ON THE DISTRIBUTION OF RANDOM LINES IN THE GENERAL CASE

ZHENG MING (郑 鸣)*

Abstract

L is a line in a plane through the origin, with an angle α to the x-axis, $0 < \alpha < \pi$. M is a point process on positive x-axis. Through the nth point of M draw a line with a random angle θ_n to x-axis, φ^+ is the set of intersections of those lines with L^+ . Let m = EM. If, for every c > 0, $Em(c\theta^{-1}) < \infty$, then φ^+ is locally finite on L, and let \widetilde{M} be the point process constructed by φ^+ , then $E\widetilde{M}$ exists. If, for all interval $L \subset L^+$, $\int_0^\infty r(I, x)M(dx) = \infty$ a. s., then φ^+ is dense on L^+ . If L is drawn parallel to x-axis, the same results can be got, and this time \widetilde{M} is a cluster point process with cluster center M.

Draw a line L through the origin of a plane, with an angle α to the positive direction of X-axis, $0 < \alpha < \pi$. L^+ is the positive side of L (all points along L^+ have their Y-coordinate positive). Place a point process M along the positive X-axis, and through the n-th point draw a line at a random angle θ_n to the negative direction of X-axis. Let φ^+ be the set of intersections of those random lines with the L^+ . Suppose the $\{\theta_n, n=1, 2, \cdots\}$ are independent and identically distributed as θ , $0 < \theta < \pi$, $F(\cdot)$ is the distribution function of θ , and $\{\theta_n\}$ are independent of M. When M is Poisson process, the properties of φ^+ are discussed in [1]. In this article, we investigate the properties of φ^+ without assumption of what process M is. We shall give some necessary and sufficient conditions for φ^+ to be a.s. dense in L^+ and for φ^+ to be a.s. locally finite (that is, there are only finite number of points of φ^+ in a finite interval). When φ^+ is a.s. locally finite, let \widetilde{M} be a point process on L^+ , $\widetilde{M}(I)$ be the number of points of φ^+ in the interval I. We also investigate the properties of \widetilde{M} .

§ 1.

It is seen in [1] that if M is homogeneous Poisson process and E $\theta^{-1} < \infty$, the φ^+ is locally finite. We will show that it holds for any stationary point process M. Also it is shown that if there is a function $\Lambda(\cdot) \ge 0$ such that $ME(B) = \int_B \Lambda(t) dt$,

Manuscript received January 17, 1985.

^{*} Department of Mathematics, Xiamen University, Xiamen, Fujian, China.

 $B\in \mathscr{B}(R^+)$, then there exists a function $\widetilde{A}(\cdot)\geqslant 0$ such that $EM(I)=\int_I \widetilde{A}(l)\,dl,\ I\in \mathscr{B}(L^+)$. This includes the calculation of intensity of \widetilde{M} in [1].

If L is drawn parallel to X-axis, and M is on $R(\text{both on}(-\infty, 0) \text{ and } [0, \infty))$, then if \widetilde{M} exists, it must be a cluster process with cluster center M.

In § 4, we let M be a Poisson cluster process, and investigate the conditions for the existence of \widetilde{M} and the properties of \widetilde{M} .

In this article we assume that M is a simple process (only one point occurs at a time). But this assumption can be removed by treating it as K points if K points occur at the same time.

D. J. Daley (professor of Australian National University) suggested that I work on this title. To him I am grateful.

§ 2.

Sometimes the φ^+ is locally finite, but sometimes the φ^+ is even dense in L^+ , although M is always locally finite. The following theorem is a necessary and sufficient condition for this. Let I be an interval (A, B] on L^+ (See Fig.), the probability that the random line through the point R on X-axis intersects I is $r(I, X) = F(\beta + \delta \beta) - F(\beta)$, X is the X-coordinate of R; β , $\delta \beta$ depend on X.

Fig.

Theorem 2.1 M is a point process on positive X-axis. φ^+ is a.s. dense in L^+ iff for all interval $I \subset L^+$, $\int_0^\infty r(I, X) M(dx) = \infty$ a.s.; and φ^+ is a.s. locally finite iff for all interval $I \subset L^+$, $\int_0^\infty r(I, X) M(dx) < \infty$ a.s..

Proof Let E_I be the event "there is at least one point of φ^+ in I". Then φ^+ is a.s. dense in

 L^+ iff for all I, $P(E_I)=1$. As $P(E_I)=EP(E_I|M)$, $P(E_I)=1$ is equivalent to $P(E_I|M)=1$ a.s.. As $\{\theta_n\}$ are independent of the M, for a certain ω_0 , let $\{x_1, x_2, \dots\}$ be the points of $M(\omega_0)$. The probability that the random lines through the point x_i do not intersect I is $1-r(I, x_i)$. So $P(E_I|M(\omega_0))=1-\prod_{i=1}^{\infty}(1-r(I, x_i))$; $P(E_I|M(\omega_0))=1$ is equivalent to $\prod_{i=1}^{\infty}(1-r(I, x_i))=0$, that is $\sum_{i=1}^{\infty}r(I, x_i)=\infty$. So it is equivalent to $\int_0^{\infty}r(I, x)M(dx)=\infty$ a.s.

Now Let A_I be the event "there are only finite number of points of φ^+ in I", $P(A_I) = EP(A_I | M)$, so φ^+ is a.s. locally finite iff $P(A_I | M) = 1$ a.s. Let $\{x_1, x_2, \cdots\}$ be the points of $M(\omega_0)$, and K_i be the event "the line drawn through x_i intersects I". Then $K_i(i=1, 2, \cdots)$ are independent and we see that the following are all equivalent: " $P(A_I | M(\omega_0)) = 1$ "; " $\sum_{i=1}^{\infty} 1_{K_i}(\omega) < \infty$ a.s.;" " $\lim_{n \to \infty} P\left(\bigcup_{i=n}^{\infty} k_i\right) = 0$ "; " $1 - \lim_{n \to \infty} \prod_{i=n}^{\infty} (1-r(I, x_i)) = 0$ "; " $\sum_{i=1}^{\infty} r(I, x_i) < \infty$ ".

So φ^+ being locally finite is equivalent to $\int_0^\infty r(I, x) M(dx) < \infty$. The theorem is proved.

Remak 1. It is also obtained that the intersections of random lines through a certain set $\{x_1, x_2, \dots\}$ with an interval $I \subset L^+$ are either a.s. finite or a.s. infinite. This is just the 0-1 Law ([2] p. 243) to $\sum_{i=1}^{\infty} 1_{K_i}(\omega)$.

The results of the theorem above is in stochastic form and is therefore of limited value in applications. However, a sufficient condition that is easy to use follows. (In the following \int_a^b denotes integration over the interval (a, b].)

Theorem 2.2. Suppose EM exists, and let m = EM, m(x) = EM (0, x]. If for all c > 0, $Em(c\theta^{-1}) < \infty$, then φ^+ is a.s. locally finite.

Proof Let $I = (0, l] \subset L^+$. If for those intervals I, $E \int_0^\infty r(I, x) M(dx) < \infty$, then $\int_0^\infty r(I, x) M(dx) < \infty$ a.s., that means φ^+ is a.s. locally finite. But then

$$\begin{split} E \int_0^\infty r(I, x) \, M(dx) &= \int_0^\infty r(I, x) \, m(dx) = \int_0^\infty F(\delta \beta) \, m(dx) \\ &= \int_0^\infty \int_0^{\delta \beta} dF(u) \, m(dx) = \int_0^\infty \int_0^{\frac{x}{2} - \operatorname{tg-1}\left(\frac{x - a}{b}\right)} dF(u) \, m(dx) \\ &= \int_0^{\pi - a} dF(u) \int_0^{a + b \operatorname{ctg} u} m(dx) = \int_0^{\pi - a} dF(u) \, m(a + b \operatorname{ctg} u) \,. \end{split}$$

Let m(x) = 0 when $x \le 0$. $\int_0^{\pi^{-a}} dF(u) \, m(a+b \cot u)$ being infinite is equivalent to $Em(a+b \cot \theta)$ being infinit. As m(X) is non-decreasing, "for all I, $Em(a+b \cot \theta) < \infty$ " is equivalent to "for all c > 0, $Em(c\theta^{-1}) < \infty$ ". This is because for every b > 0 there is c > b > 0, so $m(a+b \cot \theta) > m(c\theta^{-1})$ when θ is small enough, and from $Em(c\theta^{-1}) < \infty$ we get $Em(a+b \cot \theta) < \infty$. On the orther hand, for every c > 0, there exists an I such that b > c, and $Em(C\theta^{-1}) < \infty$ is got from $Em(a+b \cot \theta) < \infty$. This completes the proof.

Remark 2. Let M(x) = M((0, x]). From the proof of the theorem above, it is seen that the condition " $\int_0^\infty r(I, x) M(dx) < \infty$ a.s. for all I"is equivalent to "for

c>0, $E_{\theta}M(C\theta^{-1})<\infty$ a.s. ", where E_{θ} means the integral for θ only; and condition " $\int_{0}^{\infty} r(I,x)M(dx) = \infty$ a.s. for all I" is equivalent to "for any $c_{1}>c_{2}>0$, $E_{\theta}[M(c_{1}\theta^{-1})-M(c_{2}\theta^{-1})]=\infty$ a.s.".

Corollary 2.3. Suppose for every c>0 there exists a constant K(c)>0 such that for u small enough $F(cu) \leq K(c)F(u)$; or , for every c>0 there exists K'(c)>0 such that $m(cx) \leq K'(c)m(x)$ for x large enough. If $Em(\theta^{-1})<\infty$, then φ^+ is a.s. locally finite.

Proof If for every c>0 there is K'(c)>0, $m(cx) \leqslant K'(c)m(x)$, then $m(c\theta^{-1}) \leqslant K'(c)m(\theta^{-1})$ when θ is small enough. So $Em(\theta^{-1})<\infty$ means $Em(c\theta^{-1})<\infty$, c>0. On the other hand, $Em(c\theta^{-1})=\int_0^{\pi}dF(u)\int_0^{c/u}m(dx)<\infty$ is equivalent to $\int_A^{\infty} \left(\int_0^{c/e}dF(u)\right)m(dx)=\int_A^{\infty}F\left(\frac{c}{x}\right)m(dx)<\infty$ for some A>0. If $F(cu)\leqslant K(c)F(u)$, then $\int_A^{\infty}F\left(\frac{c}{x}\right)m(dx)<\infty$ follows from $Em(\theta^{-1})<\infty$.

There are many F which fulfil the condition of Corollary 2.3. For example, θ is uniform on $(0, \pi)$; or F(x) is $a \sin x + b \cos x$ on some interval $B \subset (0, \pi)$; or $F(x) = ax^k$, K>0, on $(0, \pi)$. In particular, if there exists a c>0 such that $P(\theta < c) = 0$, then F fulfils the condition and meanwhile $Em(\theta^{-1}) < \infty$. So in this case, φ^+ is a.s. locally finite.

Using Corollary 2.3 to stationary point processes, we get the following corollary. Corollary 2.4. Suppose M is a stationary point process, EM exists. If $E\theta^{-1} < \infty$, then φ^+ is a.s. locally finite.

For $x \geqslant 0$, let $\xi(x; \cdot)$ be a point process on L constructed by intersecting of L^+ with a line through X at a random angle θ with distribution function F. Then $\xi(x,L^+) \leqslant 1$. Let $\{\xi(x,\cdot); x \in R^+\}$ be independent and independent of M. If the points of $M(\omega_0)$ are $\{x_1, x_2, \dots\}$, then, conditioning on $M(\omega_0)$, $\widetilde{M}(\cdot) = \sum_{i=1}^{\infty} \xi(x_i, \cdot)$. So $\widetilde{M}(\cdot) = \int_{R^+} \xi(x, \cdot) M(dx)$ (because, conditioning on $M(\omega)$, they are equal in distribution). Using this we get following theorem.

Theorem 2.5. Suppose m = EM exists. $E\widetilde{M}$ exists iff for every c > 0 $Em = (c\theta^{-1})$ < ∞ . In this time, let $I = (l_1, l_2] \subset L^+$.

 $E\widetilde{M}(I) = E[m(l_2\cos\alpha + l_2\sin\alpha\cot\theta) - m(l_1\cos\alpha + l_1\sin\alpha\cot\theta)].$

Proof

$$\widetilde{M}(I) \stackrel{d}{=} \int_0^\infty \xi(x, I) M(dx).$$

So

$$E\widetilde{M}(I) = EE\left[\int_{0}^{\infty} \xi(x, I) M(dx) \mid M\right] = E\left(E\sum_{i=1}^{\infty} \xi(x_{i}, I)\right)$$

$$= E\sum_{i=1}^{\infty} r(I, x_{i}) = E\int_{0}^{\infty} r(I, x) M(dx) = \int_{0}^{\infty} r(I, x) m(dx).$$

 $\int_0^\infty r(I,x)m(dx)<\infty \text{ for all } I \text{ is equivlant to for every } c>0 \ Em(c\theta^{-1})<\infty \text{ (see the proof of Theorem 2.2). And}$

$$\int_0^\infty r(I, x) m(dx) = \int_0^\infty \int_\beta^{\delta \beta} dF(u) m(dx) = \int_0^\infty \int_{\frac{\pi}{2} - \operatorname{tg}^{-1}\left(\frac{x - a}{b}\right)}^{\frac{\pi}{2} - \operatorname{tg}^{-1}\left(\frac{x - a}{b}\right)} dF(u) m(dx)$$

$$= \int_0^{\pi - a} dF(u) \left[m(a + b \operatorname{etg} u) - m(a' + b' \operatorname{etg} u) \right]$$

$$= E \left[m(l_2 \cos \alpha + l_2 \sin \alpha \operatorname{etg} \theta) - m(l_1 \cos \alpha + l_1 \sin \alpha \operatorname{etg} \theta) \right].$$

The theorem is proved.

Theorem 2.6. Suppose there exists a $\Lambda(\cdot) \geqslant 0$ such that $EM(B) = \int_B \Lambda(t) dt = m(B)$, $B \in \mathcal{B}(R^+)$. Then there exists a $\widetilde{\Lambda}(\cdot) \geqslant 0$ such that $E\widetilde{M}(B) = \int_B \widetilde{\Lambda}(l) dl$, $B \in \mathcal{B}(L^+)$, and $\widetilde{\Lambda}(l) = \int_0^{\pi-\alpha} \Lambda(l\cos\alpha + l\sin\alpha \cot gu) \sin(\alpha + u) \csc u dF(u)$, a.s.

Proof For $I = (l_1, l_2] \subset L^+$,

$$\begin{split} \int_{I} \widetilde{A}(l) \, dl &= \int_{l_{1}}^{l_{2}} \widetilde{A}(l) \, dl = \int_{l_{1}}^{l_{2}} dl \int_{0}^{\alpha - v} A(l \cos \alpha + l \sin \alpha \cot u) \sin(\alpha + u) \csc u \, dF(u) \\ &= \int_{0}^{\alpha - \alpha} dF(u) \csc u \sin(\alpha + u) \int_{l_{1}}^{l_{2}} A(l \cos \alpha + l \sin \alpha \cot u) \, dl \\ &= \int_{0}^{\alpha - \alpha} dF(u) \csc u \sin(\alpha + u) (\cos \alpha + \sin \alpha \cot u)^{-1} \\ &\qquad \times \left[m(l_{2}(\cos \alpha + \sin \alpha \cot u)) - m(l_{1}(\cos \alpha + \sin \alpha \cot u)) \right] \\ &= E\left[m(l_{2}\cos \alpha + l_{2}\sin \alpha \cot \theta) - m(l_{1}\cos \alpha + l_{1}\sin \alpha \cot \theta) \right] \\ &= E\widetilde{M}(I). \end{split}$$

'This completes the proof.

Remark 3. $\xi(x_i, \cdot)$ has representation: $\xi(x_i, B) = 1_B \left(\frac{\sin \theta_i x_i}{\sin (\theta_i + \alpha)}\right)$, $B \in \mathcal{B}(L^+)$ (see Fig.). Conditioning on $M(\omega)$, the jump times of \widetilde{M} , μ_1 , μ_2 ··· are order statistic of $\left\{\frac{x_i \sin \theta_i}{\sin (\theta_i + \alpha)} i = 1, 2, \cdots\right\}$.

ragama \$3.00 (Quaker) e

Consider the case where L is drawn parallel to the x-axis, intersecting the Y-axis at Y=b>0. M is a point process on x-axis (both positive and negative sides). φ is the set of intersections of random lines on L. Like Theorem 2.1, we have the following theorem.

Theorem 3.1. φ is a.s. dense on L iff for all $I \subset L$, $\int_R r(I, x) M(dx) = \infty$ a.s.; φ is a.s. locally finite iff for all $I \subset L$, $\int_R r(I, x) M(dx) < \infty$ a.s.

Theorem 3.2. Suppose EM = m exists. If for all l_1 , l_2 , $-\infty < l_1 < l_2 < \infty$,

 $E[m(l_2+b\operatorname{ctg}\theta)-m(l_1+b\operatorname{ctg}\theta)]<\infty$, then φ is a.s. locally finite. Proof

$$\begin{split} E \int_{R} r(I, x) M(dx) &= \int_{R} r(I, x) m(dx) = \int_{-\infty}^{+\infty} \int_{\frac{\pi}{2} - \operatorname{tg}^{-1}\left(\frac{x - l_{2}}{b}\right)}^{\frac{\pi}{2} - \operatorname{tg}^{-1}\left(\frac{x - l_{1}}{b}\right)} dF(u) m(dx) \\ &= \int_{0}^{\pi} dF(u) \int_{l_{1} + b \operatorname{ctg} u}^{l_{2} + b \operatorname{ctg} u} m(dx) \\ &= E \left[m(l_{2} + b \operatorname{ctg} \theta) - m(l_{1} + b \operatorname{ctg} \theta) \right]. \end{split}$$

So, if $E[m(l_2+b\operatorname{ctg}\theta)-m(l_1+b\operatorname{ctg}\theta)]<\infty$, then $\int_R r(I,x)M(dx)<\infty$ a.s..

Suppose that EM = m exists and φ is a.s. locally finite. As that stated in § 2, we see that $\widetilde{M}(\cdot) \stackrel{d}{=} \int_{\mathbb{R}} \xi(x, \cdot) M(dx)$, and $\xi(x, B) = 1_B(x - b \operatorname{ctg} \theta_x)$, $\{\theta_x; x \in R\}$, are independent, indentically distributed as θ . From this it is seen that $\widetilde{M}(\cdot)$ is a cluster precess with cluster center $M(\operatorname{see}[3], \S 2)$, because $\xi(x, \cdot)$ can be regarded as process $\eta_x(B) = 1_B(-b\operatorname{ctg} \theta_x)$ with its center at x. From [3] Corollary 3.2 we know that if M is stationary, then \widetilde{M} exists. But this time $E[m(l_2 + b\operatorname{ctg} \theta) - m(l_1 + b\operatorname{ctg} \theta)] < \infty$, so \widetilde{M} exists. And it is seen from Theorem 3.2 that if $\sup_t m(I - t) < \infty$, for any interval I, then φ is a.s. locally finite. But this is just the Corollyary 3.3 in [3].

Theorem 3.3. Suppose EM = m exist, $E\widetilde{M}$ exists iff for arbitary $l_1 < l_2$, $E[m(l_2 + b \cot \theta) - m(l_1 + b \cot \theta)] < \infty$. And in this time $E\widetilde{M}(I) = E[m(l_2 + b \cot \theta) - m(l_1 + b \cot \theta)]$, $I = (l_1, l_2] \subset L$. If there is $\Lambda(\cdot) > 0$ such that $m(B) = \int_B \Lambda(t) dt$, then let $\widetilde{\Lambda}(l) = \int_0^{\infty} \Lambda(l + b \cot u) dF(u)$, we have $E\widetilde{M}(B) = \int_B \widetilde{\Lambda}(l) dl$, $B \in \mathcal{B}(L)$.

Proof

$$\begin{split} E\widetilde{M}(I) = & EE[\widetilde{M}(I) \mid M] = E\int_{R} E\xi(x, I)M(dx) \\ = & \int_{R} r(I, x)m(dx) = E[m(l_{2} + b\operatorname{ctg}\theta) - m(l_{1} + b\operatorname{ctg}\theta)] \end{split}$$

and

$$\int_{l_1}^{l_2} \left(\int_0^{\pi} \Lambda(l+b\operatorname{ctg} u) \, dF(u) \right) dl = \int_0^{\pi} \int_{l_1}^{l_2} \Lambda(l+b\operatorname{ctg} \theta) \, dl \, dF(u)$$

$$= \int_0^{\pi} \left[m(l_2+b\operatorname{ctg} u) - m(l_1+b\operatorname{ctg} u) \right] dF(u)$$

$$= E\widetilde{M}(I).$$

§ 4.

Let M be a Poisson cluster process. We shall investigate the conditions for \widehat{M} to exist and some properties of \widehat{M} , as an application of the theorems in § 2, § 3. Suppose $\{N_x; x \in \mathbb{R}^+\}$ is a class of independent, identically distributed point processes, N is a

point process on R^+ , $\{N_x\}$ is independent of N, cluster process $M(\cdot) = \int_{R^+} M_x(\cdot | x)$ N(dx), where $N_x(\cdot | x)$ is the N_x with its center x; N is called cluster center (we assume that M is locally finite). If N is Poisson process, the M is called Poisson cluster (see [3]).

Suppose that N_x are identically distributed as N' and $N'((-\infty, 0]) = 0$. Let $\mu = EN$, $\mu(t) = \mu((0, t])$. N is a homogeneous Poisson process with intensity λ . Let B = (a, b]. Note that $EM(B) = \lambda \int_{\mathbb{R}^+} \mu(B-t) dt \leqslant \lambda \int_{\mathbb{R}^+} \mu(b-t) dt \leqslant \lambda \int_0^b \mu(b-t) dt = \mu(b) \cdot \lambda \cdot b < \infty$.

First we suppose that L is drawn at an angle α to X-axis(see § 2).

Theorem 4.1. M is a Poisson cluster process stated above. If for all c>0, $E \int_0^{ce^{-1}} \mu(t) dt < \infty$, then φ^+ is a.s. locally finite. This time $E\widetilde{M}$ exists and $E\widetilde{M}(I) = \int_0^{l_2} \widetilde{\mu}(l) dl$, $I = (l_1, l_2]$, where

$$\widetilde{\mu}(l) = \int_0^{\pi-\alpha} \lambda \mu(l\cos\alpha + l\sin\alpha \cot\alpha u) \sin(\alpha + u) \csc u \, dF(u).$$

(That is, conditions for \widetilde{M} and $E\widetilde{M}$ are the same as the case where M is non-homogeneous Poisson process with intensity function $\lambda\mu(t)$).

Proof Let
$$m(\cdot) = EM(\cdot)$$
, $m(x) = EM((0, x])$. But

$$m(x) = EM((0, x]) = \lambda \int_{R^+} \mu((0, x] - t) dt = \lambda \int_0^x \mu(x - t) dt = \lambda \int_0^x \mu(t) dt.$$

So if, for every c>0, $Em(c\theta^{-1})=E\int_0^{c\theta^{-1}}\mu(t)dt<\infty$, then φ^+ is a.s. locally finite (see Theorem 2.2). Also we have

$$m((x_1, x_2]) = \lambda \int_{x_1}^{x_2} \mu(t) dt.$$

So from Theorem 2.6 we know that there exist $\tilde{\mu} \geqslant 0$, $E\widetilde{M}(I) = \int_{l_1}^{l_2} \widetilde{\mu}(l) dl$, and $\widetilde{\mu}(l) = \int_{0}^{\alpha-\alpha} \lambda \mu(l \cos \alpha + l \sin \alpha \cot u) \sin(u+\alpha) \csc u dF(u)$.

The theorem is proved.

Then we suppose that L is drawn parallel to X-axis (see § 3), N, N_x , $x \in R$ all are the Point processes on $(-\infty, +\infty)$.

Theorem 4.2 Suppose M is a Poisson cluster process stated above, and EM = m exists. Then φ is a.s. locally finite, and \widetilde{M} is also a Poisson cluster process directed by N, \widetilde{N}_{x} , $x \in R$ and $E\widetilde{M} = EM = m$.

Proof N is a stationary process, so M itself is stationary (see [3] p. 296). Then φ is a.s. locally finite (see § 3). or, let $B = (x_1, x_2] \subset R$,

$$m(B) = EM(B) = \int_{\mathbb{R}} \lambda \mu(B-t) dt = \int_{\mathbb{R}} \lambda \left[\mu(x_2-t) - \mu(x_1-t) \right] dt.$$

So m(B) = m(B+x), $x \in R$. Then we get $E[m(l_2+b \cot \theta)-m(l_1+b \cot \theta)]=m(l_2)-m(l_1)=m((l_1,l_2])<\infty_{\bullet}$ It follows from Theorem 3.2 that φ is a.s. locally finite. And $E\widetilde{M}(I) = E[m(l_2 + b \operatorname{ctg} \theta) - m(l_1 + b \operatorname{ctg} \theta)] = m(I), I = (l_1, l_2] \subset L.$

So $E\widetilde{M}=m$. Let \widetilde{N}_x be the point process on L directed by the N_x on R. (\widetilde{N}_x is the intersections.

of random lines through the points of N_x .) It is easily seen that $\widetilde{N}_x(\cdot | x) = \widetilde{N}_x(\cdot | x)$, $\widetilde{N}_x(\cdot \mid x)$ means \widetilde{N}_x with its center x (for every ω , it is equal). Conditional on $N(\omega_0)$, $M ext{ is } \sum_{i=1}^{\infty} N_{x_i}(\cdot | x_i), \ \{x_i; \ i=1, \ 2, \cdots\} \text{ are the points of } N(\omega_0). \text{ This time } \widetilde{M} \stackrel{d}{=} \sum_{i=1}^{\infty} \widetilde{N}_{x_i}(\cdot | x_i)$ $=\sum_{i=1}^{\infty}\widetilde{N}_{x_i}(\cdot|x_i). \text{ So } \widetilde{M}(\cdot)\stackrel{d}{=}\int\widetilde{N}_x(\cdot|x)N(dx), \text{ that is, } M \text{ is a Poisson cluster, its}$ components are N, \widetilde{N}_x .

Remark 4. Let M be a cluster process on R with cluster center N, cluster member N_x . If \widetilde{M} exists, then it is also a cluster process directed by N, \widetilde{N}_x (in the case that L is drawn parallel to X-axis), this is seen by the proof of the theorem. above.

References

[2] Loève, M., Probability theory I, 4th Edition, Springer-verbag (1977).

^[1] Peter, H., On the distribution of random lines, J. Appl. prob. 18 (1981), 606—616.

^[3] Westcott, M., On existence and mixing results for cluster point preceses, J. B. Statis. Soc. B, 33 (1971), 290---300.