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THE CLASSES OF SOME POSITIVE DEFINITE
UNIMCDULAR LATTICES OVER

Z[~'3] AND Z[~6]
HAN SHIAN (3 1-42)*

‘Abstract

In this paper, the author generalizes Kneser’s method which was used by Kneser, R.
Salamon and Y. Minura, and applies this method to determine the classes of some positive
definite animodular lattices over Z[+/3] and Z[+/ 6 1.

S1. Ihtroduction

Let K=Q(~/d) be a real quadratic field over rational field @ with a square—free
rational integer d and ¢ be the fundamental unit of £. We have following three
unimodular lattices:

(1) L=< Lty Lol <1

(2) Eu=<e> 1< L 1<

3 ElI., (1<r<na).

We call I, an I-type lattice, H, an E-type lattice and E, | T,_, a mixed—type
lattice. f,. ig also called unit lattice. It is clear that I, is a positive laftice, H, is a
definite lattice and H, | I,., is a positive definite lattice if &30 (i.e., & is totally
positive).

We have the following two problems to consider:

(1) For given field & and a lattice L over &, determine the class number %, (L)
in gen L and the set of all representatives of classes in gen I

(2) For given natural number n, determine all totally real algebraic number
fields % and all lattices L over k such that k(L) =n

The main results about the problems are the following

(1) O. L. Siegel proved in 1985 “There are finite totally real algebraic number
fields £ such that 7;(I,)=1"”. He has conjectured that there are finite number of
totally real algebraic number fields % such that the clags number in genus of a
positive definite integer quadratic form @ over & is exactly a given number 4. The
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conjecture was proved by H. Pfeuffer™ in 1979.

(2) J. Dzewas'™, O. Neblung™, H. Pfeuffer'™ and M. Poter™ have studied the
class number one problem. They have proved: if n>>8, then A;(I,) =1 if and only if
E=Q, n<8 k=Q(V2), n<4 k=Q(WB), n<4 k=Q(~'17), n=8; k=k“, n=3
and k=k%4® pn=8, where @ is the rational number field and £“® (resp. k) is the
unique totally real cubic number field with discriminant 49 (resp. 148). The class
number two problem has been studied by M. Pobst™®, who gets a nearly complete
result for n=>4. .

' (8) In 1968, R. Salamon™ proved oz Is=2 and hews I:=3 by Kneser’s
method. He also gave the representative of each class in gen I3 and gen I,

(4) In 1978, H. Pfeuffer™ proved b Le=8. : v

(5) In 1988, Y. Mimura™* proved the résult by Kneser’s method: “In the case of
real quadratic field, hx(I;) =2 (n>2) if and only if K = Q(V'2), n=5; k= Q(\3),
n=8; k= Q(J‘), n=5; k= Q(\/13),n 8;5k=Q(~/383), n=38 and k= Q(~/41),
n=23".

In this paper, we shall work at m1xed—type lattices which have not been studmd
We shall determine-the class numbers and ‘give the representative of each class in
genus of all mixed—type lattices of rank 3 and rank 4 over Z[~/3] and Z[~ 6] by
Kneser’s method. :

In § 2 we discuss some properties of adjacent lattices and genus, and the ralations
‘between them. We shall see this part generalizes Kneser’ 5 method over real quadratic
fields which was applied by Kneser™, by R. Salamon™® and.by T. Mimura™*. In § 3
.and § 4 we determine the classes in gen (HslIy), gen (H1lI ), gen (H3]T») and
gen (Hs_| I.) by using the generalized Kneser’s method.

The notations and the terminology used in this paper will generally be those of
0. T. O'Meare™.

I would like to thank my tutor Zhu Futzu for his smcerelly help in my work.

§2. ‘Genus and Adjacent LattieeS' :

Let D={a€k|a>0}, J be the idéle group of &, P be the principle idéle group of
% and P, be the subgroup of P generated by D. v '

It is easy to prove the following proposition. .

Proposﬂ:lon 1. ILet the ideal class number Cy, of k be one and P= (w) be a prime
idedl of &, J®={i= (i) €T | |ig|q=1 for all finite spot g#‘B} Then ‘

() J=PpJ*U~Na Py T

(ii) (J: PpJ®) =2 if and only if Nijee>0 and Nyemw>0.

Proposition 8. Let e=a+b~d, a, bEQ.
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(i) kI.=kE, if and only if n=0 (mod 2) when d%1 (mod 8) and n-—O (mod 4)
or n=2 (mod 4) a=1(mod 4) when d=1 (mod 8);

(ii) E.&class I,

(iii) ¢f 0<r<r'<mn, then E,_LI,,_,Egen (E,,_LI,._,,) of and only if kI, _,=
kEr'—r;

(iv) d=8 (mod 4), then E,Egen I, if and only if kI, =kE,;

d=38 (mod 4), then E,Egen I, if and only of kI,=kE, and a=1 (mod 2).

Proof (i) is easy to prove by Hasse—Mlnkowskl Theorem,

(i) is clear.

(iif) The necessity is clear, we prove the sufficiency. If P is a non-dyadic spot,
then (H, | 1, ,)p= (B, I..,)p since they are unimodular lattices on the same
quadratic space over ky. If B is a dyadic spot, then G (&, | I, ,)g= G(EE,] I, ,)g
(cf. [4] §94 and 98:4). Hence (H, _LI,._,);B (BylI,p)g by ([4] 98:16). So

B 11, ,€gen By | T, v :
(iv) It is-clear that kI,~kE, is necessary, S0 we may prove our assertion under
this condition. On the analogy of the proof in (iii) we have
B,egen 1,5 (E) 5= (1) 38 (H) s =6 (1) 5
©60§ +20p =04 +20p63d () £20g
for any dyadic spot P of %. .
(a) d=2 (mod 4). Write e=1+ (a—14+5b~/d). Then 2| (@a—1+b~"d). Hence
b (e) ©290g. »

(b) d=1 (mod 8). Write =1+ (¢—1+5~/d). Then 2| (@—1+b~/d) since
a=1 (mod 4) and b=0 (mod 4). Hence b (s) =20g.

(¢) d=5 (mod 8). Then P is 2-adic spot. Hence.

S (B p=5(Ep)p=Dp=>0(1,)5=6(I,)y.

(d) d=3 (mod 4). If g=1 (mod 2), then 5=0 (mod 2), hence b(s) =29
~ anologous to (a); if =0 (mod 2), then b=1 (mod 2). Write e=1-+ (6—1). We have
2fe—1, bubt 2|Nye(s—1). Hence B[ (¢—1) (Note there is unique dyadic spot %). So
Ord p(e—1) =1, and hence d (e—1)Dpc20g by ([4] 67:5).

Let V. be a positive definite quadratic space over k of dimension n, L be a -
unimodular lattice on V.

Definition 1. Let % be a non~zero ideal of O. For s €A~ L such that Q(x) €9,
we call

L(z) =Oz+{y € L| B(z, y) €0}
an adjacent lattice to L.

It is clear that L(z) is a unimodular lattice™?,

Let 4, €A™L (=1, 2) such that Q(a) €D (6=1, 2). If L(ay) =L(z,), we write
“@y~wy”. Obviously, “~” is an equivalence ralation.
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Proposition 8. Let L be a unimodular lattice on V, % be a nonzero ideal. For
« CA1L such that Q(x) €D, we have

(i) If«€L, then L(w)=1L;

(i) If r €D such that (fr, A) =1, then L(z)= L(fra:+y) for any yE€ I such that
B(y, ©) €9;

(i) If (2,%)=1, then L(2)= L(a") for any o such that Q&) €O, v—a'€L;

(iv) Let yEAL, if there is an isometry oc€O0(v) such that ow=y and
o{2E€L|B(w, 2) €O} L, then z~y.

(v) If there is an element v €O and a lattice M on V' such that (r,q)=1, M=L,
rMCL(z) and & ML, then L(z)=1I.

Proof (i)—(@iv) are easy.

(v) We have M =L(z), hence L(z)=L. .

Definition 2. Let U be a non—zero ideal, V, be a positive definite quadratic space
over . A set of finite lattices on Vo{Li, t=1, 2, -+, r} is called an A-chain of there are
lattices Ly € cls Ly such that Ly is Y—adjacent {0 Liyyq: (1<é<<r—1).

By Definition 2 we have an equivalence ralation “9[” such that L~ K if and only
if L and K belong to an Ql—chain. (Usually, we write LIK as L~K if we need not
mention the ideal. ) _

Proposition 4. Let P be a prime ideal of k, and L, K be unimodular lattices on
V.. Then L~XK if and only if there. is a lattice K' in class K such that the invariant

Factors of K' in L are Pr(i=1, 2, ---, n) with Ztr;=

Proo f The necessity. If L~ K ,then IB—chain Ly=L, Ly, -, Ly_1, Lt €cls K )
stich that L; is B-adjacent to Ly 1(1<i<r-—1). Let K'=0L,. Assume the invariant
factors of K’ in L are A;(4=1, 2, +--, n). Then there is a base of V, such that

- L=+t L,
K =L Nx1+ -+ LN L. ‘

‘We have Ly =Lygr=-++= Ly (VP'+P) since L; is P-adjacent to L. Hence
W= ogpr=+++ =Y, qpr=Cq, and U; =P, But L, K’ are unimodular lattices, so O=>1L

(&, U, are fractional ideals of k)

e P P2i (@, e, @), D= CK' =], o, LA d(ws, +++, @,). This implies

The sufficiency. We may assume K’'=K. Let m= 2 r,. We proceed 1o prove by

rs=>0
induction on m. ‘
(1) m=0. Then ilr;=0 and m=0 implies r,=0, =1, 2, «--, n. Hence L=K.
§=
So Ly K. '

B
(2) m>1. Then the invariant factors of K in L are Prs, Pre, -, P (r1<0) and
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there is a base {x} of ¥, such that
L=2[1w1+~-,-+2I,,w,.,
K =P W1y + -+ + AN, 2,.
- Without loss of generality we may assume @) &, B)=1; (i) B(%flwi, .w,) =
O(mod B), 4=1, 2, «+, n—1; (iii) BWswys, Na,) =0 (mod B). '
By ([4] 22: 5) there is an element o€ % such thab oD+ Uy =W, B~L. Then aay €
AP 2, CPL and Q(aws) € B(U,P vy, UyB~2a4) & B @[15]3"@1, 9[193"%1) o, It is 9355’
to check that

(%; are fractional ideals of k)

L(owy) 29 (awy) +Wyzy +Aowg+ «-+ + U g+ A, P,
=Wy Py + Aowa+ oo + Wy _y@,_q+ ¥, P, = L.

But L(aey) and I are both unimodular lattices. Hence L(aws) =1I/. It is clear
that the invariant factors K in I’ are Pro+t Pra) eee Pro Pra~l gnd the volume m of
K with respect to I’ is‘m—1. Hence L'~K by 1nduct10n hypothesw Thus L~K
since L' is P-adjacent to L. . ST

Remark. Tt is easy to know: by the proof of the proposition that if L is iB—
adjacent to L, then I/ is.adjacent to L. .

Let L, K be unimodular lattices on V,, § the set of all finite spots of %, and P a
non-dyadic spot. Denote Q@;)—Q e ‘,B), L(g;, —Q(;,B)L Kgy= E)(g;)L 2[(53) 2[52)(;1;, &
is a fractional ideal of ). o

Proposition 5. When dim V,.>3 : ,

L~K of and Only of spn L(B,—san(q;, L

Proof . The necess1ty Since L%K there is a lattlce K'€els K such that the

invariant factors of K’ in L are P (6=1, 2, +-+, n)and a base of Vo {w:} such that
L=y + U,
K' =%y P2y + oo + A, B,
Then LT Liopy=Lacpyort oo+ Ano, .
K=y Bipya++ +9[n(‘n)543(is)wn- '
Smce 2]3(53)'—9(%), we have L(;,B)—K op)- Hence cls K g, =cls L.

On. the other hand, L, K are unimodular lattices with dim V,>8 and § is a
non-dyadic spot of k. ‘Then V', is isotropic at . Hence cls Lip; =spn Ly, cls K g, =
spn K @) by ([4]104: 25). Thus spn L, =spn K .

The suﬂ'lcmncy We have cls Ingy=cls K g, by ([4] 104:25). Hence there is an
isometry ¢ €O(V,) such that oK a=Lay. Lot K'=cK. Then K (gg)—L(gB). Assume
the invariant factors of K’ in L are %, _?2, ++*; Zs Then there is a base of V,{x:}

such that
L=%I1w1+ eee +2[,,w,.,

K'=%[1$1$1+"‘ +QI”$”$,..
' Sj:D.CQ K’(SB) =L2f3), we haave 'g’i(fﬁ) = Q(S,B). ThiS implies y;= 2‘3% (q;= 1, 2, veey u).
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But K’, L are unimodular lattices onV,, 80 Zfr, 0. Hence K %JL by Prop091t10n 4.

Tt is easy 10 know that if % is a non—-dyadic prime ideal, L is a unimodular lattice
on V, and K is $-adjacent to L, then K €gen L™4, Thus we can partition gen Linto
equivalence classes by the equivalence “ ;]3 ” 'We use M. g;L to denote the class number

of P—chain equivalence classes ih gen L. " ' ' SOl

Proposition 6. Let L be a ummodularr Zattwe onV, 'w'bth d/bm V..>3 and. ‘,B be e
non—dyadic prime ideal. Then™ : :

MyL<(J: Pbﬂ) : :

P'roof We have 49(0+ (V,.)) =D by ([4] 101:8) and JRCJL® by ([4] 102:10).

Then
M%L<9(L@>)<g+ (L) = (T2 PDJ ”"“”)<(J Pyt SB)

Immediately from Proposmon 1 and. Proposﬂnon 6 we have the followmg
“theorem. O ‘ e 4
Theorem 1. Let Ia Q(~/d) be a real quadmtw ﬁeld over Q wfbth a squwre—-free
rational integer d, and the ideal class number o f b be 1. And let Lbea posq/twe definite
unimodular lattice of rank n=8 and S,B (av) be a non—d/yadw rpm'nw ideal of k. Then

(1) MpLi<2; 1 . . oo

(ii) MgL=1if Nk/@3<0 or NWQW<O
Here & is the fundamental umt of Io

§3 The Mlxed—Type Lattices of Rank n>8 over Z [/\/ 3] :
=24+ N3 D0, w= /\/_ 5[5 (m:)
1. The classes in gen (E; | Is)
- A. The adjacent lattices of E;_| Is. T
Tet L=H; _L13=‘J; D0, Qle) =5, Q(e) =1 (4=2, 8, 4). Tt is cloar that 7, (=1,
2,8, 4), Tee, (2<6<j<4) co(L).
00n51der1ng ‘”—:/_§ Zne,, ri=a+ b;\/— a, bE€EZ with Q{xr} €D, we have only
followmg two cages to consider by Propos:tlon 8 (ii), (iii), (1v)
@ =z =\/—§- 23;.

It is easy to check - B v
2 3
L(wo Sk L <1>_L< e */2

m\./

Here ky=e1, ka=w1, kz=¢a— ¢, k4#7§—(262—63—¢4). Note(
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posable. since it is an even unimodular lattice of rank 2. Hence I (1) £ L and L(aa) =2
Ea_LLi

"We have

(2) % =775 (e1'+ez)v—61-l,

L(as) = 2108 2> 1 <15 1 <13 L <Ay

Hei'e vk’ =\/—1—-‘§-(61+03) +62, 10;'———\/1—3—(31+62) —6_1;, 705#63, k£_=é4. .

B. The adjacent lattices of K =L(zy)..
Clearly Tk‘(1<%<4), Tk.—k. and o 103'—) ]03, ko> — k4€ O(K)

Oonsidering o=—= \/3 24’;]0;, r;—m—kb;\/ 8, a,,'b,GZ with Q(x)e £, we have

only followmg four cases to consider by Proposition 8. (ii), (111) (1v)

(1) &= \/g- (ha+5s).

“We have K(wl) L since a:i es€L— K

| (2) @a= '—-(701+703+7‘74)

We have K (z,) = 291; = <1>_L<6>J_<8>_L<8> By | I,. Here ly=Fs, la=as, lz=

\/._( bat C+B) bs— (1+«/")7a4), 14—\/_(lc1+(1+\/3)k3 (2+d3)k4)
Olearly Eg_l_IiiEi_LIs by Proposition 2 (ii) and ([4] 105:1). -

- 7‘71)

(8) s =7-§“(k1+k3 by) —ky )
‘We have 7,6‘ €0(K) and Tn, @a=23. Hence K (25) = K (22) by Proposition 8 (iv).
4) 2= \/— (b1t ka) — ky.

2 V3
‘We have K (x,) =‘=21 I} =<1>_L(s>_L(\/..§, 2
b= Gl )+, =, T
We know by A there is only one adjacent. lattice of Hj| T which does not -

)-zK. Here li=71?f (fey + k3)

isometry to By | Ia. But Hy | I,= (E| Is)*. Hence there is only one adjacent lattice
of K3 | I; which does not isometry to Hs | I, and the unique lattice is K*=~K by B.
Thus, by Theorem 1 we have the following theorem.

Theorem 2 (1). There are exactly three classes in gen Ky | I3 and they are
2 /3
() Byl Ts, (i) Hyl Ty, (i) K~<1>¢<s>¢( JF s )

II. The clascos in gen (E, | I,)
A. The adjacent lattices of Hy | I,.

Lot Ii— s i12=‘=11®e., Q(ex) =Q(e) =5, Q(es) =Q(es) =1. COlearly, =, (1<i<
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4), Tor-ory Toree €O(L). , .
COonsidering = :/1'? ;21 re, ri=a;+b~3, @, b,€Z withQ(z) €O, we have only
following two cases‘ to consider by Proposition 3(ii), (iii), (iv).
@ mmp (@Bt
We have L(wy)= 2@70,, <1>_|_<8>_L<8>__L<1>~L Here Icl—a;i, by=—r= \/ =(es+(1
++/8)es), Iog—ez, Ei=e,.
(2) @2 —\/—3—(01+62+ e3+e4) +ey.
It is easy to check that L(wz) hag base kyi=—= \/ 3 (es+eatestes)+es, ko= -

1
\/—8—(61-}’32—!‘63‘!'64)‘1‘62, ks—-\/ (61+62+63+64) es, k4—-\/ <G1+62+63+64)—64

Hence , ’
. 8s 2 8+438 8++8
. 2 8e 8++3 8+F
L(zs) = Oh= _
&= 8+~ 8 8++/3 3 2
84++/3 8+/8 2 38

Now we are going to show 1, e¢Q(L(wy)) which will 1mp1y Lwy) EL swce
1€Q(L). If 1€Q(L(ws)), then Jo € L(w,) such that Q(z) =1. Hence 8€Q(L) since
~ 3 x € L. But this would imply ~/ 3= +(A—~3)ete;(6=1,2, j=8,4) or /8=

=+« 3¢ (=38, 4). This is a contradiction since r= i%[(l—«/?)ei:tej)] (3=1,

2, j=8,4) andw==e (6=8, 4) ¢ L(a,). Similarly we can verify s Q(L(#s)).
Remark, Using the fact 1,6¢ Q(L(=,)) we can prove L(ws) is indecomposable,
B. The ad_]acent lattices of K =L(xg)

Let yl—\/~——(61+62+63+84)+ (1 N )61, yz——\/g (€1+32+03+64)+ (1 A/ )
1
e, y3—\/3 (e1+eateste) — (L+/8)es, yu= \/3 (e1+eatez+e) —(L+/3)es and

=¢=21®.%-. Olearly i Ly;(6%3). Q(vs) =Q(ys) =2, Q(ys) =Q(ys) =26, YCK and k,

1 1 1 1 1
='§‘?/1+'%y2+'2‘?/s+-2—?/4, 102=%y1+—%y2+%,y3+7 Ya, ]"3-—--%— ?/1‘1'-2l ?/2"‘7 Ys+

e 704=';—?/1+-;—?/2+%y3+%—?/4(5=2—’\/ 5), 2KCY.

m]o:n

If 0€—re \/_ K such that Q(w) €9, then K (s)=K (2¢) by Proposition 8 (iii)

since @, \/3)=1 Note 2wET 2K§TY' Hence we may assume xevl?Y

Note that O(Y") contains the wometrles 'ry,(1<r1,<4), Tyr—gns Tys—yar

Considering ¢'= \/—2 Tdfi, Ti= w;+b ~'8. @, by€Z with Q(y') €9, we have
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only following two cages to consider by proposition 8 (ii), (iii), (iv).
(1) y1= \/ 3 W1+Ya—Ys—Ys) —Y1.
‘We have K(yl) L since ¢i= —e3—eates+e,—(1—a/8 )61€L -K,
@) | Y =-\/—§(y1+ys)_ +91.

. it w1=\/%(?/1+$'3>—?/3’ Wa=13, w3=\/L(y1+g)s)+yi, ws=ys and ki=% wy

1 1 1 1 1
+%’U&+% ’LU3+—%— Wy, ]02——-5- wy+ = 5 'w2+ ’1.03+-%~ Wy, k3— D) 'w1+-§- ’&l}2+—2— ws+
; Wa, k= % wi+= ; Wwa+ = 5 w3+§ wy, M= Zf\lc’ It is easy to check that M=K

(by o: w—y, 6=1, 2, 8, 4), V3 MCK, 2MCK(y2) and (2 8)=1. Hence K(ys)
=K by Proposition 8 (v).

Thus, by Theorem 1 we have the following theorem.

Theorem 2 (2). There m ewactly two classes tn gen Ha | I and they are

() Balls ' | o

- 8s 23 3++3 3+\/_ 3
2 8¢ 8+~3 8443
(ii) K= / - . , .
o 8++3 8443 8 2
8++3 8+48 2 3

' By Theorem 2 (2) we have the following theorem.,
“Theorem 2 (8). There is only one class in vgen (B1]1TI5) and in gen(H,l Iy)
respectively. -
Proof Let N be a class in gen (Ei_LI 2). Then N J_E1 is a class in gen (EB_I_I 2)

which represents s. But e¢Q(K), hance N _J_Eig Hs ] Is. Thus N ._L',_I_I 9. The
proof for Hj | I is similar.

§4. The Mixed-Type Lattl"es of Rank n>3 over Z[~/ 6]
e=5+2N6. w=3+~6. R= @)
I. The classes in gen (E, | I,)
A, The adjacent lattices of H | Ts.
Let L=H; J_Is=‘=j_1£>e,. Qe =s, Q) =1 (=2, 8, 4,). Clearly 7,,(1<i<4),
Tee, (2<6<j<4) €O(L). ‘
Considering w‘-‘-‘%é}”‘eez, =+ b6, é;, beZ W*thQ(a;) €9 we have only

following two cases to consider by Proposition 8 (ii), (iii), (iv):
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1) o =?];;‘(61+02)—32- .
4. -
We have L(zy) =310k =<1> | <e> L 1) | {1>=L. Here k=, ké=£—(ei+eg)
'—eij k{:,=03, k2=e49 ' ‘ ‘

(2) ) ==-§F—(32+Ga‘+e4).

4 2 ' '
‘We have L(a:g)=§Q)Ic,=({~:>_]_<s>_]_(aF ;) Here ki=e;, ka=ws, ks=es—es,

T .
ks =%(2€2—63—64) . Note ( g is indecomposable since it is an even unimeodular
w 2 '

lattice of rank 2. Hence L(ws) %L, L(ws) £ Hs | I1.
B. The adjacent lattices of K =L ().

Lot 2y =ky, 2za=bs, Z5=ks—whs, 22— —whs+be(m=8—~/B), Z=g; Oz, Olearly
2KCZCK, T, T €O(K). We may assume the generators of adjacent lattices of
K are in —;l;- Z by Proposition 8 (ii) since (2, w) =1.

Oonsidering y=—;[-v- éfr,-z;, ri=a;+b~6, a, b,€Z with Q(y) €D, we have only
following three cases to consider by Proposition 8 (ii), (iii), (iv):

W p=—Ltm).

‘We have K (y;) =L since y1=es€ L— K.

(2) s =%('ﬂ’3+24) ~za. L :

We have K (ys) ;gmg =< _|_<s>;L(i 2”:) = K. Here l=hy, I = ks, B=
| _01;@3—21@), U= (2~ k). | | .

3) ys =';:E‘ (21+22+23) —23

-(1-6)% s —ws 0
T 2 -(VE+2) —(VE+2)
K@=zosl e B+ 22 & |
0 ~ (V6 +2) 8. 2s |

Here 11%21’!‘8’03, Zg=y3, 13= - ]C4, l4= —104'—24.
On the analogy of 8. II. A. (2) we can prove e¢Q(K (ys)). Hence K (y3) L,

K (ys) ¢ K and K (ys) £Hs | I.
O. The adjacent lattices of J =K (y3).

Let f1=‘a]?(21+22“ (V6 +2)z),

1 642 V6
f2=; (Z1+22+ Pl 23— 2 24),
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1 \/‘ 2 6
f3=;(21+ 29+ 6+ Zs"‘{%);

 famta—zs, Y-ézsﬁ. |

Clearly . zl=§ f1+—6— fat—a—— - \/—) - f3+ 5 fu la=fi,

= — \/F+2 f1+~/6+2f3, 14__«\/_+2 Fut \/_+2 fa

2JCY CJ and =, (1<fz,<4) Tj‘_f” Traos, EO(J ). And we ma,y assume tha.t the

generators of the adjacent lattices of J are in 71[—'1’ by Proposltioh 3 (ii).
Oonsidering a:=i éfri fi ri=a;+b,6, ai, b;€ Z with Q(z) €D, we have only
following two cases to consider by Proposition 8 (ii), (111), @iv):
@ wz——(f1+f2+f3) |
We have J (25) =K since wy=5(2;+722) EK—J
(@) 2 =—71;(f1+f4) ~fa

- Let "1‘01=%(f1+f4)“_.‘f1: "l‘{;a‘—‘fz, | ’w.;s=f3, w4=—:;(f1+f4)—,f4‘

1—«/
and Z§=-§- 'w1+—;— -(——“)i 3+ 5 s, lo=wy;
o 642 ~6+2
lg=— 9 w1+ 9 Ws,

| f--O8F2, M2, Y-,
Then J (21) =J by Proposition 8(v). ' _ .;
‘We know there are exactly three classes iﬁ the %—adjécent ‘equiva,lezice class of
(B3 1Is). But By | Iy €gen (H; ! I;) and Hy | T2+ E,y | Ts (by Proposition 2), Hs | I,
¢J and Hs | I K. Hence M, (Hy | I;)=2 by Theorem 1, On the other hand we
bave exactly three classes in the adjacent eqﬁivalénce vclass of (Hz_| I,) since Hy | I3=
(B4 Is)*. Then we have the following theorem.

Theorem 3 (1). There are evactly siw classes in gen(Hy | Is) and they are

(i) Ei_LI3: .
@ | ,;._<6>,_L<8>_L<2 “)
‘ w  2e
(1-+6)2 v 8 — e 0
JN[ s 2 (B —(VF)
(iid) =‘ — e —-(N6+2) - 2 . g ’

L 0 — (V6 +2) 8 28
(i) | Es| I, -
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P
(W) <DL _L(W . )

(vi) Jo.
II. The classes i in gen (E;,__I_I,)
A. The adgacent lattices of Es _,_I 2

,LetL E,,_LIQ——_I_QG,, Q(el) Qes) =, Q(e,) Q(e4) 1. Clearly T, (1<'1,<4),
Tor-ens Ter—o, € O(L1). |
| Oondidering m=% éfr;e,,» ri=a;+bN'6, d;, b€ Z with Q(z) €D, we have only
following two cases to consider by Proposition 8 (ii), (iii), (iv):
D) s=t(ate) = ,
We have T(zs) =3} OF =<1 1 <6 L 2> LI>=T, Hore B=zs, Hi=-2(es+es)
— ey, ky= ea,la4—e4 EE SRR - : il d
(2) z =—W—(ei+eg+es+e4) +ea.
It is easy to check that L (z,) has the base :
Ic1==—3i_-(e1+ez+eg+e4) —ey, .
Icz=%(ei—i_-e2+e3+e4) +e,,
ka=%(ei+eg+ea+e4) —eg
k4=%(é+ea+es+e4) +es
Hence | | N .
7 2(1-6) 2(2-~6) 2(2-6)
Led=BO S0 U5 a5y arE sy |
2(2—~6) 2(2-~6) 2(8—~6) T-246
Analogous to 8, II, A, (2) we can show 1, eGE Q(L(wg)) Hence L(wg) %L, L(wz)

$I4 and L(wz) $E4
Remark. Using the fact 1,s¢Q(L(%s)) we can prove L(wg) is 1ndecomposable.

B. The adjacent lattices of §=L(a).
Let

y1=%(61+62+63+64) _01"—'63,

1 .
y2=-5-(61+82+63+65) —€a— €y,
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4 S
 Ys=6€1—65 Ys=ea—¢y Y’—“EQ%{“

Olearly

b 7—1 1—\/,.6‘.., 1
1="9 Y1t .,;2:—’-@- fl/s;"-' :

11 '
. _“l‘;ﬂ_ 2 y1+m72 ?/2+ 2 yb

Cm-1 1-vE 1
]"3‘—'”2 Y1+ D) ?/2+2 Ys,

- R e T |
29CY <8 and w,E0(8), 6 yi>Ys, Ys—>Ysr Ysr>Ys Ys—>ys€ O(S). By proposition
8(ii) we may assume the gener@tors of adjacent lattices of S are in %_— Y.
g >06n§jdering a:='%y- §r¢y¢,‘ ri=ai+ b6, @, b;€Z with Q(x) €9, wehave only
following three cases to consider by Proposition 8 (ii), (iii), (iv)s: -
@) = =—1a;(y1+yz) —Ya.
" We have S(ay) =L since x1=es+e,EL—S,
N ¢)) Wz#%(yﬁw) —Ygo
Let | , N ol
y1=—-(y1+y4) Y1, yé=yz, g/é.——%.

y4=—(:t/1+y4) y4,_
CE—1, 1-8 1,

Then S (zq) =S by Prop031t10n 3(v). '
(8) s =f;[7(?/1+?/2+?13+?/4) tYs—Ye.
We have z3~a}= —;[? (e1+ea) —ea+e, by Proposition 8 (ii).
Let

]—L

!

& ! '
vi=—(este)) —estes, . yh="(ertes) —eates,

a

& .
V=g erte) ey, dim g (erte) —ea—ey
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m—1,1-8 , 1, .
b=yt Z Y2y Y

: LE =1 1
]" 2?/1"‘ 2 ?/2+2 y4,

fv.— 2 yi+ 2 ?12+2 b

IC4-— 9 y1+ W2 yg 2 y;;, M= 2@]0‘.

=1
Then 8 (zs) =8 (a}) =S by Proposition 3 (v)
C. 'I'he a.dJacent lattices of I,.

Let I4—_LQG;, Q(Gg) 1 (1<’?1<4:) Olearly 73‘; 'E'e,—e; (’11#_7) GO(L)
Oonsidering - a;——-— 2 Tig, 1= w,+b;~/ 6, a, b,€Z with Q(#) €D, we may

choose w=—a; ge,. We have I,(z) =21®Z; (1)_L<s>_]_< :), where Zi=ei, lo=w,
=. o= & .

ly=ea—es, ly=— (2e2—— es—es). Clearly I,(z) 14, By
D. The ad]acent lattices of T'=1I, (2):
‘Leb zy=14, z2=lz, Zg=63— e4, 2a=l4. 2 —2 @zg Olearly or=Z CT
Hence we may assume the generators of adjacent lattlces ‘of T' are in % Z. Note
7, €0(T).
Oonsidering y= 2 ra, m=a+b~6, @, bCZ with Q (y) E D we have only
following five cases to conmder by Proposition 8 (ii), (111), (1v):
@D oy =;(¢1+22) —%a.
‘We have

T(y) = 3}0k = <1>¢<s>¢( 8) T,

0

Here .
ky=ys, ko= % (rat2a) —2a, ka=ls, Fsa=ls
(2) yo= ;1;(%_"_23); '
We have -
T (y2) = 310k= > 1 (6> 1 (6> L (o> = Fan
Here ' R '

k1=ys, kz'”—‘r%(ez:l- estes), .
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b= (e—eates), 704=%(€1+62—63)-

‘We know that I, has unique adjacent lattice which does not isometry to I,. But
E,~1I5. Hence E, has unique adjacent lattice which does not isometry to H,; and the
unique adjacent lattice is 7°=T,

® s =2 (eato). |

We have T (ys) = I, since y3=62€I4—T.
4) ys= —17; (23+24) — 2.

It is easy to know T'(ys) = <1>__|_<s)_]_[a,n adjacent lattice of ( . 2”)] But the
P . . . a0 ] T
2
adjacent lattices of (

9 o
) are equivalent to ( W) by I, B, (2). Hence T'(y4)
w 2 T 2e . :
r. : ‘

. 1 :
(5) Ys =';(Z1+Zz+23+24) .

n

2r = ~6-2 -1 -1
e, | NVE-2 2% —(V6+2) — (V6 +1)
Tl =ZOh= — (V6 +2) 3s 0
' -1 = (W6 +1) 0

"8g
Here h1=61——3;-(02+33+64): ka=% (31; (2++6)es— (1 + \/F)e4),h3=aw3,h4=wc4

Ne can show 1, e Q(T (ys)). Hence T (ys) % 1s, By, T
E. The adjacent lattices of H =T (y5). -

We can check that ay: (eq, €5, €,), oy (1, —ea, €1), 03= (€1, €3, —€3), T4 (€1, €5,
. e es 6 e
=-¢,) and cr:;:( * ? 4) are in O(H).
€a —€1 64 —é€3 G, .

Lot by =ys, hy=0sh1, By=mes, Hy=hs, H ’=~21®h:' Then 2HCH'CH. Thus we

may assume the generators of the adjacent lattices of H are in —3; H'. e
4 .

COonsidering fw=% ‘211'1774, ri=a,+b~N 6, a, : b€Z with Q(w) €D, we have
following four cases to consider by Proposition 8 (if), (iii), (iv),

(1) wi=ez~—ey (by o3) and e, €T — H, hence H (wy) =T.

(2) w, ='g—b:23“%’62='}EZaf"z—:év—:(WZz*Zi"Zs‘Fh)
=§1_—(z1—a;z2+ (11— 4 ~/6 )zs+25)
2qv

,~-;'1? (21— wea+ (11— 4~/6)25—2,)  (by Proposition 8(ii))
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N—;% (21—25—2,) (by Proposition 8 (iii))
N% (2o+23—2s) (by o3)

1
N—(Z3+Z4—Zz) =Q0’2 (by 0'1).
Here Z1=h1, 22a=1¥s, 3=-2.'21, 24=01%3.

WehaveH(fwo =4 (—01; z2+z3+z4))+N where
4
§-{Sa, a,;EE)[B(Ea,h,,,'w)GQ}

é hi) “neglas“‘a.;—o (mOd VF)}

== { 1h1+a2h2+063 (h3+h4) +917a4ﬂ4 | a,E D}
Note 7,, €0 (kI,) and S

Il

T%,w;=—a];;(22+23+24) E.H
and 'v,,,N CH. Hence: 4 » . '
H (uws) = H () = —H ( (es+2s+2)) = H
(8) ws =‘%F—(?23+W33) =_a—1; zs"“’a""“(%; Zi‘i‘?i)» _(‘byv 03)
~-1—Z;|_+61 '1403. ‘

‘We have
- Hw)=H(up) =3 Dt,_<1>¢<s>J_( o).
Here ti——(\/_‘«’i—ez 63— 64), |
tz—-—(m;e1+ (w— 1)e2+ (w— 1)63—1- (ab: 1)34): ”
| 8__((1+ NB)ea+ (1= V6 )es— 204),
'4_—(2(\/—+2)e2+e3—se4) -
“4) d4= %.<23—;7763) +Zg = —65—(2a—rz3fyuz3+z1—z2j-z4) +2a
N%(z_;— 2a+2,) +2 z2 (by Proposition 8 ‘(ii)b (iii))
.N%(ziy—vzz»—l—z‘;)-——h (by Prop_ositioﬁ 8 (iii))

: ~%~(z2+z3+z4)+z3=wi (by o3).
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» Let 0=7,,,410,. Then ow= — (29-+2,) €H. On ‘the other hand, it is easy to know
that for any y € H, B(y, w}) €®(=)B ( (22+Z3+Z4), y) ED Hence 1f yGH such
- that B(y, wl) €D, then ‘ | ‘
2B(z2+z3+z4,g/)
Q(za+23+24) _
=y—B( (2a+23+24, :l/)'—(22+23+24) GH
Hence H (w,) = H (w)) =H by Prop051t10n 3 (1v)
Thus by Theorem 1 we have the following theorem. :
Theorem 3 (2). There are ewactly siw classes in gen (Ha | Is) and they are:
2
() Balls, (i5) I, (iil) B, (iv) <1>J_<8>_L(W 202 ):
- 7 2(1—-~6) 2(2-~6) 2(2-~6)
) 2(1-~6) 7 2(2-+6) 202-6)
22-6) 22-+6) T-27/6 2(8-6)
' Ll2(2-V6) 2(2-+6) 2(8-+6) 7-24% 1

oy=y— (z2+za+z4) '

F2(3‘ﬁ) V6 -2 - | -
V6-2 28-+6) —(VE+2) —(VB+1)
-1 —(V6+2) . 8 0 . |
L -1 —(VE+D) 0 8 L

From the calculation in this part we can deduce following theoreni :
Theorem 3 (8). There are exactly tMee classes in gen (H;] I,) and gen

(B2 11y frespectfwely and they ¢ are |
2 ok
() Byl (i) H, (iii) b _|_< 2”2) ond

(1) B, I, (ii) Is, 111) (s)_l_( ;:) respectively.
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