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ON THE DISTRIBUTION OF RANDOM
LINES IN THE GENERAL CASE
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Abstract

L is a line in a plane through the origin, with an angle a to the -axis, O<a<ow. M i3
a point process on positive z-axis, Through the nth. pomt of M draw a line witha ra.ndom
angle 6, to z—axis, p* is the set of intersections of those lines with L*. Let m=EM. If for
every ¢>0, Em(c6t) < oo, then p* is locally finite on L, and let & be the point process

constructed by @+, then BN exists. If, for all interval LCL+’jo r(I, x)M (dwx)=oc a.s.,

then @ is dense on L*. If L is drawn parallel to z—-axis, the same results can be got, and
this time is a cluster point process with cluster center M. ' '

Draw a line L through the origin of a plane, with an angle . to the positive
direction of X -axis, 0<a<m. L* is the positive side of L(all points along L* have
their ¥ —coordinate positive), Place a point process M along the positive X—axis, and
through the n—th point draw a line at a random angle 8, to the negative direction of
X -axis, Let p* be the set of intersections of those random lines with the L*. Suppose
the {#,; n=1, 2,+} are independent and identically distributed as g, O<0<av, F()is
the distribution function. of #, and {0} are independent of M. When M i Peisson
process, the properties of g* aTe disoussed in [1]. In this artiole, we investigate the
properhes of @t without assumption of what process M is. We ghall give some
necessary and sufficient conditions for ¢* to be a.s. dense in L* and for ¢* to be a.s.
locally finite(that is, there are only finite number of points of p* in a finite interval).
When @™ is a.s. locally ﬁmte, let M be a point process on-L*, M (I) be the number
of peoints of " in the interval I. We alse investigate the properties of M.

§1.

| It is éeen in {1] that if M is homogeneou.s Poisson process' and B 0‘i< oo,
the (p is locally finite. We will show that it holds for any stamonary point prooess

M. Also it is shown that if there is a functlon./l( )>O such that ME (B) = j A(t) dt,
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BeZ(R*), then there exists a function 4 (+)>0 such that EM (D =LZ Mdl, Ie

Z(L*). This includes the calculation of intensity of M in [1].

If L is drawn parallel to X-axis, and M is on R(both on(—oo, O) and [0, o0)),
then if M exists, it must be a cluster process with cluster center M.

In § 4, we let M be a Poisson cluster proecess, and mvestlgate the conditions for
the existence of # and the properties of M.

In this article we assume that M is a simple process (only one point ocours ab
a time) . But this assumption can be removed by treating it as K points if K points
ocour at the same time. ‘

D. J. Daley (professor of Australian National UnlverS1ty) suggested that T work
on this title, To him T am grateful.

§2

Sometlmes the ¢t is locally ﬁmte but sometimes the p* is even dense in L*,
although M is always locally finite. The following theorem is a necessary and |
sufficient condition for this. Let I be an interval (4, B] on L* (See Fig.), the
pro’bability that -the random linethrough the point B on X-axis intersects I is
(I, X)=F(B+88) — F(,B) X is the X~coordinate of R; 8, 88 depend on X.

. « - Theorem 2.1 Misa pormt
-‘34 process on positive X-awis. @t
a.s. dense in LT §ff for all fi,ntefrfual

IcT?, j: r(I, X) M (&) = oo
a.s.; and p* ‘fz}s a.s. Zocally. findte iff
SJor all interval ICL*, J: (I, X)

M (do) <oo a.s..
Proof "Let E; be the event
"“there is at Jeast one point of p*

Fig.

in I”, Then ¢* is a.s. dense in
L* iff for all I, P(E;)=1. As P(HE;) %—EP(E,]M), P(E;) =1 is equivalent to
P(H;|M)=1a.s.. As {8,} are independent of the M, for a certain wo, lot {wq, s, ++-}
be the pomts of M (o). The probablh’ﬁy ’ﬁha’ﬁ the random 11nes through the point g,

do no’ﬁ mterseo’ﬁ Tisl— fr(I m;) So P(E,[M (coo)) 1— H(l fr(I %;)); P(E;| M(we)
-1 is equivalent to II (1 r(I, z)) =0, that is Zfr(I m;) =co, So it is equ:tvalent to
J r(I, o) M (dx) =0 a.s. '
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Now Let A; be the event “there are only finite numiber of points of pt in I7,
P(4y) = EP (41| }), 50 ¢* i a.5. locally finite iff P(4;| M) =1 a.s.. Lot {1, @, -}
be the points of M (&), and K; be the event “the line drawn through intersects I7”.
Then K;(i=1, 2, ) are independent and we see that the following are all

equivalent:“P (4;| M (o)) =17; “2 1g, () <oo a.s.;” “llm P U 70) =07; “1— llmél]
i=n n=»00 §=N

A=r(I, 2)) =07 (I, @) <7
So ¢* being locally finite is equivalent o j:¢(I , @) M (do) <oo. The theorem is

proved.
Remak 1. Tt is also obtained that the intersections of random lines through a
certain set{w;, s, -} Wwith an interval IcL* are either a.s. finite or a.s. infinite. This

is just the 0-1 Law ([2] p. 248)to §JI1K, (o). )

The results of the theorem above is in stochastic form and is therefore of limited
value in applications, However, a sufficient condition that is easy to use follows.

<In the following J denotes integration over the interval (a, b]. )

Theorem 2.2. Suppose EM ewists, and lot m=EM, m(z) = =EM (0, «]. If for
all ¢>0, Em (c67%) <oo, then o* s a.s. locally finite. '

Proof Let I= (0, I]CL*. If for those intervals I, E r”'(I’ ) M (dw) <oo, then
B o
L r(I, ) M (de) <oo a.s., that means ¢ is a.s. locally finite. But then

B j: r(T, 2) M (da) = Kr I, o)m(da) = KF(S,B) m(dz)

‘=‘j: jzﬁ dF (u)m(dz) = j: ﬁ—té_l ) dF (u)m(dz)
- ﬁ’" AP (W) j:“’“““m(dx) - j - OF (u) m (a-+ botgu).

Let m(x) =0 when #<0. J:_m dF (w)m(a+betgu) being infinite is equivalent to

Em(a+bctgd) being infinit. As m(X) is non-decreasing, “for all I, Em(a+bctgd)
<oo” is equivalent to “for all ¢>0, Em(cf™*) <oo”. This is because for every 5>0
there is ¢>b>0, so m(a+betgf)=>m(cf*) when ¢ is small enough, and from
Em (c6™) <oo we get Em(a-+b ctg §) <oo. On the orther hand, for every ¢>0, there
exists an I such that b>¢, and Em (0§*) <oo is got from Em(a+b ctg §) <oo. This
completes the proof. :
Remark 2. Let M (2) =M ((0, «]). From the proof of the theorem above, it is

seen that the condition “jo r(I, )M (dw)<oco a.s. for all I”is equivalent to “for
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¢>0, E,M(06™) <co as. ”, where H, means the integral for ¢ only; and condition
[13
. J 7(I, ©) M (dw) = oo a.8. for all I” is equivalent to “for any ¢;>>¢,=>0, Ee [M (cs67Y)
—M(csf™)] =00 a.8.”. .
Corollary 2.3.  Suppose Sor every ¢>0 there ewfz,sts @ constant K (¢)>0 such
that for w small enough F(ouw)<K (¢)F(u); or , for every >0 there ewists K’ (e)>0

such that m(cx) <K'(c)m () for & large enough: If Em(0™*)<oo, then p* is a.s.
locally. finite.

Proof If for every ¢>0 there ig K "(e) >O m(c2) <K' (c)m(z), then m(cd™) <
K’ (c)m(6 *) when 6 is small enough. 8o Em(6™) <co means Em (cd7%) <oo,

¢>0. On the other hand, Em(cf™) = J dF (u) L m(de) <oo is equivalent to
qu dF(u))m(dw) j ( )m(cl:v) <oo for some A>0 If F(cu) <K(0)F(u),

then J (—) m (da) <oo follows from Hm (™) <co.

There are many F Whlch fulfil the condltlon of Corollary 2. 3 For example, 4 is
uniform on (0, w); or F(2) is asinz+b cosw on some interval Be 0, @); or F(z) =
-az’, K>0, on(0, w). In particular, if there exists a ¢>0 such that P(f<¢) =0, then
F fulfils the condition and meanwhile Em (67) <oo. 8o in this case, p* is a.8. locally
finite.

Usmg Oor0119ry 2.8 10 statlonary pomt processes, we get the following corollary

Corollary 2.4: Suppose M is a stationary point process, EM ewists. If Hi<oo,
then p* is a.s. locally finite.

For >0, let £(z; +) bo a point process on L constructed by mtersectmg of L*
with a line through X at a random angle ¢ with distribution function F. Then
§ (2, L") <1.Let{{ (w,+); x ER*} be independent and independent of M. If the points of

M (wo) are{ws, s, +--}, then, conditioning on M(wo), M(-) —if (@i, *). So M(+)=
J &(m, ) M (dw) (because condltlonmg on M (w), they are equal in dlstrlbutlon).

Using this we get followmg theorem.

Theorem 2.5. Suppose m=EM ewists. EM ew@sts iff for every ¢>0 Em— (ed™)
- <oo, In this time, let I= (I, l,] CL*.

EM () =E[m(lycos a+Tasin a ctg ) —m(licosa+llsinactg0)].
Proof

oL j:g(w, )M (da).
EF(D) =EEU:5(¢, 1) M (do) ‘[M]=E<E 3¢, D)

-=E§rr(1, a:,;)-=E’J:fr(I, w)M(dw)=j:r(I, x) m(dw).

8o
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Jw r(I, z)m(dw) <oo for all T is equivlant to for every ¢>0 Em (cf7%) <oo (see the
V] .

proof of Theorem 2.2). And ‘ ,
j r(, w)m(dw) j j iF (u)m(dw) r ji—@ ET_)) dF (sym (o)
Z e (52 .
==j: dF(u) [m(w+bctgu) m(a +b’ctgu)]

: =E[m(lzcosa+lzsmactg 6) m(l1oos<x+lismactg9)]
The theorem is proved. ' ' g s .

Theorem 2.6. " Supposé there ewistsa A(+)>0' such that EM (B?' = L Aty dt=
m(B), BEB(RY). Then there ewists'a A(+)=0 such "-that?EM(B)=j"’Z(z)dz; BE
HB(LY), and A= j A(lcosa+lsmactgu)sm(oa+u)oosecudF(u),as ;
Proof FrI-(uidcLt, T
LA(Z) dl=jz_/1(z) dl=j ;dlj.' f"A_(z_ooéo;+zsmmctgu)sin(a+@)oo§ecng(u) i
o =j: dF(u)cosecusm(oa+u)j A(Zcosa+lsmactgu)dl |

- j: dF(u) cosecusm(a+u) (cosa+smactg w) 7L
% [m (1a(cos o +-sin o ctg w) ) ~m(l (oos o+-sin o ctgrd))]
_ = E[m (15 cos a-+lssin actg 6) ——m(licosa+l1smactg AN
=EM(I).
‘This completes the proof.

Remark 3. ¢(w;, )h"—LS representatlon & (w;, B) 1p (%) BG QZ( LY

(see Fig.) . Conditioning on M (w) the Jump times of 7 , [u1, ba ++- are order statistic of

@5 sin 9; }
{ SnGray o E

§3.

Consider the case where L is drawn parallel to the z-axis, intersecting the Y —axis
a5 ¥ =b>0. M is a point process on a—axis (both positive and negatlve gides). ¢ is
the seb of intersections of random lines on L. Like Theorem 2.1,we have the following

-theorem. : .
Theorem 3.1. o isa.s. dense on L fz,ﬁ” for all ICL, ‘ fr(I w)M(da;) o a.8.}
«p 48 @.8. locally ﬁmte wﬁ” fO’I‘ all ICL 5 r(I, w)M(dm) <oo a@.s. | -
Theorem 3.2. Suppose EM=m_exists. If for all 1y, Ta, - ;90<l1<lz<°°,



24 o -CHIN. ANN. OF MATE. ° Vol. 9 Ser. B

E[m@s+bctg ) —m(by+betg §)] <oo, then @ is a.s. locally finite.
Proof :

L ( 2~13

B L, )M @)=| r{, oym(dz) -2 Z._—tg-, (==55)

ar (u) m(dx)

la+b etz u

=J @ man
=E[m(la+bctgd) —m(ly+betgh)].
S0, if Bm(la+botg9) —m(ly+botg6)]<oo, then er(I, ) M (dz) <oo as. . |
Suppose that EM=m exists and g is a.s. locally finite. As that stated in §2, we
sco that M ()L [ &G, )M(da), and £(o, B)=1a(o—dotgh,), {6 wER), are

independent, indentically distributed as 6. From this it is seen that M(.)is a cluster
precess with cluster center M (see[8], § 2), because & (=, *)can be regarded as process:
7e(B) =1p(—betgf,) with its center at . From [8] Corollary 8.2 we know that if M
is stationary, then M exists. But this time B [m(la+betg§) —m(ly+b cfg 0)] <co, so
M exists. And it is seen from Theorem 3.2 that if s?pm(I —t)<oo, for any interval

I, then @ is a.s. locally finite. But this is just the Corollyary 3.8 in [8].
Theorem 8.3. Suppose EM~=m ewist, BM ewists i i for arbitary 1,<lo, B [m(ly4+
betg §) —m(ly+betgf)]<oco. And in this time EM (D) =E[m@a+bctgd) —m s+

betg6)], I=(ly, Il L. If there ds A(+)>0 such that m(B)=jB./1(t)dt, then let
A@) = L’: AQ+betgu)dF (u) ,we have BI (B) — L AW, BEA(L).

Proof :

' EN(I)=EE[H (I)| M) =EL BE (o, 1) M (do)

=qu~(1, 2)m(dz) = Bm(la+b cig 6) —m(ly+ b otg 6)]

. and

X[} 4a+betgu) ar(w))di=|"[" 40+botg6)aLar (uy
=J: [m(la+b ctg u) —m(li-i-bctgu)]dF(u

=EM(I). o

§4.

~ Let M be a Poisson cluster process. We shall investigate the conditions for ¥ to
exist and some properties of M, as an application of the theorems in § 2, § 8. Suppose
{Ns; 2 €R*} is a class of independent, identically distributed point processes, N is a.
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point process on B¥, {N oF i8 mdependent of N, cluster process M()= J M,,(-’]w)‘ '

N (dw), where N, ( |@) is the N, with its center ; N is called cluster center (we
assume that M is locally finite). If IV is Poisson process,. the M is called Poisson
cluster (see [3]) :
Suppose tha,t N, are 1dentlca11y distributed as N’ and N'((—oo, 0]) =0. Lot
w=EN, p,(t) =w((0,t]). N is a homogeneous Poisson process with, mten51ty A. Leb
B—=(a, b]. Note that EM(B)=?\.J’ w(B— t)dt<xj w(b— t)dt<xj ub — it =

(D) *Asb<oo. o
First we suppose that L is drawn at an angle a to X-axis(see § 2)
Theorem 41. M is a Poisson cluster process stated above. If for all ¢>0,

Ejo w(t)dt<oo, then @* is a.s. locally finite. This time EM exists and EM (I) =
j" (0 dl, I= (s, la], where

(Z)=j: " pu (1 cos a-+Tsin @ otg u)sin (a-+u) coseou dF (u).

(That is, conditions for M and EM are the same as the case where M is non-
‘homogenecus Poisson process with intensity funetion Aw(z)).
Proof Let m()=EM(-), m(w) ==EM((O «]). Bub

(@) =EM((0, 1) = xj w((0, @] —&)di— xj (ot di = xj w(8)d.

:So if, for every ¢>0, Em(c6™) =E5° y,(t) dt<oo, then @* is a.s. locally finite (see
“Theorem 2.2). Also we have

m( (w3, ©s]) = Aj w(t)dt.

l A < ~
:So from Theorem 2.6 we know that there exist p=0, EM(I)= L w(@dl, and w(l) =
j:—a A (leosa+Tsin o ot u) sin (u-+a) cosec u d.F (u).

The theorem is proved.

Then we suppose that L is drawn parallel to X-axis (see §8), N, N, €R all
:are the Point processes on(—oo +o0).

Theorem 4. 2 Suppose M is a Poisson cluster process stated above, and EM =m
.ewists. Then @ is a.s. locally finite, and JI is also @ Poisson cluster process directed by
N, N,, 2 ER and EM =EM =m.

“Proof N is a stationary process, so M itself is stationary (see[8] p. 296). Then ¢
4s a.s. locally finite(see § 8). or, let B= (@1, 2a] CR,

m(B) '=EM<B>=jR Au(B—t)di= | Mu(os—1) —p(es—1)]1ds
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So m(B) m(B—i—w), € R. Then we get
E[m(12+b ctg§) — 'm(li+ betg )] = m(lz) —m(ly) =m((li,12]) <oo,

It fol] ows from Theorem 3.2 'bhat @ is a.s. locally finite. And
‘ ' EM(I) E[m(la+b ctg&) m(li—l-b ctgd)] —m(I), I=(1,, 12] L.
So EM = =m.

Let ﬁ be the pomt prooess on L dlrected by the N on R. (N, is the intersections.
of random lines through the points of N,.) It is easily seen that &, (+|2) =N,(- |z),
N.(+]|2) means N with its center & ‘(for every e, 1% is equal). Conditional on N (w0),

M is ZN,,( th), {wz, i=1, 2,. }are the pomts ofN(coo) This time # <= 22\7 (o] @:)

=S 7+ |2). So A(- )_jz\?( lw)N(dm), that is, M is a Poisson oluster, its

components are IV, ﬁ

Remark 4. Iet M be a cluster process on B with cluster center N, cluster-
member N,. If M exists, then it is also a cluster process directed by N, N, (in the.
case that I is drawn parallel to X —axis), this is seen by the proof of the theorem.
“above.
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