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Abstract

Let A, B be unital ¢ *-algebras.
o,={p|p are all completely posutlve linear maps from M.(C) to A with ||a(¢p) |<1}.

@(e11)+-@(e1n) | '
'(a(q;) ( ------ -], where {e;,} is the matrix unit of M ,-,(G’).)

@(en1)+ @ (enn)
Let a be the natural action of S’U(n) on M,(0).
For n>3, if @ is an o—invariant affine isomorphism between % and xB, @(O) 0,
then A and B are *~isomorphiec.
In this paper a counter example i given for the case n=2.

§ 1. Introduction

The relationship botween the structure of O*-algebras and their state spaces
‘has received strong attension from many specialists. Using Kadison’s function
representation it is proved that if A and B are O"-algebras with- state. spaces © (4)
and € (B), and if ¢ is' a weakly continuous affine isomorphism between & (4) and
&(B), then i induces a Jordan- momorphlsm between 4 and B.

From now on we assume that all O*—algebras are unital. )

Let 4 be a O*—algebra and ¢4 be the set of all completely posmve maps from
M,(0) to A with |a(p) |<1. Then 7 is a convex ‘set. , A

The new idea in this paper is that wé can view every (p in X, ", a8 é, “bulldmg
block” such that £ becomes a covering for O *_algebra 4, and if @ is'a certain kind
affine isomorphism between Ay and A 3, We can expect that @ will induce a

*_isomorphism between 4 and B. ,

Suppose that SU (n) is the set of all nXn ummodula.r unitary matrixes and o is

the automorphism group on M,(O) defined by
oy (@) = gg™. o€ M,(C), gESU (n).
" By use of a,p(#) =p (a7 (%)) ,0€ Hu, ¥€ M,(0), & induces an action on 7, 2o
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In this paper we consider ./ instead of € (4) and show the following result:
Theorem 1. ILet A and B be O*-algebras. If @ is an a—invariant affine
- 4somorphism between Ay and Ay (n=>8), @(0) =0, (a—fmmtrwnt means that Doy =
a,D), then @ gives rise naturally to an *—isomorphism.

If n=2, next theorem is a counter example for Theorem 1.

Theorem 2. Let A and B be O*-algebras. If n=2, there is an a—imvariat affine
dsomorphism between Ay and A, @(0) =0, such that @ does not give rise o @

*—jsomorphism.

.In view of the Gelfand representation theorem, the complex number field C can
be viewed as the fundamental building block of an abelian O*-algebra.We propose to
view M,(0) (n=>8)-as a candidate for such object. We prove that the structure of
4 determines the algebraic isomorphism class of 4. This is an important first step
toward the search of the fundamental building block of a O*-algebra. One might
view an element of 4 as a “non-commutative singular simplex”. This new work is
important for classifications of symmetrm convex sets and non-commutative
K -theory.

§ 2. The Extension of an Affine Isomorphiém

Let M, (O) be the set of all nXn complex matrixes.
~Following the notations in p. 168 [1], let L(M, A) be the vector space of
linear functions from M, to A and L(M,, A)® the cone of all completely positive
‘maps from M, to A. '
Given an element r= [r,] € M,®A4, we define 8 (r): M,~>A by

0(r) (&) = 2 oa,;,r”, for any aGM,.,
Lemma 1®%1%9 Tf A i3 g O*-algebra, then the map
6: M ®A——->L(M,,, 4)

48 an orrderr isomorphism (with respect to L(M w A)®).
For any p € L(M,, A), we define

@ (11)  (012) -+ (e1)

@ (621) p (€29) -+ (€3n)

A2 IR

\ 9(0:) 9 (612 + ¢ (0um)

in which {e;;} is matrix unit of M,(0).
By Lemma 1, it follows that P is completely positive if and only if a(p)=>0 in
M,RA.
In the same way, we can define b (%) for any ¥ € L (M, s B).
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To prove main theorem we shall use following lemma. :

Lemma 2. ILet A and B be O*—algebras and 84 and Sy closed unit balls in 4, B
respectively. If @ is an affine isomorphism between A* (84 and B* ﬂS 8, ©(0)=0,
then @ can be eatended to @ Jordan isomorphism from A to B. ‘

Proof At first, we extend linearly @ to A*.

For a € A*, we define

& (a) = { B (ha): A0, meAmSAo}

By the standard procedure it follows that the extended @ is a p051t1ve map from
A onto B. We extend @ as a linear map from A to B.
Since _ 4
|a] =Inf {A=>0; —AI<a<AI}
and @ maps A* NS, onto B*N S5, @ is an isoinetry from A to B.
According to Theorem 7 p. 880 [2], @ is a Jordan isomorphism.

| § 3. Main Theorem

Now we will show the main theorem in this paper. We put
A a={p|p are all completely positive maps from
M,(0) to 4 with [a(p) | <1},
Hp={ | are all completely positive maps from
M, (C) to B with [b() | <1}.

Theorem 1. Let 4, B be O"-algebras. For n=>3, if @ is an a-invariant affine
isomorphism from A s to A g, @(O) 0, then A arnd B are —wsomoq'phfw

Proof By Lemma 1,

={a€ (M,R4)*: |a <1}.

Applying Lemma 2, we then have an e-invariant positively presei'ving
isometry @ from M,RA onto M,XB. -

Replaclng 4 and B by their second dual 4 and B and & by ®®, we may assume
that A and B are Von Neumann algebras. The a-invariance means that

‘ ‘ @ (uar®) =ud (@) u*, € M,RQA, u€8U (n).

By [2], p. 885, let z be the central projection of B such that z €M ,,®Ar—>@ (o) 2
is multip]ieative‘and at—>P (v) 2* is anti-multiplicative.

Weo will view 4 and SU (n) as subsets of M,®A, if it does not cause the danger .
of confusions. : v '

If s€ 4, then wan* =g for every 4 € S8U (n) so that

@ (z) =ud ()", €A, u€SU ).

But M, N (M,R®B) =B, so that ?(4) =B.
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Now we have, for any s € M,®4 and w€S8U (n), -
- ud (@) u* = (uau”) = D (waw®) 2+ & (uau®) z*
- =0 ()P (2)D (u") 2+ D (u*) D (2)D (u) 2+ G
=[@ (W) 2+® (u*) -1 (@) [D (") 2+ D (W) 2], -
Thus, p (w) =u"[D(w)z+D (u*)2z+] belongs ‘to the center Z of B. i
If u, v€8U (n), then we can prove
() =p @)
by noticing p(w) €Z. Hence pis a homomorphlsm of SU (rn,) into a eommuta,tlve
. group % (Q’ ), but we know that such & homomorphlsm must be 131‘1V1&1 Therefore .
P@W) =1, u€SU ().
This means that ‘ '
SO (Wt =urt, ‘
{@(u)_z=uz, u:ES_U(n)..‘ x
We will show that 2L =0, A ‘
For AET={A€O0:|A| =1}, we consider '
- [AD(ean) + D (ea9) oo +ED (00) + o+ + D (0,) T2t
=@(A611+622+ N0+ e ) 2t
= (Ro11+€aa+ ++» + Aoy - +e,.,.)zL (2<é<m).
Hence D (e41) 2* =2t
D (i) 2* =€1i21 @2<i<n).
If n>8, in the same way,we can prove v
'@(egg)':zi=e.~;zl, | 8<i<n.
Therefore, we get S
B (611) 2! =gzt =@ggzl = oo =g, 21 = O, '
D (629) 2t =€912t = @g2- =--. =Ouzt=0. .
This means that | o o a &
- o 2t = (611t Oaat et om)et=0.
Hence, @ must be an isomorphism of M, A onto M, »QB such that & (4) =B.

" If we view the set of all /7. s (4disa O’*—algebra) as a category where Hom (1,
H'3) consists of all e~invariant affine womorphlsms from 274 to A, with @(0) =0,
and the set of all O*—algebras A'as a category" where Hom (4, B) consists of all

*—isomorphisms from A4 to ‘B, for n=>8, by Theorem 1 any @ E€Hom ' (A, J; B)
determines (@) € Hom (4, B) so that o is a functor We consnder the main
theorem over this functor. ‘

§4. A countef_‘Examiole' for n=2

In this section, we give a counter example for n=2,
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Theorem 2. Let A and B be O*—algebras. If n=2, there is an a—invarians
affine isomorphism between Ay and Az, D(0) =0, such that @ does not give rise to @
—fbsomorphwsm. P
Proof In M,, we deﬁne

a B d -8B\
a(.(y - 7o)

Then ¢ is an. ant1—a.utomorphlsm of M, of order 2’ such that

o(w)=u", weSU(2).

Hence we have v
o e o‘(uam)—ua(a;)u ‘CU»EMg‘,V'MGSU'(z)“

Therefore if o7 is an antl—lsomorphlsm of a O*—a.lgebra A onto B, then b= o‘@m:
is an ant1—-1somorph1sm of M 2®A onto M 2®B such that

& (uau®) = —ud (B)u*, 1€ MRA, ucSU (2)
But @ induces an oc—mvanant affine isomorphism of -
={a€EMsRA: 6=0, ]|a||<1} ;

onto A, w1th (D(O) —0.

I would llke to thank Prof Takesaln for his encouragement a,nd severa,l very
useful. talks and advice.
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