starting:in 7 "P; has 7**'P, as a
direct sﬁmmand of its middle term, thus 'z,fs<2zit for _‘all 4. Note thaf ‘dimy, Hom (P,
77"P;) =dim;, Hom (3"Qs, @), for all 4, j, and n. Since the Auslander-Reiten sequence
ending in 7"Q; has v°Q, as a direct summand of its middle term, we ‘;see that 2e<<2%;
for all j. Finally, the Auslander-Reiten sequence ending in +"Q, has 2"*'Q; as a direct
summand of its middle term, thus z;< 2z, for all g It followé,fﬁhat 2;;=oo for all 4, j.
| o M
0 D]
The B-modules may be written in the form X = [X 05 X ws 7Yx), Where X, is a O-

If O, D are rings and M is a O-D=bimédule, we may form ’ﬁhe Ting. B l:
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modules, X, a D-module, and 7x M ® X .—>Xo a C-linear map. There are two full

embeddmgs of the catogory of all O-modules into the category of all B-modules.
First of all, we may identify the C—module ¥ with the B-module (¥, O, 0); second,
we may send the O—-module ¥ to the B-module ¥ = (¥, Homg (M Y), ex), Where ex:
M 6;) Hom (M, Y)—Y is the evaluation map. In case D is a division ring, the B-

module P(w)= (M,‘ D, w) with u: M @D—)M the multiplication map, is

indecomposable and projective, its radical is M, and we denote its top by H(w)=
Plw)/M. '
‘ As a consequence, we obtain ‘the following lemma.
Lemma 2. Let C be a comnected ﬁn@te—d'zxmenswnal hereditary k-algebra of
mﬁn@te fl‘epfr'esentatwn type, and M @ non~zero projective O-module. Let D be a k-

c M '
wbalgebm of End(¢M) which q}s a d'z}m}sq';ofn frq}ng. Let B=[O D]" Tlen almost all

indecomposable préprojective O-modules are regular when considered as B-modules.
Proof - Let M=M;@ My with M; indecomposable. The exact sequence
0> M@ My—> P(0)—> E(w)—0
shows that dim,Ext(F(w), N)=dim,Homz(M,, N) for any OC-module N .
According to the lemma, dim;Hompg (M4, —) ~ dim;, Homg (M4, —) is unbounded on
the set of indecomposable preprojective C-modules. Thus, also dim,Ext} (B(w), —) is
unbounded on the set of indecomposable preprojective . C-modules. Choose some
indecomposable preprojective C-module N with
dimgnaaepExt (B (@), N) «dim Ext*(# (»),N) Eud(m>4
Of course, End (¥ (w)) =D; and we denote by & the endomorphism ring of N.

Let N be the full subcategory of all B—modules (Xo, X, vx) with X, a direct
sum of copies of N. The category N is.equivalent to the category of representations of
the H-D-bimodule Hom; (Ext'(E(w), N), k). By our choice of N ,. this bimodule is of
infinite representafion “type, thus there are infinitely many isomorphism classes of
indecomposable B-modules belonging to N. The B-module N is injective as an object,

_in N, Thus, for any indecomposable object X :in N different from E(w), there is a
non-trivial map X—>N. It follows that N cannot be a preprojective B-module. On
the other hand, 75N =77V (see[15], 2.5.6). Thus, the preprojective C-module 75N
. ismot a preprb'jective B-module. Since the set .of  preprojective modules is closed
under predecessors, it follows that there are at most finitely many indecomposable C—
modules which are preprojective as B-modules. Of. course, an indecomposable

preprojective C-module cannot be preinjective as B-module. This finishes the proof.

The following result is a variant of an argument due to Bongartz™.

Lemma 8. Let C be a finite-dimensional k-algebra, let¢ M be o non—zero
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projective C—module, and let D be a b-subalgebra of End (¢M), which is a division
. M

ring. Let B=[0 D
@ndecomposable B-module Y with the following properties:

(a) S®Y is a tilting B-module, | .

(b) there is an ewact sequence O0—>8"—>Y —E (w)—>0 with 8’ a non~zero direct sum
of direct summands of S. ’ '

- Proof Let Hy «-, E, be a h-basis of Exti(E(w), §). Consider the
corresponding exach sequence

(Ei),"O—-> @S—»Y'—»E(w)’—;b-

]. Let 8 be a tilting O-module.” Then, there exists an

One easﬂy checks that S(—BY ’ has no self-extensions (first, apply Hom(—, S) in order
to see that Ext* (Y, 8) =0; apply Hom (8, —) in order to see that Ext(S, ¥”) =0;
finally, apply Hom(¥’, —) in order to see that Ext#(¥’, ¥’)=0). Fix some
decomposition of ¥’ into indecomposables. All but one direct summand will be
isomorphic fo direct summands of S, the remaining one, say ¥, will map onto B (w)
with kernel 8’ a direct sum of direct summands of S. In order to see that §'+0, we
only have to show Ext} (B (w), 8) #0. We apply Hom (—, §) to the exact sequence-
(%) 0—->M—->P(w)—->E(co)—->o

and obtain Ext} (E (), 8)=~Homp(M, 8), the latter being non-zero, since M is a
non-zero projective O-module and § is a tilting O-module. Also note that (x) shows
that proj-dim.H (w) =1, thus proj-dim.¥ <1. This finishes the proof.

The lemma will be applied in two different situations.

Corollary 1. Let C be a conmected Jindte~dimensional hereditary k-algebra of
infinite representation type, let M be @ non—zero projectine C~moaule, and let D be a k-

. . v O M
subalgebra of End (oM) which is a division ring. Let B=[0 D:!' Let 8 be a

p/rep/rojech}w tilting O—module which is regular as @ B-module. Then there ewists an
indecomposable B~module ¥ such that S@Y s a regular tilting B—module.

Proof Choose Y as in Lemma 2. Since ¥ has the non-zero regular submodule
S’, we see that ¥ cannot be preprojective. Also note that ¥ can be embedded into X,
Since 8 is a preprojective O-module, there are infinitely many indecomposable O—
modules N; with Homg(8’, N;) 0, and therefore Homp (S, N;) #0. This shows that
S’ cannot be preinjective, thus ¥ is not preinjective, :

Corollary 2. Let C be a connected finite~dimensional hereditary algebra, let M
be @ non—zero C-module which s projective but not énjective, and let D be a k—subalgebra

‘ o M
of End(¢M) which is a division ring. Let B= [0 D]. Let Q be the minimal injective
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cogenerator im C—mod. Then there exists an indecomposable B—module Y such that QDY
6s @ tilting B-module, and Homy(Q, Y') #0, Homz (Y, @) +0. In particular, if Qisa
regular B-module, then QDY is a regular tilting B—module.

. Proof Since @ is a tilting O-module, we can apply the lemma. We obtain ¥
with QG—)Y a tilting B-module and with an exact sequence

O-—-)Q’-—-)Y-—-)E(a))-—-)O _
where Q' is non-zero and injective. In particular, Hom(Q, Y) #0. We claim that top
Y is not simple. Otherwise, ¥ is. of the form ¥ =P (w) /U for some proper. submodule
U of P(w) First, assume U =0. Applying Hom(Q, —) to the exact sequence 0—>M —>
P(w)->E (w)—0, we obtain
0~Homj(Q, B(w))—> Ext}(Q, M)—>Ext} (@, P @)).
Since QPP (w) is a tlltmg B-module, Ext};(Q, P(w)) =0, thus Ext};(Q, M) =0. But
this implies that M is injective (consider a minimal injective resolution of M, it is a
short exact sequence which has to split). This contradiction shows that U=0 is
impossible. Thus, assume U #0. We apply Hom (—, Q) $0 the exact sequence 0—U —>
P(w)—>Y —0, and obtain _ v '
Homy (U, Q) =Ext;(Y, Q)

Since U +#0, and Qisa cogenerator, Homp U, @) #0. Since QRY" isa tilting module
'ExtB (¥,@) =0. This contradiction shows that also U0 is unpossﬂole Altogether, we
see that top Y is not simple. Thus ¥ maps onto a simple factor module F of @', Since
E is injective, K is a direct summand of @, thus Hom (¥, €) #0.

Let B be a connected finite-dimensional hereditary k-algebra. We assume that B
is bagic and not simple, and we denote by es, +--, ¢ a complete set of orthogonal
primitive idempotents. We denote by P(4) =Be, the indecomposable projective B-
module corresponding to ;. Let J be the radical of B. The species (F,iM ;) 1<s,jcn of B
is obtained as follows: let F, —e,;Be@, this is a division ring, and let M;=e,(J/J?)e;,
this is an Fi—-F; blmodule Denote dyy=dim GM;)p,, &ty =dimg, (M) . The valued quiver

A(B) of B has n vertices, say indexed by the number 1, +--, n, there is an arrow i—j
provided ,iM ;%0, and this arrow is endowed with the pair of numbers (d;, d;). Note
that the species of B, or even the valued quiver of B defermines the représentation
type of B, but B-mod is not necessarily equivalent to the category of fepresentafions
of its species (see [6]). In case w is a source of A(B) let e= ‘*Zwe,, let C =eBe, M=

0O DJ
With B also its opposite algebra B* is a finite-dimensional hereditary k-algebra;
we obtain 4(B*) from A(B) by changing the orientation of any arrow, replacing at
the same time the pair (di;, di;) by the pair (dj;, di;). The category of all B*-modules
is dual to the category of all B-modules, a duality is given ,by. forming the Z—dual.

i . c M
¢Be,, D=F,. Then B ig isomorphic to [ :l
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Note that the #~dual T of a regular tilting B-module 7' is a regular. tilting B*-
module, There is a second possibility of changing. the algebra but keeping rogular
tilting modules: Let @ be a sink in the valued quiver 4(B). Then.U(a) =7"P(a) @®
‘C;Ba P<(3) is a preprojective tilting B-module, and B(a) =End (U (a)) is a finite~dimen—
sional hereditary k-algebra. This process is a special case of a socalled APR-tilt (see.

[8]), it generalizes the well-known = reflection functors of Bernstein-Gelfand—
Ponomarev; we will call it the reflection at the vertéx" . The valued quiver of B(d)
is obtained from 4(B) by chang1ng the onentatlon of all arrows of 4(B) ending in
a, and by replacing for these arrows the numbers (dw, dhy) by (dis, dgp). Given any
vertex b of 4(B), there exists a ﬁnlue sequence of reflections such that b becomes a
sink, and also a finite sequence of reﬁectlons such that b becomies a<source (we even
may requn'e that b becomes the unique sink, or the unique source, respectively). Note
that for T a regular tilting B-moduls, and @ a sink of A(B), the B(a) —module HomB
(U(a), T) is a regular tilting B(a) “module. '

' 'With these preparations, we are going to show the ex:stence “of regular tlltlng
modules. Let B be a connected finite-dimensional hereditary k-algebra ‘which is wild
and has at least three simple modules. We may agsume that B ig basic. We choose ag
above, a complete set €1, ***, €n of orthogonal primitive 1dempotents and use the'
notation mtroauced there. o ‘

Let & be a connected valued subguiver of A(B) whlch is not a Dynkln dlagram )
and suppose there are vertices of A(B) which do not belong to 4. It lS éasy to see that
there exists a vertex o of A(B) such that the quiver 4" obtained from A(B) by
deletlng o (and all arrows startlng or endmg in w) i connected. We may assume

that o is a source, replacing otherwise B by an algebra obtamed from B by a ﬁnlte
c M
gsequence of reflections, We write B in the form I: 0 D} whe;qe A(C’) =4" and D=

F.,. Bince 4" is connected, and not a Dynkln dlagram C is of mﬁnlte representatlon» |
type. Lemma 2 shows that there are preprOJectlve tlltlng C’—modules S which are
regular when congidered a B-modules. Now Oorollary 1 shows the existence of a.
regular ‘Llltlng B—module .

 Let us derive several consequences. Since n>3 we seo that the exzstence of an
arrow with valuation (dy, di;) satisfying dyd},;>4 implies that B has a regular tilting
module. Thus, we can assume d;,d}; <8 for any arrow. Also, if dydl,=8 for some g, ‘7,'
and n>>4, then B has a regular tilting module. Thus, if d,dj;=8 for some g, j, then
we will assume n=38. Also, . if A(B) containg a cycle then 4(B) is. Just a prlmltlve
cycle (with some valuation).

First, we consider the case of 4(B) being a primitive cycle with some valuation.
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Up to duality and reflections, we may assume that the underlying quiver of 4(B) is of

" the form
Y 2(—-"——’3(—-——--«——# X ’
/. . N
1 rdg
LN /S
/ .

Pl @y fg—1

with r>2, s=>1, and dia=1, dis>>2. A

For since B is wild, at least one pair 4, 4 satlsﬁes d”d,,>2 We can assame that
dy;=1, otherwise replace B by B*. After a sequence of reflections at sqltable vertices
different from ¢ and j, we can assume that ¢ is tne only sink. Now, if j is not é'som;'_ce,_
then B is as stated, with =1, j=2. So, assume 7 is a sotirce. In this case, reﬂecﬁoﬁ at
the vertex ¢ and afterwards replacing ‘the algebra by its opposfﬁe glves the desu'ed
form, again with =1, j= =2,

0 M o o o |
We write B= [0 D:I, where 4(0) has the vertices 1, «-+, r+5—1, whereas D=
F,,,. We denote by Qu(3), 1<fi<fr+s—1‘the'indecomposable'ihjectiﬁe' C-module with
r+s—1 i o '
gocle K (3), thus Q= @ Q¢ (%) is the minimal in'jective cogenerator in C-mod. We

'will show that Q is a’ regular B—module As a consequence Gorollary 2 asserts the
exigtence of a regular tilting B—~module.

Consider the mdecomposable projective B-module P(r+s), it has a sub-module
U which is a direct sum of ., copies of P(r). Let X = P(rr+s) JU. Note that Homp
(P@), X ) 0, for 2<i<r. The modulés H(2), -,  B(r), and X are pairwise
orthogonal bricks, and Exth(H (fz,+1) E($))+0 for 2<'z,<rr Exty (B (r), X)*0,
Ext3(X, E(Q)) #0. Thus E(2), «-+, E(r), and X belong to a cycle in B-mod. This
shows that all these modules are regular B-modules; in particular Qu(r) =FE(r) is a
regular B-module. Similarly, for s>2, the module Qo (r+s~1)=FE(r+s—1) is a
regular B-modules. For 1<\¢<<r-+s—1, the module Q;(%) maps non-trivially to Q¢ (r)
or %0 Qu(r+s—1), thus all Q¢{¢) are preprojective or regular, On the other hand,
Q¢ (1) maps non—trivially to any Qu(3), 1<é<r+s—1. We will show that Q¢(1) is
not preprojective, this then implies that none of the modules Qu(3),” 1<i<r+s—1
can be preprojective. Take non-zero ﬁaaps‘ h:E(1)—>P(+) and #": E (1)—>X, and denote

. B
by Y the pushout of » and #’, thus the cokernel of [ B }: E()—>P(r)®@X. Iiis easy

to see that ¥ is indécomposable. Also, -using a projective resolution of ¥, one checks
without difficulty that Exth(Y, ¥) %0. The socle-of P(r) isa direct sum of copies of
E (1), and, since d}>>2, the socle of P (r) is not simple: Note that ¥ has a (unique)
submodule X’ isomorphic to X, and a submodule P’ isomorphie-to P(r) with P’ X’
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=Y, and P'N X’ isomorphic to K (1). It follows that Y/X'~P'/P'NX" has a
submodule of the form  (1). Since P'/P'N X’ is a C—module, Hom(Y /X', Qo(1))
#0, thus Homp (Y, Q¢(1)) +#0. Since ¥ is an indecomposable B-module with Extj
(¥, Y) %0, woe seo that Qg (1) cannot be preprojective.

It remains to consider the case where A(B) does not contain a cycle. Thus, leb
4(B) be a tree with some valuation. First, let dydj,<1 for all %, §, thus we may
neglect the valuation. It is well-known (and easy to see) that in this case 4(B)
containg a subquiver which is of the form @,,, Ee, Er,, or [Es, thus the existence of a
regular tilting B-module has been established above. Similarly, assume next that
d”d“<2 for a11 4, 4, and d,,d,,—2 for at least some pair 4, j- Now, either there is a
second pair s, ¢ with dgyd], =2, thus A(B) contains a subquiver of the form BB BO’
or,C"’\O’/,,, or there is a branchmg vertex in 4(B), and 4(B) contains a subquiver BD
or C,”'B,,/, or, finally, A(B) containg a subquiver of the form F,, or Fy. Always, there
is a connected subquiver which is not Dynkin, thus there exists a regular tilting B-
module. Thus, assume now +that d; wdiy =8 for some ¢, j. By previous considerations, we
know that n=8, thus, up to reflections, 4(B) is of the form

O €«—— 0 €«&—— 0

‘ S 1 2 3 :

with valuation (dys, dia) =(a, b), (des, dis) = (c, &), where ab =38, and 2<<ed<8 (the
case cd=1 would be tame) . The valuation may be read off from the dimension vectors
of the indecomposable projective B-modules P (3) and the indecomposable injective B~
modules Q(3), namely

dim P(1)=[1, 0, 0], dim P(2) =T[5, 1, O] dim P(3) = [bd, d, 1],

dim Q@) =[1, g, ac], dimQ(2) =0, 1, ¢], dim Q(8) = [o, 0, 17.
The Coxeter transformation @ (it is determined by the equalities (dim P(3))Zp=—
dim Q(3)) is given as follows:

-1 —~a —ac
@B-= b 2 2¢ »
0 d cd—1

where we have used gb=8. Consider now the module Qy(1); its dimension vector is
dim Q¢ (1) =[1, a, 0], and
| [1, a, 01®s=[2, g, ac],
[1, @, 0]19%=[1, acd, ac(cd—1)].

Since Qg (1) is not projective, dim 73Q¢(1) = (dim Q¢ (1) )Pz~ [2, a, ac], thus 75Q, (1)
is not projective. Therefore dim 23Q0 (1) = [1, acd, ac(cd—1)]. We see that there is a
non~trivial map 73Qo(1)—>Q (1), its kernel has dimension vector [0, u, ¢] with u>
ged—a=a(cd—1)>1. Thus, 75Q¢ (1) has a submodule of the form & (2) =Qy(2). This
shows that the B-modules @¢(2) and Q¢ (1) belong 1o a cycle in B-mod, thus they are
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regular B-modules. As a consequence, there exists a.regular tilting B-~module.
This finishes the proof of the theorem. , : ,

. In general, a valued quiver 4= (4o, 4, d, d') is given by a quiver (o, 4i)
without multiple arrbws, and two functions d, d’ defined on 4; with values in the set
N; of positive integers; if a: a—>b is an ‘al;row in 4;, we usually write dgp instead‘df
d(a), and d;; instead of d'(a). Recall that for any ﬁnite—dimensional algebra B, there
is defined its valued quiver A(B). A connected valued qmver 4 will be said 1o be
wild, provlded 4=A(B) for some wild finite-dimensional heredltary algebra B. Note
that 4 is wild if and only if i is neither a Dynkin diagram nor a Euclidean d1agram |
A valued translation quiver I'= (I, Ifi, d, &, %) is given by a Valued quiver (I,
Iy, d,d) anda tranélati_on quiver (T;,, Iy, 7) such that for any arrow y—2, with 2
non—projestive, we have d,,,=d,, and dr,,,=dy.. Given a valued quiver 4= (4, 4, d,
d"), there is defined, in the usual way, a valued translation quiver Z4 as follows:
(Z4)o=1Z x 4, thus the vertices of Z4 are pairs (3, @) with §€Z, a€ 4y; the trans—
lation 7 is given by 7;((@, @)) = (4—1, a); there are arrows (¢, @)—> (5, b) and (3, b)
—>(i+1, @), for any arrow a—>b in 4, and any §€Z and the valuation for these
-arrows is given by '

T ! —_ ! =
d(ifa)(b'b) = dob - d(’t, b)'('i+1yﬂ))d(.i,6)(iy b~ dab - d(i9 BG+1sa)

Let B be a connected, finite~-dimensional hereditary algebra, and T a tilting
module. The component of the Auslander-Reiten quiver I'(4) of A=End(T)
containing the isomorphism classes [Homgp(T, Q)], with @ an indecomposable
injective B-module, is called a connecting component. In case 5T, is not preprojective
or preinjective, I'(4) has a unique connecting component; in case pT' is regular, the
connecting component is of the form Z4 (B"). Thus, there is the following
congequence: '

Corollary. Let 4be a wild connected valued quiver with at least three vertices,

" Then there exists a finite-dimensional algebra A such that the Auslander—Reiten gquiver
I'(4) has @ component of the form ZA, '

Proof Let 4=A(B*) for some finite-dimensional hereditary algebra B let BT be
a regular tilting B—module, and 4= End(BT) Then, the connecting component of 4
has the form Z4,

§2. The Stable Valued Translation Quivers with a
Monotone, Strict Additive Function

Let I'= (I, I's, &, &, %) be a valued translation quiver. A function f: I'y—Z is
ealled an additive funetion for I" provided for any non—projective vertex z& Iy, .
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@)+ @) = 7 W)d,e.
A function f: I'e—>Z will be called strict provided f(#) #f(y) for every arrow z—>y.
Also; f will be called monotone provided: for every arrow a—>y, with both ver tices
@, y non-projective, ‘ f@)<f(y) implies f(z2)<f(wy). Of course, a strict function is
monotone if and only if for every arrow #—y with both @, y non-projective, f (w) <
S (y) implies f (7)) <f(zy), and this happens if and oniy if for every arrow o—>y
with both #, ¥y non—injective, f(2) >f(y) implies f(77#) >f(z"y). We are going t0
analyse the stable valued translation quivers which admit a monotone, strict, addltlve
functlon with values in the set Ny of non—negatlve integers.

We denote by A, the valued quiver with lNl1 ag set of vertices, with arrows a—a
41, for all ¢ €Ny, and with valuation d,,,,,,+1-1 dy,0.1, for all a€ N1 Note that A,
with the prescribed orientation has a unique source and no sink,

A finite valued quiver A= (4, 4, d, d’) will be called a star with center “¢,
prOV1ded the underlymg graph of (Ao, Ai) i8 a star with center c, and such. that in
addltlon ‘ e

da=1 for ac, and
dip=1 for b#c;
the number ;déﬁ_‘E& dep will be called the number of branches of 4. A typical

exampleé of a star ig the following valued quiver:

;'0—>0
/

0—>0 P
N
o) N / (AR
2 \(2 .
0;0/ o
for any arrow a—b, ‘the numbers dg, dy are indicated in the form a-—"’iﬂ» b,
provided at least one of the numbers is different from 1 the number of branches of'-
this star is 8. -
Proposﬂuon Let Abe o cOnnected valued gwwe/r Then the follow'mg co«ndq,tq,ons
are ‘equinalent: ' :
(i) Z4 admits a monotone, strict, additive Sunction with values in N,
(i) ZA4 admits a monotone, strict, additive function with values in Nl,
(ii) 4 4s either A, or a star, but not @ Dynkin diagram, o
The proof will be done in several gteps. .Some of the partlal results requlre less
restrictive assumptlons We recall that a function f: I’o—>Z is said to be a subadditive
function for the valued franslation qulver I'=(Io, I'i, d, &, %) provided for every
non-projective vertex z€ I, ' : ' '
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f (W) +f (Z) = 2 f (y)d
If f is a subadditive function for I, and zisa non—progetwe ver’ﬁex 2" {yl, oo, Ys}
with pairwise different vertices'syy; =+, ¥:, then : ' ‘ N

S () <2f (43)dys imoplics E f (yt) dy,z<f (2).

If f i8 a strict function for I', then f is monotone 1f and only if for every. arrow
e—>y with both 2, y non—projective, “
F@<f@ Jmphes f (m) <f (vy), S
and thls is equivalent to the condition that for every arrow a—>y with both @, y non—
~ injective,
f (@) >f () MPheS f@ @) >f (77 4

leen a valued quiver 4, and g a vertex of 4, we call the number Bla)= Ed’
Edﬁ the branching number at the ver’ﬁex @.

Lemmal. Let 4be a wlued quiver, and fa mowotone, ‘strict, subadditive
jurrwtfborrb for Z4 with values in No. Let abea fvefrtem 0 f A cmd suppose that B(a)>3
Let v= (4, a) for some 4EZL. _ )

Q) If f(v) <f(2v), then F(u) <f(w) for all uEfu .

1" If f@)<f(v"v), then f(w)<f (v~ ) for all wafv*. '

@ f(u)<f(fu) for all uE ™, or f(u)<f(w) for all u€o.

38" There exists nEN, such that for all w E fv"” both f (") <f ('v"fv), _cmd

faw)<F (). |

Proof (1) Assume f (fv) <f(wv). We want to show that f(u) <f (zv) for all u E

~. Assume for the contrary, f (w)= f (w) for some u€ v, say U=, where uy, <--, U
gre palrwme dlﬂ“erent vertices and v ={wy, *--, ut} Since f is striet, f(zu) <f (u,l),
thus ~ .

f (va) (Fp—1) +2f (u) o <f (v),

since f is subadditive. Since f is monotone, f (w) <f(w) implies J@@)<f (vus);
thus also

F o) (g 1) + 33 f (o) < (a0, B

-where we use that da,, A for all —>y. The subadditivity for f g1ves :

f (o) +f (w) =F (vo). .
Smm o &uy, for all 1<i<<t. Let B= Zd,,,,,, note that 8= B(a), thus 8=>8. Then

0) £ 0> (- 0)) =) 4 () +F ) e
2 (60) (o= )+ 33 £ (r0) =1 (50) (8-,



12 CHIN. ANN. OF MATH. - Vol. 9 Ser. B

therefore o
£ (0) > (30) (B—2)=F (v0); |
since 8>3. This contradiction shows that £ (u) <f(zv) for all u€ o=,

(1* ) follows by duality.

(2, 8) Choose jE€EZ with £((4, @)) being minimal under all f((G4, @), t€Z. Leb
2= (4, @). Then f(z)<f(sz), thus f(z2)>f (y) for all y€2~, by (1). Since f is
monotone, f(zv)>f(u) for all u€v™, provided v=(4, @) with >j. Also, f(z)<<
f(772), thus f(w) <f(z2) for all wE€z*=(+72)", by (1*). Using again the fact that f
is monotone, f(u) < f(v) for all u€v~, provided v= (3, a), with i< j+1. Thus, for
v= (4, @), and u€v~, the following holds: if = J or 4=j+1, then both f(u)<f()
and f(w)<f(wv); if i<j, then f(u)<f(v); if t>j+1, then f(u)<f(wv). This
finishes the proof of (2). Also, we seo “that for 4= J—1, 4, or j+1, and v=(3, a),
wEw*, we have f(vw)< f(v) and f(w) <f(v) For general 4, let n=¢—j. Then
F@w)< f(v) and f (fw) < f(v). This proves (8).

- Lemma 2. Let Abe a valued gumefr and f a monotone, strict, additive f’lmct%on
for ZA with values in No. Let a be a vertes o f 4, and suppose B(a) 2, Then a has
precisely two neighbors; if b is a neighbor of a, then dyp—1 provided a—)b cand dj,=1
provided b—a. Let 2= (4, a) Sor some i€ Z, let 2~ = {yi, Ya}, and suppose f(y1) < f (ya).
Then, for all n€ Z, f(v"y1) <f(2"2) < f (v"ya), f (z"y1) <f('z:"+1z) < f(z",).

Proof Since B(a) =2, given any 4E€Z and z——(@ @), either z7={y;, yo} with
Y1%Ya, and d,,=1=d,,,, or else z~= {y} with d,z=2; in the second case let y1=ya=y.
Slnce f is additive, '

’ F@) +5 @) =f () +f ().
We can assume f(y1) <f(ya). We claim f(y;) < f(z2). Assume for the - contrary
F(r2) <f(yi), thus also fzz) <f (y2). The additivity shows that f () <f (z) and
Sf(y2) <f(z). Bince f is monotone, we conclude that for all n=>0,

FH) < f () < f (a72).
In this way, we obtain an: infinite decreasing sequence
F@)> f(32) > f(z%) >«
of non-negative integers, impossible. This shows that £(y1) < f (vz). By the add1t1V1ty
of f, this implies f(z) < f (yz) By duality, we also have f(y:) <f(z), and therefore
also f(72) < f(ya). This gives the case n=0 of the stated inequalities, “At the same-
time, we have shown that f (1) < f (y2), thus y; # ys. This excludes the case 2~ = {v},
thus a hag'precisely two neighbors. If b—>a, then (3, b) is one of Y1, ¥a, and therefore
w="1. If a—>b, then (6—1, b) is one of y;, Y2, and therefore dg,=1.

Finally, consider -zz=(i—1, a). Now, - (z2)~ = {zys, 7ya}, and we claim that
S (vy1) < f(wys). Otherwise, the previous considerations, applied t0.72 instead of z,
yield f(#2) < f (vy4) . But, since f is monotone, f(ys) < f(z) yields f(zys) < f(22).
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This shows that f(y1) < f(¥a) yields f (z"y1) < f (v"Ya ) for all n>0. By duality, f(v1)
< f(y2) also yields f(v"ys) < f (v"ya) for all n<0. Thus, . the inequalities for n=0
‘imply those for arbitrary » € Z. This finishes the proof. ‘

Given a function f on (Z4) with values in No, where 4 is a valued quiver, and
given a € 4,, denote by us(a) = w(a) the minimum of all values f((@, a)), with4 € Z.

Lemma 8. Let 4 be a valued quiver, and f a monotone, strict, additive Sfunction
for ZA with values in No. Let @ be a vertex of 4, | :

Q) If B(a)=8, then for all nesghbors b of a, we have ,B(b) <2
(2) If B(a) =2, then there exisis a netghbor b of a @afz,th B(B) <2, and p(d)<
pia). '

Proof- (1) Assume B(a)>=>38. t’art (3) of Lemma 1 aggerts that for suitable
JE€Z, and 2=(§, a), . ' ‘

FEw)<f @), F@)<F @)
for all wEz*. Let b be a'neighbor of . If a—>b in 4, let w=(4, b); if b—a in 4, let
aw=(j+1, b). Then w€z*, and z€w™. It follows that B(b) <2. Otherwise, apply part
(2) of Lemma 1 to v=w and u=z we obtain f(2)< f(w), or f(®)<f(zw), a
-contradiction. ' '
(2). Assume B(a) =2. Choose 4 € Z, such that for z= (¢, a), we have f(z)=u(a).
‘Lemma 2 asserts that we can write 2~ ={y1, ya} with '
f)<f(@ and f(y)<f(). ,
:Since y1 €2, it follows that yi= (4, b) or =(i+1, b) for a neighbor b of a. As
previously, it follows that 8(b)<2. Otherwise, apply part (2) of Lemma 1 t0v=17"y;
and y=2, and obtain a contradiction. Also, we see that
p () <f (1) < f(2) = p(a).

Proof of the implication (1)=>(ii): Let 4 be a connected valued quiver and f a
-monotone, strict, additive function for Z 4 with values in Ny, Assume ay is a vertex of
A with B(ay) =2. According to Lemma 3, there exists a neighbor as of @y with B(as)
<2 and p{as) <w(as). We use induction in order o obtain a sequence ay, @, **, dr
-with @, being a neighbor of a;, and B(a) =2, for 1<i<r-1, such that

wlas) > p(as) >+ >p(ar). -
{Since the numbers w(a;) are non-negative integers, such a sequence must stop.
.eventually; therefore we can assume B(a,) =1. Thus, a,_i is the only neighbor of a,.
Any vertex &;, 2<¢<r-—1,has as neighbors just the vertices a;_s, and ai;1. By Lemma
2 the vertex ay has besides as an additional neighbor, say ao. The following is already
‘known about the valuation: if @ —> b, then dgp=1 provided a€ {@y, +-+, a,}, and
-&,=1 provided b€ {@1,++-, a:}. In case all vertices @ of 4 satisfy. B(a) <2, we easily
see that A=A, or else- A=A, for some n, thus 4 is a firee (the latter case A=A,

actually cannot oceur, as we will see below). Now assume there exists a vertex ¢ of 4



14 CHIN. ANN. OF MATH. Vol. 9 Ser. B

with B(c)>8. Lemma 8 asserts that all neighbors @ of ¢ satisfy 8(a) <2. But then our
previous-considerations show that A is a star with center ¢. If 4 is a Dynkin dia~
gram, then Z4 does not admit-any non-trivial additive function with values in No
(see [9]), thus 4 cannot be a Dynkln diagram. This finishes the proof of the
implication (D)— (i)

Lemma. Let 4be either .., or .a star whose center s the Only sink, and let f be
an additive function f0fr z4 wq,th values in Ny. Thex, for every arrow a: a—>b én 4, and.
€2,

- F(G, w))<f(‘(¢ 5)), f((a+1r a)) <f (G, BY).

Proof By our choice of orlentatlon there is a path ao—>a1—> DA >y in A'
such that ao is a source and &_i=a, a,—b moreover Blag) =1, ,B(a,) 2 for 1< j<t.
The additivity of f yields by induction on j=1 '

£ (G, @) =F(G, as1)) +f<-<@+j; ),

thus we conclude

PGB =1 (G, @) =F(G, @) =7 (G, ‘ai1))
=f ((Ht, 40)) >0.
Similérly, |
F(G, b))~ f((%+1 w)) f(('b a5)) >0.

Corollary Let A be either Bjora stafr Then any a,dd'z,twe functwn on Z fwfz,t/u
values in Ny is strict and monotone. :

Proof of the implication (D)= ('): First, éonsider the case A— =A,,, recall ‘that.
the set of vertices of 4=A,, is’just N1 The functlon f on (Z4), deﬁned by f ( (fz, a))
=g obviously is additive.

Assume now that 415 a star, but not 4 Dynkin dlagram If 4 is a Fuclidean.
diagram, theh ZA admits an additive function f with values in [N]1 which even is 7—
invariant (as'in the cage A=A ). Thus, we can assume that 4 is wild. If 4, has at.
least three vertices, consider zA as a connectmg component for some tilted algebra, as.
constructed in section 1, and ot f be the length functlon Then f is additive, and
takes values in N;. Finally, it remains 0 congider a w11d star with precisely two-
vertices, It is sufﬁcmnt to deal with o e

d, 1
0 (")0,

. R , a b
where d>5. In this case, the additive function f- defined by £((0, @)) =2 and’
f ((0, B)) =1 takes values in Nj (see [13]). This finishes the proof.
‘Every stable valued translationi quiver I® is of the form I" =Z4/Q, where 4 is &
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valued quiver whose underlying graph is a tree, and @ is a group of automorphisms
of Z4, and let w: ZA>ZA4/G=1" be the corresponding projection (it is a covering).
Any function f: T'y—>Z gives rise to the function f: (Z4)o—Z defined by f (=)=
f(mw(@)). If f is additive, or subadditive, or strict, or monetone, the function f will
have the same property. As a consequence, there is the following corollary: '

Corollary. Let I' be a stable valued translation quiver which admits ¢ monotone,
strict, additive function with values in No. Then I'=ZA4/G, where A4 is either A, 01 &
star, but not @ Dynkin diagram, and G is a group of automorphisms of ZA.

'§3. The Quasi-Serial Components

Components of the form ZA..,/G, with & a group -of automorphisms of ZA,,, aré
called quasi-serial (see [18]). ,

Theorem. Let A be a tilted algebra. Then, any regular component of I'(A)
which isnot a connecting co'mponent 48 quasi—serdal. :

Proof Let B be a finite-dimensional, hereditary Ic—algebra and T a tilting
module with A=End(sT). The regular components of I'(A4) different from the
connecting component correspond to the regular components of ~the . relative
Auslander—-Reiten quivers of F(5T) and G (1) . Here F (gT) is the full subcategory
of B-mod given by all B-modules X with Homg (T, X)=0, and G (T") -is the full
subcategory of B-mod given by all B-modules which are generated by sT'. Up to
duality, we may assume that we deal with a regﬁlar component I' of the relative
Auslander-Reiten.quiver of G (zT), and we want to show that I" is quasi-serial. We
_need the following result due to Hoshino; recall that the subcategories F(5T) and
G(T) form a torsion pair in B-mod, the modules in G (sT) being the torsion.
modules, those in F (3T") the torsionfree modules.

Lemma'™, (Hoshino) Let 0>X —>Y —Z—0 be a relative Auslander——Re@ten
sequence in G (gT). Then X 'is the G (zT) ~torsion submodule of ©Z.

Here vZ =DTrZ denotes the usual Auslander-Reiten translate of Z in B-mod.
Since B is hereditary, = actually is a functor (from B-mod into itself), and is left
exach. We write 762 for ‘the G (5T)—torsion submodule of vZ, for any B-module Z.
The Hoshino lemma asserts that the restriction of 7¢ to G (51) just yields the relative
Auslander—Reiten translation. Of course, with 7 also 7¢ i a functor, since the-
assignement of the forsion submodule with respect to a fixed torsion pair is functorial..
There is the following consequence: .

Corollary. The endo~functor ve of-B-mod preserves monomorphisms.

Proof Let a: X—Y be a monomorphism in B-mhod.. Since 7 is left exact, war
+X—>7¥ is a monomorphism. But vee is the restriction of za to the G (5T')-torsion:
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submodule 74X of X, thus also 7ex is a monomorphism.

Let I' be a regular component of the relative Auslander-Reiten quiver of GGT).
Let D be the additive subcategory geilerated by the indecomposable B-modules X
with [X7] belonging to I". For X indecomposable in D, let f([X])=|X|, the length
of X as a B-module. Of course, Jis an additive function on I" with values in N;.
Note that any relative irreducible map in GGT) is a monomorphism or an
epimorphism in B-mod (for, its image is again generated by T, thus in G(:T). As a
consequence, f is strict. We claim that S 18 also monotone. For, assume X , Y are
indecomposables in G'(zT"), there exists a relative irreducible map a: X—>Y and | X |
<|Y'{. Then & cannot be an epimorphism in B-mod, thus & is a monomorpﬁiSm in
B-mod. Since v preserves monomorphisms, we conclude |74X | < |w5Y [. Thus, we
can apply the proposition in section 2, and conclude that I” is either quasi-—serial or of
the form Z4/G, where 4 is a star but not a Dynkin—diagram, and @ a group of
automorphisms of ZA4. Thus, assume I is of the form Z4/G, with 4 a star but not a
Dynkin diagram, let :Z4—>ZA/G=TI" be the canonical projection. Let ¢ be the center
of 4, and for any ¢ € Z let w((s, ¢)) = [M,], where M, is an indecomposable module in,
D. Note that z¢M,= M;_, for all € Z. We claim that M, is cogenerated by any M;,
with ¢<<j. It is sufficient to show that M, is cogenerated by M;,.;. Sinee 4 is not a
Dynkin diagram, the number 8 of branches of 4 is at least three, thus the relative
-Auslander—Reiten sequence ending in M, 4 is of the form '

B (@) .
O‘*Mt‘»@Y‘j‘) ,~+1“—>O,
=1 :
with B>8. Note that since 4 is a tree, all' the given maps a; Y- w—>M,,4 are
monomorphisms in B-mod, thus we obtain a monomorphism in B-mod

B (—Bad B
Me‘*j(-_i-)lyu‘* j@Mi-;-i-

Let m=|M,|. Fix some ¢>0. Since M, is cogenerated by M;, there actually is a
monomorphism My—> @ M; in B-mod, Applying 7%, we obtain a monomorphism

' M_i':'t‘GMo'—’@Mo-
Now, |@® M,| =m?, thus we seo that | M_,| <m? for all 4=0. But it has been shown

in [11] that & is a finite covering and that the number of isomofphism classes in D
containing modules of a fixed length is finite. This contradiction shows that I" has to
be quasi-gerial.

Appendix: The notion of a slice. )

Let A be-a finite dimengional k-algebra. Let . be a module class in A-mod which

satisfies the following two conditions:
(o) & is sincere.
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(B) & is path closed.
Then the following two conditions are equivalent:
() Let M be indecomposable and not projective, and let § be indecomposable and
in .&. If there exists an irreducible map § — M, then M or M belongs to &.
| (8") Let N, 8 be indecomposable and suppose S belongs to . If there exists an
irreducible map N—>S, then either N belongs to %, or N is not injective and v~ N
belongs t0 &. |

Proof Olearly (8") implies (8): Let M, S be indecomposable, M not projective,
S in %, and assume there exists an irreducible map S—>M. Let N =+M. Then there is
an irreducible map N — 8, and by (8”), we conclude one of N, 77N belongs to 7.

Conversely, assume (8), and let N, § be indecomposable, § in ., with an
jrreducible map N — 8. If N is not injective, then (8) applied to M=="N yields that
one of N, "N is in . Thus, assume N is injective. Since . is supposed to be sincere,
there is an indecomposable §’ in . with Hom(S’, N)=0. Thus §'<N<S$, and
therefore N belongs to %, according to (8). .

In addition, the following condition is of interest:

(y) If M is indecomposable and not projective, then at most one of M, and =M
belongs to . ,

We call & aslice (in 4-mod) provided the conditions (), (B8), (7) and (3) are
satisfied. Note that all these conditions are gelf-dual, thus . is a slice in 4A-mod if and
only if &*={Homy(S, k)|SE€ES} is a slice in A%-mod. According to the
consideration abo{re, this notion of a slice coincides with that of [15].
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