COMPLETELY POSITIVE MAPS AND *-ISOMORPHISM OF C*-ALGEBRAS

Wu Liangsen (吴良森)*

Abstract

Let A, B be unital C^* -algebras.

 $\mathscr{X}_{A} = \{ \varphi \, | \, \varphi \text{ are all completely positive linear maps from } M_n(C) \text{ to } A \text{ with } \|a(\varphi)\| \leqslant 1 \}.$

$$\left(a(\varphi) = \begin{pmatrix} \varphi(e_{11}) \cdots \varphi(e_{1n}) \\ \cdots \\ \varphi(e_{n1}) \cdots \varphi(e_{nn}) \end{pmatrix}, \text{ where } \{e_{ij}\} \text{ is the matrix unit of } M_n(C).\right)$$

Let α be the natural action of SU(n) on $M_n(C)$.

For $n \ge 3$, if Φ is an α -invariant affine isomorphism between \mathcal{X}_A and \mathcal{X}_B , $\Phi(0) = 0$, then A and B are *-isomorphic.

In this paper a counter example is given for the case n=2.

§ 1. Introduction

The relationship between the structure of C^* -algebras and their state spaces has received strong attension from many specialists. Using Kadison's function representation it is proved that if A and B are C^* -algebras with state spaces \mathfrak{S} (A) and \mathfrak{S} (B), and if ψ is a weakly continuous affine isomorphism between \mathfrak{S} (A) and \mathfrak{S} (B), then ψ induces a Jordan isomorphism between A and B.

From now on we assume that all C^* -algebras are unital.

Let A be a C^* -algebra and \mathscr{K}_A be the set of all completely positive maps from $M_n(C)$ to A with $||a(\varphi)|| \leq 1$. Then \mathscr{K}_A is a convex set.

The new idea in this paper is that we can view every φ in \mathscr{K}_A as a "building block" such that \mathscr{K}_A becomes a covering for C^* -algebra A, and if Φ is a certain kind affine isomorphism between \mathscr{K}_A and \mathscr{K}_B , we can expect that Φ will induce a *-isomorphism between A and B.

Suppose that SU(n) is the set of all $n \times n$ unimodular unitary matrixes and α is the automorphism group on $M_n(C)$ defined by

$$\alpha_g(x) = gxg^{-1}$$
. $x \in M_n(C)$, $g \in SU(n)$.

By use of $\alpha_g \varphi(x) = \varphi(\alpha_g^{-1}(x)), \varphi \in \mathscr{K}_A, x \in M_n(C), \alpha$ induces an action on $\mathscr{K}_{A^{\bullet}}$.

Manuscript received February 4, 1985.

^{*} Department of Mathematics, East China Normal University, Shanghai, China.

In this paper we consider \mathcal{K}_A instead of \mathfrak{S} (A) and show the following result:

Theorem 1. Let A and B be C^* -algebras. If Φ is an α -invariant affine isomorphism between \mathcal{K}_A and \mathcal{K}_B $(n \geqslant 3)$, $\Phi(0) = 0$, $(\alpha$ -invariant means that $\Phi \alpha_g = \alpha_g \Phi$), then Φ gives rise naturally to an *-isomorphism.

If n=2, next theorem is a counter example for Theorem 1.

Theorem 2. Let A and B be C^* -algebras. If n=2, there is an α -invariat affine isomorphism between \mathcal{K}_A and \mathcal{K}_B , $\Phi(0)=0$, such that Φ does not give rise to a *-isomorphism.

In view of the Gelfand representation theorem, the complex number field C can be viewed as the fundamental building block of an abelian C^* -algebra. We propose to view $M_n(C)$ ($n \ge 3$) as a candidate for such object. We prove that the structure of \mathcal{K}_A determines the algebraic isomorphism class of A. This is an important first step toward the search of the fundamental building block of a C^* -algebra. One might view an element of \mathcal{K}_A as a "non-commutative singular simplex". This new work is important for classifications of symmetric convex sets and non-commutative K-theory.

§ 2. The Extension of an Affine Isomorphism

Let $M_n(C)$ be the set of all $n \times n$ complex matrixes.

Following the notations in p. 163 [1], let $L(M_n, A)$ be the vector space of linear functions from M_n to A and $L(M_n, A)^{\oplus}$ the cone of all completely positive maps from M_n to A.

Given an element $r = [r_{ij}] \in M_n \otimes A$, we define θ $(r): M_n \rightarrow A$ by

$$\theta\left(r\right)\left(\alpha\right) = \sum_{i,j=1}^{n} \alpha_{ij} r_{ij}, \text{ for any } \alpha \in M_{n},$$

Lemma 1^(Cl)p.163). If A is a C^* -algebra, then the map

$$\theta: M_n \otimes A \rightarrow L(M_n, A)$$

is an order isomorphism (with respect to $L(M_n, A)^{\oplus}$).

For any $\varphi \in L(M_n, A)$, we define

$$\boldsymbol{a}(\varphi) = \begin{pmatrix} \varphi(e_{11}) \varphi(e_{12}) \cdots \varphi(e_{1n}) \\ \varphi(e_{21}) \varphi(e_{22}) \cdots \varphi(e_{2n}) \\ \vdots \\ \varphi(e_{n1}) \varphi(e_{n2}) \cdots \varphi(e_{nn}) \end{pmatrix}$$

in which $\{e_{ij}\}$ is matrix unit of $M_n(C)$.

By Lemma 1, it follows that φ is completely positive if and only if $a(\varphi) \geqslant 0$ in $M_n \otimes A$.

In the same way, we can define $b(\Psi)$ for any $\Psi \in L(M_n, B)$.

To prove main theorem, we shall use following lemma.

Lemma 2. Let A and B be C^* -algebras and S_A and S_B closed unit balls in A, B respectively. If Φ is an affine isomorphism between $A^+ \cap S_A$ and $B^+ \cap S_B$, $\Phi(0) = 0$, then Φ can be extended to a Jordan isomorphism from A to B.

Proof At first, we extend linearly Φ to A^+ .

For $a \in A^+$, we define

$$\Phi(a) = \left\{ \frac{1}{\lambda} \Phi(\lambda a) : \lambda \geqslant 0, \ \lambda a \in A^+ \cap S_{A^0} \right\}.$$

By the standard procedure, it follows that the extended Φ is a positive map from A onto B. We extend Φ as a linear map from A to B.

Since

$$||a|| = \text{Inf } \{\lambda \geqslant 0; -\lambda I \leqslant a \leqslant \lambda I\}$$

and Φ maps $A^+ \cap S_A$ onto $B^+ \cap S_B$, Φ is an isometry from A to B.

According to Theorem 7 p. 330 [2], Φ is a Jordan isomorphism.

§ 3. Main Theorem

Now we will show the main theorem in this paper. We put

 $\mathcal{K}_{A} = \{ \varphi \, | \, \varphi \text{ are all completely positive maps from }$

$$M_n(C)$$
 to A with $||a(\varphi)|| \leq 1$,

 $\mathcal{K}_{B} = \{\psi | \psi \text{ are all completely positive maps from }$

$$M_n(C)$$
 to B with $||b(\psi)|| \leq 1$.

Theorem 1. Let A, B be C^* -algebras. For $n \ge 3$, if Φ is an α -invariant affine isomorphism from \mathcal{K}_A to \mathcal{K}_B , $\Phi(0) = 0$, then A and B are *-isomorphic.

Proof By Lemma 1,

$$\mathscr{K}_A = \{ a \in (M_n \otimes A)^+ \colon ||a|| \leq 1 \}.$$

Applying Lemma 2, we then have an α -invariant positively preserving isometry Φ from $M_n \otimes A$ onto $M_n \otimes B$.

Replacing A and B by their second dual \widetilde{A} and \widetilde{B} and Φ by ${}^{tt}\Phi$, we may assume that A and B are Von Neumann algebras. The α -invariance means that

$$\Phi(uxu^*) = u\Phi(x)u^*, x \in M_n \otimes A, u \in SU(n).$$

By [2], p. 335, let z be the central projection of B such that $x \in M_n \otimes A \mapsto \Phi(x)$ z is multiplicative and $x \mapsto \Phi(x)$ z¹ is anti-multiplicative.

We will view A and SU(n) as subsets of $M_n \otimes A$, if it does not cause the danger of confusions.

If $x \in A$, then $uxu^* = x$ for every $u \in SU(n)$ so that

$$\Phi(x) = u\Phi(x)u^*, x \in A, u \in SU(n).$$

But $M'_n \cap (M_n \otimes B) = B$, so that $\Phi(A) = B$.

Now we have, for any $x \in M_n \otimes A$ and $u \in SU(n)$,

$$\begin{split} u\Phi(x)u^* &= \Phi(uxu^*) = \Phi(uxu^*)z + \Phi(uxu^*)z^{\perp} \\ &= \Phi(u)\Phi(x)\Phi(u^*)z + \Phi(u^*)\Phi(x)\Phi(u)z^{\perp} \\ &= \left[\Phi(u)z + \Phi(u^*)z^{\perp}\right]\Phi(x)\left[\Phi(u^*)z + \Phi(u)z^{\perp}\right]. \end{split}$$

Thus, $\rho(u) = u^* [\Phi(u)z + \Phi(u^*)z^{\perp}]$ belongs to the center \mathscr{Z} of B. If $u, v \in SU(n)$, then we can prove

$$\rho(uv) = \rho(u)\rho(v)$$

by noticing $\rho(u) \in \mathcal{Z}$. Hence ρ is a homomorphism of SU(n) into a commutative group $\mathcal{U}(\mathcal{Z})$, but we know that such a homomorphism must be trivial. Therefore

$$\rho(u) = I, u \in SU(n).$$

This means that

$$\left\{egin{aligned} ar{\Phi}(u)z^{ot} = u^*z^{ot}, \ ar{\Phi}(u)z = uz, \ u \in SU(n). \end{aligned}
ight.$$

We will show that $z^1 = 0$.

For $\lambda \in T = \{\lambda \in C : |\lambda| = 1\}$, we consider

$$\begin{split} \big[\lambda \varPhi(e_{11}) + \varPhi(e_{22}) + \cdots + \bar{\lambda} \varPhi(e_{ii}) + \cdots + \varPhi(e_{nn}) \big] z^{\mathbf{1}} \\ &= \varPhi(\lambda e_{11} + e_{22} + \cdots + \bar{\lambda} e_{ii} + \cdots + e_{nn}) z^{\perp} \\ &= (\bar{\lambda} e_{11} + e_{22} + \cdots + \lambda e_{ii} + \cdots + e_{nn}) z^{\perp} \quad (2 \leqslant i \leqslant n). \\ &\varPhi(e_{11}) z^{\perp} = e_{ii} z^{\perp}, \\ &\varPhi(e_{ii}) z^{\perp} = e_{11} z^{\perp} \quad (2 \leqslant i \leqslant n). \end{split}$$

Hence

If $n \ge 3$, in the same way, we can prove

$$\Phi(e_{22})z^{\perp}=e_{ii}z^{\perp}, \quad 3\leqslant i\leqslant n.$$

Therefore, we get

$$egin{align*} arPhi\left(e_{11}
ight)z^{\perp} = & e_{22}z^{\perp} = e_{33}z^{\perp} = \cdots = e_{nn}z^{\perp} = 0 \,, \ arPhi\left(e_{22}
ight)z^{\perp} = & e_{11}z^{\perp} = e_{33}z^{\perp} = \cdots = e_{nn}z^{\perp} = 0 \,. \end{split}$$

This means that

$$z^{\perp} = (e_{11} + e_{22} + \cdots + e_{nn})z^{\perp} = 0.$$

Hence, Φ must be an isomorphism of $M_n \otimes A$ onto $M_n \otimes B$ such that Φ (A) = B.

If we view the set of all \mathscr{K}_A (A is a C^* -algebra) as a category where Hom (\mathscr{K}_A , \mathscr{K}_B) consists of all α -invariant affine isomorphisms from \mathscr{K}_A to \mathscr{K}_B , with $\Phi(0) = 0$, and the set of all C^* -algebras A as a category where Hom (A, B) consists of all *-isomorphisms from A to B, for $n \geqslant 3$, by Theorem 1 any $\Phi \in \text{Hom } (\mathscr{K}_A, \mathscr{K}_B)$ determines $\pi(\Phi) \in \text{Hom } (A, B)$ so that π is a functor. We consider the main theorem over this functor.

§ 4. A Counter Example for n=2

In this section, we give a counter example for n=2.

Theorem 2. Let A and B be C^* -algebras. If n=2, there is an α -invariant affine isomorphism between \mathcal{K}_A and \mathcal{K}_B , $\Phi(0)=0$, such that Φ does not give rise to a *-isomorphism.

Proof In M_2 , we define

$$\sigma\left(\begin{pmatrix}\alpha&\beta\\\gamma&\delta\end{pmatrix}\right)=\begin{pmatrix}\delta&-\beta\\-\gamma&\alpha\end{pmatrix}.$$

Then σ is an anti-automorphism of M_2 of order 2' such that $\sigma(u)=u^*, \quad u\in SU(2).$

Hence we have

110

$$\sigma(uxu^*) = u\sigma(x)u^*, \quad x \in M_2, \ u \in SU(2).$$

Therefore, if π is an anti-isomorphism of a C^* -algebra A onto B, then $\Phi = \sigma \otimes \pi$ is an anti-isomorphism of $M_2 \otimes A$ onto $M_2 \otimes B$ such that

$$\Phi(uxu^*) = u\Phi(x)u^*, \quad x \in M_2 \otimes A, u \in SU(2).$$

But Φ induces an α -invariant affine isomorphism of

$$\mathcal{K}_{A} = \{ a \in M_{2} \otimes A : a \geqslant 0 \mid |a| \leqslant 1 \}$$

onto \mathcal{K}_B , with $\Phi(0) = 0$.

I would like to thank Prof Takesaki for his encouragement and several very useful talks and advice.

References

[1] Choi, M. D. & Effros, E. G., Injectivity and operator algebra, Journal of Functional Analysis, 24: 3 (1977), 156—209.

Broke Married Little British Colonia

[2] Kadison, R. V., Isometries of operator algebras, Ann. of Math., 54: 2 (1951), 325-338.

and the technologic conservation of the Selvin Selvin and Selvin and Selvin Selvin Selvin Selvin Selvin Selvin

Market B. J. B.

[3] Takesaki, M., Theory of Operator Algebras, 1, Springer Verlag, 1979, New York.