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THE HILBERT BOUNDARY PROBLEM OF DOUBLY
PERIODIC ANALYTIC FUNCTIONS*
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| Bbstract 1 -

The doubly periodic Hilbert boundary value problem is discussed in this paper. First,
certain kind of integral representations of .doubly quasi-periodic analytic functions in
inultiplica.tion is established so that the Dirichlet problem of such functions is- solved.
Then, by the method of regularization, the Hilbert boundary value problem is transferred
to such a problem, and it is reduced at length to some Fredholm integral equation. The
number of solutions and conditions of solvability as well as the form .of the -general .-
solution are obtained.

We studied the Riemann boundary value problem of doubly periodic analytic
functions in [1, 2] and that of doubly quasi—periodic analytic functions in [8]. The
correspondmg Hilbert problem has not been investigated yet. The sPeclal cage for the
Dirichlet problem of analytic fu,nctlons doubly periodic or doubly qua51—per10d10 in
addition, was discussed in 4, 5] ‘ - 4

In this paper, the Hilbert boundary value problem of doubiy periodic analytic
functions (DH problem) is discussed. We first give some integral representation for
doubly quasu—perlodlc analytlc functlons in multiplication (MQ—functlon) S0 as_to
solve the Dirichlet problem of such functions. Then, by using the method of
regularization) hé DH problem is solved by reducing it tq this solved problem.

§ 1. Definitions and Notations

‘We shall recalt some notations used in [2]. Let the periods be 2w;, 2w, with
Im (ws/w1)>0 and S, be the fundamental cell (the parallelogram with vertices
fwitws). Lo is a Liapunov contour in §, with usual positive sense, the interior
region bounded by which is denoted by Si. We always assume 0ES{. Denote
87 =8,—85. The union of all the contours congruent to L, (mod 2w;) is denoted by
L, the exterior region bounded by which is denoted by 8-. (
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Let w=c(2) be the function conformally mapping ¢ to |w|<<1 with co(O) =0,
o’ (0) >0. :
We shall use the Weierstrass’ {~function {(2)and o~function cr(z) (cf. [6]) It
is well known that {(2) has the single simple pole =0 in Sy with 1/z as its prmc1pal
part and the property S
. - Lt20) =L@ +2m, - j=1, 2, SRR .1
where = Z(a),), satlsfymg T ) )
' 27109 — 27720)1 wh. . S @. v2).
o (%) isan entire function which has a umque Smele zero a,t 2= O in So W1th o (O) =1
and has the property : ’ f
o (2+20;) = — 2""”"""*”o‘ (z) = =1,2. ©(1.8)
A function @~ (2) deﬁned in 87 is called an MQ,—functlon 1f it is ana.lytm m S
with the property of double quaS1—per10d1c1ﬁy o
D72 2w;) =007 (2), j=1,2, - ol (1.4)
where b4, by are two non—zero censtants called the multlphers .
Define two constants A and z, by the following system of linear equations. .
200 —2n20=10g b;, j=1, 2, 1.5
for certain fixed values of logbdy and .logbs. It is uniquely solvable on account of
(1.2). For definiteness, we assume z(.VE;S'o, which is always possible for suitably
chosen log b;. Note that A and 2o aTe complex in general even if- by, by are real. It is
evident that ¢ is an entu'e MQ,—functmn with multlpllers b1, ba if 20=0 (Case I) and
q(2) =é "—((;%)EQ h 1.6)
is a meromorphic MQ-function with multipliers by, bs if 2#0 (Case II). ¢(2) has
2=0 ag its unigue simple pole and z=2, a8 1ts unique simple zero in Sy and hence is
holomerphic in §~.
Qase I Vap'pears iff ‘L
®ylog by =w; log by @a.nmn
is valid for suitably chosen log b4, log ba.

§ 2. Integral Representation for MQ-Functions

‘We gave an integral representation for doubly periodic ana,lytic functions in S~
(cf. [4]), from.which we may easily obtain one _fer MQ-functions by multiplying a
factor ¢ (Case I) or ¢g(z) (Case II). However, such a representabion is inconvenient
for our purpose. Here we shall give another kind of representation for MQ-fanctions
in 8°. ' ‘

Given an MQ-function @~ (z) =u(2) —|—'1/v(z) in 8§~ with multipliers by, ba.
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Constants A and 2o €S, are defined as in § 1. Assume @~ (¢) =w(£) +dv (£) € H (Holder
condition) on L.

, Case I: 20=0. We shall prove the following lemma.

Lemma 1. If (1.7) is Sulfiled for certain log by, log bz, then @~ (z) may be
represenied as

q5-(z)=e~={21 j p@®e L E—2) +L()] clt+A} 2€8-, @2.1)

where w(t) EH is a real function on Lo, umquely determined up to a term
0+Re{0w(t)} (Bo and O being respectivly arb@trwry real and complex constants),
while A is a complew constant uniquely determined by &~ (z).
Proof Suppese that there exist u(#) on L, and constant 4 such that (2.1) is
valid. Denote the function defined by its right-hand member when z€ S by @*(z),
which has in gen'éral a simple pole at z=0. Then by Plemelj’s formulas, we have

B (k) =+ gz |, RO (6 t0) +L () 11+ 4%, 4o Lo
2.2)

By the same reasoning as in [4], we have
D" (8) =4(8v) () + Bo+Re{Ow (2)}, - @.3)
where § is the Schwarz operator of Sg (cf [71): (Sv) (2) is holomorphic in So with
the propertles
' Re{(8v) ®)}=v(®), (80)*(8) =(8v) (®), €Ly,

and B,, C are constants as described in the lemma. Moreover, we may set

w (@) = po(£) +Bo+Re{Ow (8) }, , 2.9
where :

Mo (8) =4 (Sv) (§) — D~ (#) = — Im{(Sv) () } —u(?) (2.5)
_is uniquely determined by @~ (¢). Thus, if the representation exists, then w(#) must
be of the form (2.4). It is easy to verify the term B,+Re{Cw ()} does not effect the
value of the integral appeared.
Put

@) = [, @G- +L(@)1ds, 2ES™.
Substituting (2.5) into it, we readily see that
O -2_‘;? Lo & (oL (t—2)dt

=@~ — ﬂ i —AT — -
D~ (2) 3 L@ @ e (v—2)dv, 2€ENSF,
where I" is the boundary of 8¢ with usual positive sense. We shall show tha#

= [0 (2) — T~ (2)] =2_}WT jp (Ve (v—2)dv, 2ES5,

is actually a constant. In fact, by using the doubly periodic property of ¢™**®~ (z), we
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may easily obtain .
A= j 0 () dr— "2 [ 6@~ (2)d, (2.6)
Y WY Jn
where 7, and 7, are the directed line-segments from -—&)1—(62 t0 w3— 0wy and from
w1 — w3 10 w1+ wy Tespectively. The lemma is proved.
~ Case II: 2,#0. In this case, we have the following lemma.
Lemma2. I f (1.7) is not fulfiled for any values of log bi, log bz whatever,
then @~ (z) may be frepresented as

L ORa (”;) 2}@ p@)enZE=2t2) g g .7

o(t—2)
where u(t) € H is a real function umquely determined by @~ (2) up to a real constant
term Bo. ‘

Proof Suppose (2.7) is valid for some real u(¢) € H. Again define @*(z) by its
right-hand member when z€S§. Then we have

O* (o) = 5 wlto) +y ooz |, e S gy e, @9

 Using the same reasoning as above but noting that @*(2) is now holomorphic in S§,

we must have, instead of (2.4), _ »
| 1 (®) = o () + Bo, (2.9)
where B, is again a real constant and u, (%) is still given by (2.5). The term B, does
not effect the value of the mtegral appeared in (2.7).

‘We have to prove
& (2) = J p,o()e"”i(%z-—:—;")—dt 2€8- (2.10)

Substituting (2.5) into it, we see that it is equivalent to

a(z ) 2mwi,

N € 1 o -at O(E—2+20) -
D (2) oG Ok Lo@ (B ——=——2 dt, z€8".

o(t—2)

‘When we arbitrarily fix 2 €8y, the integrand as a function of ¢ is doubly periodic and
analytic in S~ with the single simple pole {=2 in S7. Therefore its integral taken ‘
along I" must be equal to zero. So, by using the residue theorem in S5, the above
equality is valid for z€ Sy and hence for z€8", i. 6., (2.10) is valid. The lemma is
proved.

§ 3. The Dirichlet Problem of MQ-Functions

Let us now consider the following Dirichlet problem of MQ-functions. Given a
real function f(¢) € H on Lo and two non~zero real constants By, B,, we need to find
an MQ-function @~ (2) in §~ with multipliers by= 81, ba= Bs, satisfying the boundary
condition
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Re{®~ (@)} =f(), tEL,. 3.1)
For the case f (t) =0, the problem was solved in [8] by the following lemma.
Lemma 8. The Dirichlet problem of MQ-functions, satisfying ’

‘ Re{®~(£)}=0, ¢E€L, ‘ o (8.1)
with given real multq/pl@em Bi, Ba, has unique non—trivial solution @~ (2) (up to @ real
constant coefficient) if log /81, log Ba 'satisfy two freal condwtwons _pTO’U’bded their values
aire suitably chosen, and otherwise @ (2) =0 in S

The mentioned two conditions were given by (3.4) in 8].

For the general case (3.1) , ‘two different cases are divided.

Qase I: 2,=0, If the problem (8.1) has a solution\' @~ (z), then. it may be
represented as (2.1). Then, by (2.2), we have (in the Sequel, w(t) is alWays replaced
by 2u (), : :

— w(to) +Re{ 1 J M@)e—n(t—to)[Z(t to)+C(t0):|dt}+Re {Ae¥s}
~f®), ©w€Le @

It is easy 1o see ‘ , S : ‘ v
b(to, 1) =a L (1—i0) +{ ()] — 72 € A, 3.9)
Thereby (8.2) may be written as N
_ 1 cos(r, n)
Kp=pt) == [ w® 0D o[ b(to, ) p@)as

= —f(to) +Re{de"}, €Ly, o (3.4)
where k4 (to, £) =Re {Wi%- k(to, t) —d’t—} €H, and

1 oS (fr, n) 1 w() ,

7 )t ® ds= Re{ 'L., P— dt]? (3.5)

where r=|t—%,|, (r, n) is the angle between the ‘vector ¢ —t, and the internal normal
n of Lo at ¢ (Cf [9]1, § 61). .

(8.4) is a Fredholm equatlon To consider its solvability, two subcases should be"
considered. S

1) (8.1)¢ has only the 'briviam_l solution &~ (z) =0. Hence 4A=0 by (2.6). This
means that Kiu=0 has B+ Re{Ow (t)} as its general solution by Lemma, 1.

Thus, Kiu=0 has exactly three linearly independent (real) solutions

1, Re{w(®)}, Im{w(®)}, (3.8)

and so its adjoint equation Ki» =0 also has three such solutions »;(#) (j=1, 2, 8)
exactly and the equation (3.4) is solvable iff the following conditions are satisfied:

Re '{A 20 d,s} ~fi(=], F@On®@), j=1,2,8. 3.7)
In this subcase, we also see that (3.4) is unsolvable if f(¢) =0, A=1. Denote
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: j v, (8)ds=I,+4T;, j=1, 2, 8. (3.8)

Therefore, I, j=1, 2, 8, could not be all zero, sa,y, IsaéO Then we may regularizer ‘
v;(¢) such that
I,=I 2—0 Ig=1.

Denote A =a+40, then (3 6) becomes _ ;

’ BT = —f1 j=1, 2 a=fs+BJs. (3.9)
J and J 5 could not be both zero, since othervvlse ,8 may be arbitrary in case f@ =0
so that f;=0 (j=1, 2, 8) and hence A=a+iB8+0, which is a contradiction. Thus
(8.9) means a single condition of solvability and &, 8 are uniquely determined. '

It is convenient to deﬁne the generalized degree of (real) freedom of a
nonhomogeneous linear problem as the dlfferenf'e r=1—m between the nu_nher 1 of
the arbitrary (real) comstants in its general solution and the number m of the (real)
conditions of solvability. Hence, for the problem dlscussed here in thls subcase
r=—1 =0, m=1). ‘

2) (8.1)¢ has a unique non—trivial solution @y (z) Let the constant attached 1o
Dy (2) be A= A,.

(i) Ao+#0. Then the equation Ksu=Re{A4e} is solvable iff A=4, (#0) and so
Kiu=0 again has exactly three linearly independent solutions (3.6). We may
regularize v;(#) as above. The conditions of solvability for (8.4) is still (8.9) for
A=a-+iB. Here we must have J;=J,=0, for, if on the contrary, (3.1), would have
a solution &5 (2) with A,=0. Hence, (3.9) reduces to two conditions of solvability
f1=f2=0, B8 may be arbitrary and o i unlquely determmed by B:

A=fs+8 (J s+6).
The general solution of 3. 1) is then
&~ (2) =85 () +¢1 (Z),
Where Bisan a.rbltrary real constant and @y (z) is a particular solution corresponding
t0 the solution w=u4(¢) of Kiu= =f @) +Re{ fae™}.

Thus, in this case, r=—1 (J=1, m=2).

©(il) A4o=0,In thls case, besides (8.6), there ex1sts another linearly independent
solution wo(t) of K 1u=0, which gives out a solution @j(z)+#0 of (3.1). Then

'»=0 has four linearly independent solutions bv,-(t) (j=0, 1, 2, 8). Again define
I ;,' J; as in (8.8) but with j=0 added. The conditions of solvability of (3.4) are still
given by (3.7) but with j=0, 1, 2, 3. We show that now I;, j=0, 1,‘2, 8, ‘could not
be all zero. When f(¢) =0, (3.7 ) becomes |

;—BJ;=0, §=0,1,2,8, (8.10)
and Kiu= Re{Ae”} is solvable iff A=0,i. e., a=B=0. However, if I;=0, j=0 1, 2,
8, then (8.10) would have solutions 8=0 Wlth a arbitrary, which is a contradiction,
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Thus, we may regularize »;(¢) as before such that
T,=0, j=0, 1, 2; T,—1,
and (3.7) becomes
Ji=—Fi, =0, 1, 2; az=f3+ BJ ;. (8.11)
In a similar manner, we also know that J;, j=0, 1, 2, could not be all zero, then
(3.11) reduces to two conditions of solvability and A=a+fl}B are uniquely
determined. When they are sa.tiéﬁe‘d, we may get the general solution of (3.1)
o & (2) = D5 (2) + D7 (2), o (8.12)
where D is an arbitrary real constant and @7 (z) is a pa,rblcular solution of (3.1)
corresponding t0 a particular solution sy (z) of (3.4).
In this case, we sfill have r=—1 (I=1, m=2).
Case II: 2o%0. If the problem is solvable, bby using (2.7) and (2.8) (u(?) is
again replaced by 2u(¢)), we obtain
O —a) +Re{ <;‘;) - j p(B)e ‘L("—(t—”&;i)@ldt} £, fo€Lo  (3.13)
Note that we may easily prove
e g(t—totz) 1
, o (%) o(t—ty) . t—1to
Hence, as above, (3.18) is a Fredholm equation of the form
Kau=p () =2 [, w208 dsr [ kytto, u(o)ds
=—f(t), to€Lo, (3.14)
where &y(t, t) EH. _
On the analogy of the previous case, we know that K,u=0 either has ' only one

€H.

linearly independent solution 1 or has another such solution u.(#) according as
(8.1) has only trivial solution er a nentrivial solution @y (2).
In the first case, Kov=0 has also only one solution »(#) and (8.14) is solvable
- ‘ : . B ,
j F(@)v(t)ds=0. ' (3.15)

If it is satisfied, then &~ (z) is uniquely determined in spite of w(?) is determined up
to a real constant term B,. The generalized degree of freedom of the solutions of the
problem in this case is also r=—1 (I=0, m=1). _

_ If Kau=0 has two solutions 1 and wo(t), then Kj»=0 also has two solutions
v1(t), va(t). Then (3.14) is solvable iff

fi=|, F®w®B=0, j=1,2. (3.16)
If they are satisfied, then (3.14) has a particular solution w,(t) which corresponds to

a solution @;(z) of (3.1). Its general solution is again given in the form of (3.12).
In this case, r=—1 (I=1, m=2).
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Hence we obtain the following theorem.

Theorem 1. The generalized degree of freedom of solutions for the Dirichle
problem of MQ-functions is —1 with at most one arbitrary real constant in its general
solution. -

§ 4. Method of MQ—Regularization

. Before we study the DH problem, we shall solve the problem of MQ-
regularization. That is, given y(t) =a(t) +4b(¢) €H, %0 on Lo, with the index

1
- w=glarg Y (O], o (4.1)
we need. to find a real function p(t) € H on L, such that -
P (@) =p@)¥(®), tEL, ' (4.2)

is the boundary value of an MQ-function ¢~ (z) in S~ with certain real multipliers
Bi, Ba. But now we allow ¢y~ (z) may have some poles in §~. p(¢) is called the factor
of MQ-regularization ef y(¢).

‘Without loss of generahty, we may assume |y(¥)|=1 a,nd write 7(t) o,

where 6(t) is multi-valued unless »= 'Zn:_ [6(¢)]1z.=0.

‘We discuss the following cases for different values of x:

1° x=0. §(¢) €H is single-valued in this case. Let us solve the Dirichlet
problem of doubly quasi—periodic holomorphic function £~ () in addition in S~
satisfying
Lo Re{—q}Q‘(t)}=0(t), t € Lo, 4.8)
with real addenda ay: _ .

Q (z+2w;) =Q~ (z) +af, j=1, 2, (4.4)

It is known from [B] that this problem has a unique solutlon —iQ~(2)=U()+
iV (2), where U()=0(). Put ()= =¢%®, Then {~(z) is a holomorphic MQ-
function in 8~ with real multipliers 8;=e* (j=1,2) and ¢~ (t) =e VOH® on L,
The factor of MQ-regularization is p(t)=e "€ H. Here, a; and hence B; are
uniquely determined.

'We note that y~(z) in this case has neither zeros nor poles in 8-,

2° x=>2. Lot

by (Z)=II(Z)/G"(Z), H(z)-=II cr(z %), (4.5)

where 24, *-*, %x E;S’o are fixed and arbitrary but 2 2e=0. Py (z) is an elllptlc function

of order » with simple zeros 2y, *++, 2, and without poles in S5. Tts index on Lo is — .
Let 8(t) =arg hy(t). Then : ~ Sl



46 S CHIN. ANN. OF MATH. © .Y . Vol. 9 Ber. B

Go(8)=0()+8() - . - (4. 6)
is single~valued on L. Constructing the factor of MQ-regularization p,(t) of ¢*® ag
in 1°, we obtain a holomorphic MQ-function 5 (2) in 8~ with real multipliers B,
Ba, satisfying _ .

P5 (1) =po(£) 6@, 1€ L. 4.7
Then o : : :
P (@) =P (&) /b (2) | (4.8)

is a meromorphic MQ-function with the same multipliers and

P (t) C po(B) e po(8) oY

he(@) ()]

Hence fp(t) =po(t) /by (t) is a factor of MQ,—regularlzatlon of y(@).

We note that, in this case, ¥y~ (z) %0 has exactly x smple poles 2y, ++-, 2, in S5,

8° x=1.1In place of ,(¢) given by (4.5), we take i

ha(2) = F’Ej(—zgg(_z;ii), (4.9)

where ¢;, ca€8§ and z;=cy— 01618'0 are fixed and arbltra,rlly chosen. The remammg
discussions are the same as in 2°, Now ¥ (2) %0 has a single simple pole z; in Sy.

4° %< —2. In this case, we may take hj;(2) =1/h_,(z), where h_,(z) is defined by
(4.5). Then we obtain an MQ—functlon P (2), holomorphlc in S" with smple Z6eTos
24, **0, By AN So

5° x=——1. Takmg hi(z) = 1/h_1 (2) where h;(z) is given by (4 9) , Wwe get an

MQ-function i~ (z) holomorph1c in 8~ with a simple zero “ in S5 '

Thus, we obtain the followmg theorem. ‘

“"Theorem 2. For given y(t) €EH, #O on Lo with index », @ factor of MQ-
regulamzatoon p(t) with real multoplwrrs in S~ always ewists. The result MQ-function.
n,b () has meither zeros nor ‘poles in Sy fz,f #=0, has » somple fpoles and no zor0s 'z,f #>0,.
has—x somple zeros and no poles if u<0 ‘ '

Remark. We did not attempt to obtain the general solutlon of the problem of‘
MQ—regularlzatlon which is of no use for our purpose. However ‘if the locations of the
possibly appeared zeros and poles of iy~ (2) in S are prescrlbed it is not difficult to.
get it.

§5 The DH Problem |

It is easy mow to solve the DH problem on the bas:s of the foregomg discussions.
Given v(#) as in § 4, we need to find a doubly perlodlc holomorphic function @~ (z) in:
8~ such that

BOOT )10, 160 5.1)
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where f(¢) € H is a given function on L,. As usual, we call (4.1) the index of the
problem (5.1).

According to the results in § 4, we may construct a factor of MQ—regularlzatlon
p(2) for v (¢) such that ¢~ (%) =p(#)7 () is the boundary value of an MQ-function
Y~ (2) in 87, having poles or zeros according as x>0 or n<0 ag described in Theorem
2, where Indg, 7(¢) =

Put &~ (2) =y~ (z) W~ (z). Then the problem (5. 1) is reduced to the Dirichlet
problem of MQ-function @~ (z) with known real muliipliers: .

Re{@~ (0} =p®f(®), tELo. | 62
The multipliers By, Ba of &~ (z) are the same as those of s~ (2).

Case I: 2o=0. Consider different cases of %. -

-1° %=0. Using the corresponding results in § 8, we have the conditions (3.9) or
(8.11) of solvability and for determining , 8 with-

fi= |, p®F®# @, 69
j=1, 2, 8, or j=0, 1, 2 8 for different cases. When théy are satlsﬁed U= (2) =
@ (z) /3~ (z) is the general solution of (5.1), where @~ (2) is the general solution of
(5.2). From the dlscussmns made in § 8, the generalized degree of freedom’of the DH
problem is = —1 and thenumber of arbitrary constants in its- general solution is l<1

2 x<0. The sﬂ;uatlon is the same as in 1° except that @~ (z) ought to have —x
ZeT08 at 21, **+, 2y in 85. Thereby, besides (3.9) or (8.11), the following conditions
of solvability '

j W) e L (=) + L () 1di+ A=0, =1, v, — 2, 6.4
must be added where /.b(t), by (3 4), is any solution of '

/ K= =p(io)f (to) +Ro{4e*}, to€ Lo. ..

* (B.4) consists of —2x real conditions total in number.

By the discussions in § 8, we have, in this case, r==2x— 1 I<1. _

8° #%>0. The corresponding MQ,—functlon @~ () may have simple poles at zy, *--,
z, in Sg. Let _ . .
xm(") ——e’“[i(z—z;a)JrC(Z)], k=1, - (5.5)
which is an MQ—functlon in S' with single simple pole #z; in SO and with the same
multipliers as those of @~ (7). Therefore in this case, @~ () may be represented as

&~ (z)—e""{l j (8o L (t— z)+c<z)]dt+A}+ 3 0@, €S-,
(5.6)

where Oy=7;+d, k=1, -, x, are arbitrary complex constants, and w(t) is any
solution of '
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Kiu=—p(to)f (to) —Re{de"} — k=21 Re{Cutu(%0)}, to€E L. ®. 7)
‘Then the conditions (3.9) or (8.11) become now - ‘

~B87+ 3Re{0 [, m@ri@dst= 7, j=1, 20 j=0,1, 3]

ot BTot 31 Re{0k [ n(@n(ds} ==,
‘which contain 2x+2 real constants vy, 8 (k=1, +--, x) in addition to @, 8. Hence, in
this case, we have, r==2x—1, I<2x%-+1. o ' S
Qase II: 2o%0. The dlSCllSSlOIlS are only a liltle dlﬂ’erent from Qase I and will be
stated briefly.
1° %=0. The condltlons of solvability (8.15) or (8. 16) now become

[ pwr@r@®a=0 6.9

(5.8)

or .
S p@F@mas=0, j=1,2, (5.9)"
Tespectively. According t0 the results in § 8, we have, in this case, r=—1, I<1.

2° %<<0. Besides (5.9) or (5.9)’, we have additional conditions of solvability

Lo[.a(t)e‘”%z—"—)-dt 0, k=1, —s, (5.10)

where u (%) i8 any solution of Kau= —p(to)f (t,). Here, we have r=2x—1, I<1.
8% x>0, Now we should solve the integral equation

Kyu=—p(te) f (#) + 31 Re{Oug (t)(t)}, o€ Lo, (5.11)
where ¢(z) is given by (1.6). The conditions of solvability (3.15) or (8.16) become
Sike{], Ou@un@as}=[ psem@as (5.12)

or

pp { [ o xk(t)ds} =L‘ pOf BriB)ds, j=1,2.  (5.12)’
Heore r=2x—1, 1<2x+1. ,

In conclusion, for any case whatever, we have the following theorem.

Theorem 3. If ihe indew of the DH problem (5.1) s x, then its generalized
degree of freedom is 2x—1, and when the conditions of its solvability are satisfied, the
number of arbitrary (real) constants in its general solution is mot greater tham 2x-+1
of =0 and 1 if »<<0.

We mention that our method of solution is constructive, which reduces the
problem to solving certain definite Fredholm integral equation.

Remark. Of course we may formulate the Hilbert problem (6.1) for MQ-
functions. Since the process of MQ-regularization is the same as that given in § 4 and
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the quasi—pei'iodicities may be united together, there is nothing new to be discussed.
We may also formulate the Hilbert problem for doubly quasi-periodic analytic
functions in addition. However, it may be easily solved by combining the method
used here and that in § 5. ’
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