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'Abstrac't :

The aim of this paper is to construct indecomposable positive definite Z-lattices with
given rank n(2<n<9) and diseriminant @, a@ being composite and square—free, but for a
finite number of exceptions. And all exceptlonal cases for 3<n<9 are determined. These
are unsettled cases of a paper of O’ Meara m 1970

§1 I'htroduction |

Tet @ be the field of rational numbers, V' a regular quadrafic space over Q and
Tet L be a Z-lattice on V. If L can be expressed as the othogonal sum of two non—zero
sublattices L=P_| R, L is called decomposable or splitting. If there is no such expres-
gion we call L mdecomposable By an mtegral quadratic form we mean one whose
associated symmetric matrix has mtegra,l entries or, in the language of lattlces one
whose associated quadratic lattice has integral scale.

In 1975 and 1980 O. T. O’Meara™?® investigated on the existence of the inde-
.composable positive definite lattices over Z with given rank and given discriminant.
In his 1975’s paper he proved the following theorem.

Theorem M™, Let n and a be natural numbers. Then

@) for any n, if @ is a prime or @ is not square—free, or

(2) for any a=2, if n=>10,
there are n—ary indecomposable positive definite integral Z-lattices L with discrimsnant
dL=a, but for a finite number of exceptions. -

The aim of this paper is to prove some results analogous to those of O’Meara
namely, for each n (2 <n<9), there are n—ary mdecompoqable positive deﬁmte Z-
lattices w1th given discriminant dL=a, @ bemg composite and square—free, but for a
finite number of exceptions. And we , determine all ‘the exceptional cases for 8<n<9.
"The proof in general is based upon a method of O’ Mee,ra, but tha,t of the binary
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case (n=2) is quite different from the other cases (n>2). When n=2, we apply some
analytic method, and give a necessary and sufficient condition for the existence of the -
binary indecomposable positive definite Z-lattice with given discriminant a.

- For the notations in this paper we follow the book of O’Meara™,

§ 2. Main Results

Theorem 1. For any naturdl wwmbe'rs n (3<n<9) and a, @ being composite and.

square-free, there are n—ary tndecomposable positive definite Z-lattices with
8LEZ and dL=gq,
but for the following twelve exceptions:
n=38, a=6, 14, 15; n= 4a 6, 10, 14, 26; n=5, g= 105
n=6, g= 614n=8¢z 6, 10.

By Theorem 1 and the results of O’Meara™ and Kneser™ we have the following
theorem. ‘ :

Theorem 2. For any natwral numbers a and n=>3, there are n-ary indecomposable
positive definite Z-lattices with
= o S8LCZ and dL—a,
but for 44 exceptions, which are listed in the following table' :

Table of exceptions

n darL

3 i 2 3 5 6 9 11 14 15
4 1 2 .3 6 7 10 14 26
5 1 2 3 5 7 10 13

6 1 2 5 6 14

7 1 3 7 ' '

8 2 6 10

9 1 2 3 5

10 1 3

11 1

12 2

13 1

Theorem 3. For any natwral nwmber a, there are bfmwy indecomposable positive
definite Z-lattices L with discriminant @, but fora _ﬁmte number of exceptions.
In order to find the exceptional dzscrumnant dL=a, we require the following:
theorem. '

Theorem 4. Suppose a is squa/re—frree and a>3, there exists a binary mdecompo-
sable positive definite Z-lattice of discriminant a i if and only if there is an odd prime:
p, p< ~/—3 such that ~a is a quadratic residue mod P.



No.1 Zhu, F. Z. 4 Shao, Y. Y. ON CONSTRUCTION OF QUADRATIC FORMS OVER Z 81

§ 3. Proofs of Theerems 14

In [1] O’Meara preved the following propositien; which was used in the proof of
‘Theorem M (2).
Proposition . Let M be an n—ary pos/:,tq/ve deﬁmte Zattwe over Z with sSMCZ
and w>1, and let M =M, | -+ | M;.be its indecomposable splitting. Let w=wy+:--+w;
(w: € M;) be @ vector in M with all w; non—zero and with Q(w) =p where p is a prime
mumber and prime to dM. Then L=M[ (Qw)* is an (n—1)-ary éndecomposable
positive definite lattice with SLEZ and dL= =p* aM.
By this proposition O’ Meara, proved Theorem M (2) for n=> 10 and natural |
number a=>2. .
Because of the Proporsition 3, in the following discussions we need only construct
M and give an expression of the prime p, and when we say (M, p) satisfies # it
‘means that M and p satisfy the conditions in Proposition #. In the following, the
natural number g is composite but square—free, the lattices in discussions are positive
definite integral lattices. If ¢ and m are natural numbers, write =7, 1o signify that
@ is a sum of m non-zero squares, i.e. a=n§+---+h?,,, n; %0, iy €Z. We need the
following facts about [7,, one may refer to [9].
If ¢>19, a is odd, a+29, 41, then= Og
If ¢>19 with a+388, then a=LTJ5;
If a=>20, then a=LJg;
If d>21, then a=Js;

and so on.

1. The cases for 6<n<9 .

Proposition 1. For any square—free composite number @, there are n—ary tnde-
composable positive definite Z-lattices L with dL=a, but for the 4 ewceptions: n=38,
a=6, 10; n=6, a=6, 14. In the exceptional cases there are no lattices with the desired
properties. .

Proof We prove the proposition for the case n=6 only, the arguments be:mg
gimilar for the other cases. First we consider that @ is odd. Therefore we may assume
that @ has the form: ¢=py---p, with odd primes p;<:--<p;, where s=>2, Let

/21
M= LTI,
: 1 =

M—-(z ! Is.
(3 a3 2>_L .

(1) Suppese there is a prime p, p=>19 or p="7, 18, and p|a. We construct M=
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M 1 with dM =a/p, and we have p=2-+[7;, So by Proposition # we get an indecompo- '
sable lattice L, with dL=dM. p—aq.

In the following we assume that

a=py-ps, ;:; € {8, 5, 11, 17}, s>2.

(2) Suppose p,=17. If s=2, construct M = M, with dM — a/p,. Then the * in M
must be 2, 8 or 6; and p,=8+ [75=6+ 7. Thus (M, p,) satisfies proposition . If
$=>38, construct M = M, with dM — a/ps and *1=38 or 6. Then we get Py=xl +2+E]3,
and so (M, P,) satisfies Proposition #.

(8) Suppose p,=11. ‘

For g=3-11, construct M =T, in the base {61’, -++;¢s},and put z= 2ei+2 ;. Then

Q(w) 11 and M'= fsﬂ (Qx)* is a T-ary mdecomposable la.ﬁuce by Proposition #
with ¢M’'=11. Put y=e;—e;— e;. Then YyEM, Q(y) =8 and L=M'N (Qy)* isa 6-ary
indecomposable lattice with dL—3- 11, It is clear that 2 €Q(L).

- For a=b5-11, construct M= M, with dM =5, *=8 and we have p,= 11 8+ LJ5.
So (M, p,) satisfies Proposutlon .

For ¢=8:5-11, construct M = M, with 1 =8 and dM — a/_pa Then (M, p,) saiusﬁes
Proposition # for p,= 3+2+Ds
' (4) Suppose p,=5, i.e. a=8.5.

From the proof of ([1], 5.10) we know that there is a 6-ary indecomposable
lattice M’, dM'=8 and M’ represents (4) | (2). Oonstruct M—M ‘1 (). By
Proposition # we get a 6-ary indecomposable lattice L with dL=15 and 2 €Q).

Now consider that @ is even and has the form: g=2. P1--*Ps With odd primes p;<<
oer <<, where s>1. Let

2 1

M1=<2)_|_Ie, My= (2)_1_(‘12 )_LI4, Ms=(2)_|_(2 1).L<1 *2)lf2-

(3): Suppose that there is a prime p, p=>170r p=11 and p|a. If s=1, construct
M =M1 with dM=a/p, and (M, p) satisfies (i.e. Proposition ). If s>2,
construct M= M, with dM — a/p, and (M, p) satisfies .

In the following we can assume that

- @=2epyeeep,, s>1 andp.€{3 b, 7 18}.

(2) Suppose p,=18. ‘

For s=1, we know from the proof of ([11, 5.10) that there is a T-ary indecomp-
‘posable lattice M, dM =13 and M represents 2. So (M 2) sat:sﬁes .

For s=2,

if =2+8-18, let M= (2)J_(3)_]_I5,

2 1
if =2:7-18, let M=[1 2 1 1@ 11
st g - 1.8
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: 2 1
if g=2¢5:18, let M=|1 2 1|11, (see Lemma 4 in Section 2).
, : 1 4
In these cases (M, p,) satisfies :ﬂ:.
For s=3, :

if 7@ let M =M, with «1=4, dM = a/p,,

if Tta let M= (2)_L(3)_L13_|_(1 ;)

In these cases (M, p,) satisfies $.

(8) Suppose p,="17.

For s=1, i.e. a=14. It is an exception and will be treated later

For s=2. If a=2:8-7, let M"” =®;_| (1) in the base {es, -, ¢o} and put z=e;-+¢s
+63+69. Then Q(x) =7 and M'=M"N (Qx)* is a 8-ary indecomposable lattice with

M’ ="7. Put y= — es-+¢o. Then y €M’ and M =M’ (Qy)* is a T-ary mdecomposable
lattlce with dM =21. It is clear that (M, 2) satisfies .

If g=2-5- 7, we know from the proof in @ la.ter that there is a 6-ary indecom-
posable lattice M’ with dM’'=10 and 6€Q(M’) Construct M=M'] (1) and 7 6
+1, so (M, 7) satisfies .

For g=2:8-5+7, lot M" =®s | (1) in the base {es, «-+,¢s} and put z=ea+eo. Then
Q(a;) =B and M'=M"N (Qx)*is a 8—ary indecomposable lattice with dM’=5. Put y=

—¢. Then yE€ M’ and M =M’ (@y)* is a 7-ary indecomposable lattice with dM =
15 Put z2=es. Then 2€ M and N’'=M  (Qz)* is a 6-ary mdecomposable lattice with
dN’=80. It is clear that 6 €Q(N"). Construct N=N’| (1), and (N, 7) satisfies .

(4) Suppose p;=b.

For a=10, the result holds from ([1], 5.4).

For =380, there is a T-ary indecomposable lattice M from ([1], 6.4) with dM =
" 15 and 2€Q(M), (so M, 2) satisfies .

(5) Finally, suppose p,=3, i.e. a=6. It is an ‘exception and treated below.

Now we consider the cases n=6, a=6,14. ~

For ¢=14, we know from M. Kneser’s paper™ that every 6-ary latiice with
discriminant ¢ can be obtained as the orthogonal complement of the ternary sublattice
with the same discriminant in a 9-ary unimodular lattice. But there are only four
ternary lattices with discriminant 14 in view of isometry, namely : ‘

1 1 1 ' 2
1 , 2 , 8 1], and 2 1}
14 N 18] 1 4
And there are only two 9-ary unimodular lattices, Iy and @g_| (1). One can see easily
that the orthogonal complement of the ternary sublattice with discriminant ¢ in Iy or
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D5 | (1) is decomposable. So n=6, ¢=14 is an exceptional case.. One may refer to
[11]. Similarly we can prove that n =6, a=6 is also an excep‘ulonal case. This com-
pletes the proof of Proposition 1.

2. The cases for 8<n<5b . :

Proposition 2. For any sguare—-frree composite number a, there are S-ary ‘inde-
composable positive definite Z-lattices T with clL=a, but for the only ewception. a=10.
In the ewceptional case there are no. lattices with the desired properties.

Proof First consider that ¢ is odd. Assume that a=py-- ps with odd prlmes 1<
2o+ <p;, Where s=>2.

2 1
If there is a prime p, p=>28 or p= 17 and pla then construct M= ( 1 )_LI4
*

with dM =a/p, and (M, p) sa.tlsﬁes 3.
It 5|a, construct

2 1
Mi-—Iz_l_ _L_Iz when s=2;

: 21 2 1
My=TI,] (. when s=>8; dM;=a/p,.
1 8/7\1 =, ‘ v

Then (M, p,) satisfies 3 when p,=7, 11, 18, or 19.
For ¢=38.5, let RSP
2 -1 0 0 -1
-1 2 0 o of ,
L=l 0 0 2 =1 —1| in the base {e4, -, ¢s}.
0 0 -1 2 .0
-1 0 —1 0 3
Suppose f is the quadratic form associated with L. Then
J =207 — 20,20 — 201205+ 203 4 202 — 20304 — 223005+ 2003 + 82
1 1 .8/ 1 ) _1 1\
o dorLa) + (L) 2 (- do L)
8(. 1 \ b5 , '
-+ —2— (w4 g— 1175) + —3‘ @5 ‘
If f represents 1, then we deduce that % o% <1. But 25EZ, 50 o5=0. On the other

hand. the lattme associated with f"=f| 4, is an even lattice, 50 f does not represent 1.
Therefore ey, -+, e5 are irreducible vectors, and then I ig 1ndecomposable.
If 11| a, construct

3 1
M1=Ig_]__(1 4)J_I2 when s=2,

3 1 21
M2~Iz_]_ 1 when s>8, dM;=a/p,.
1 4 1 = .
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Then (M., p) satisfies # when p,=7, 18, 19.
For a=38-11, let M= (3) | I; and 11=8+17;.

5 1 v ,

If 19]a, for s=2, construct M=( 1 )_LL, dM =a/19.

From the above diScuSsioh, we may assume that the  in M is 2, 4 or 7, and then
1 «1 1 %2

can chooso #1=4 or 7. Then (M, 19) satisfiesH.
In the following we may assume that @ =mp,--:ps, p:; € {8, 7, 18}.

21 |1 R
1 2 4

' ‘ 21 2 1
(M, 19) satisfies 3. For s=>8, construct M =( )J_( )_LI 2, M =a/19. We

For q=38-18, let M=<

2 1\ /2 1
for a=8-7-18; let M=<»1 2)¢(1 . 4)_]_1,;1

. 2 1
for g=7.13, let M={ 1 2 1 || I.
-1 8, '

In any case (M, 18) satisfies #:.
For ¢=8-7, leb
2 -1 -1 0 0]
(-1 2 0 o0 o0
L=[-1 0 2 -1 ol
0 0o -1. 2 -1
| | 0 0 0 -1 5 |
Similarly as in the case @ =15, we can prove that L is an indecomposable lattice with
dL=21.
Now consider that @ is even. Assume a=2p,-+-p,, with odd primes p1<---<ps:and
s=1. - |
(i) s=1. Oonstruct M= (2)_| I5, Then (M, pi)' satisfies # when p,=>19 or p1=7,‘
18. For ¢=2-8, 2.11, 2-17, there is a 6-ary indecomposable lattice M from ([1],
5.10), dM =a/2 and M represents 2. For =10, it is an exceptional case by [7].
(ii) s>2. First, we require the following lemma which will often be used later.
Lemma 1%, Let f(a, b) =a®+ay®+b22. For gifvén natwral wumber m, m cannot
be represented by f(a, b) in integers for the a, b bolow if and only if
a=1,0=2 m=4" (16u-+14);
a=1, b=38, m=9"(9u+16);
: . =2, b=8, m=4"(16u+10),
where v>>0 and are integers..
Let
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w-@L(] )Ll adtzo/p
By Lemma 1, the equations: V ' o | ‘
ps=2+16+222+y?+22, rvhen ps__l mod 8 and p,>>18;
| Ps= 8+4+2w2+y2+22 When ps:S mod 8 and Pe>12;
s —2+4+2w”+y +22, when Ps=b mod 8 and s>6;
8+16+2w2+:y +z when p,=17 mod 8 and p,>24, -
where ayz+0, are solvable in Z. Because (M, 28) satlsﬁes Prqppsfgr_qn 4k, in the
following we can assume that ' ' ‘
G=2p1***Ps, p,G {3 5 7 11 17}, s>2

2 1
For 7|a, construct M= < )_I_Is, dM=a/14.

1

Then (M, 7) satisfies #. So we get a sublattice M’ of M with dM’—a/2 and M’
represents 2.
For 5|a, construct

'M1=(2)_|_(2' 1)_]_13, wherrs=2; |

2 1\ (2 1 o
M2'=(2)__|_<1 3)_!_(1 )_LII) when 8>3 dM;—a/p.. )

Then (M, p,) satisfies # when p,=11, 17.
If a=2.8-5, there is a 6—ary mdecomposable lattlce M with dM =15 and M
Tepresents 2.

. g q v v
For 1la|, construct M= (2)_|_< : )_LIa, when s=2;

1 4 1
Then (M, p,) satisfies # when p,=17.
Finally for ¢=2-8+11, or =2+8+17, construct

M= ( >_|_Is in the base {eq, +--, e;}. .

M2='(2)_L(3 1)_'__(2 1)__'_11, Wh9n8>3 dM;='¢U/p3. ‘ |

1 2
Put x=e4+-+--+e; and y= 61+62+263+264+e5+66+67 Then Q(x) =11, Q(y) = 17 and
Mi=MN (Qu)*, Ma=M N (Qy)* are 6-ary indecomposable lattices with dM 1 =88 and
dM,=51 respectrvely Both represent 2. This completes the proof. ‘

* Now consider the ex1stence of". quaternary mdecomposable lattice. First we have

the following lemma. ’
2 1
‘ . 1 2
Lemma 2. The lattice L= 1 4s indecomposable and positive definite

1
2 1
1 ¢
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with dL—4c—8, where ¢=>2.
~ Proof I f L is decomposable, then L= LI_LL,, First we assume that dim (Li) =
1, ie. Iy=7Z%, = X101+ 0 +T4l4, Where {eq, = 64} is the base of L. So B(L L)
Q () Z. Oonsider B(¢, e1) = 2a:1+w2,
Q(t) =242+ 2mywa+ 203+ Opottg + 2053+ 2054 + €3 _

= (wy+22) 2+ a3+ (w2+2w2w3+2w5+2wgw4+cm4) | 224 + 3] .
The equality holds if and only if wy=w3 =0, =0, my =+ 1. Then ¢=te,, but B(t, eg) =
+1¢2Z, which is a contradiction. So we have B(t, e1) =0.8imilarly we obtain B(?, e:)
=0, Vi. Thus ¢=0, which contradicts dim (L;) =1. Therefore in the orthogonal split-
ting of L there is no one—dimensional component, hence there is no three dimensional
component. Since 1 ¢Q(L), the vectors e, €z, €3 are irreducible, they are in the same
component of the splitting L. So L is indecomposable. :

By Lemma 2, there is always a quaternary indecomposable lattice of discriminant
a when ¢=b and e=1 mod 4. . -

Lemma 8. The equaiion p=20%+2y°+2*+u?, wyzuaéO 4s solvable in Z forr every
prime p, if p*2, 8, 5, 7, 11, 18 and 19.

. Proof Fory p= =1 mod 8, the equa,tlon p 2+2m2+y +22, with wyzaéO is solvable
in Z. (See Lemma 1 )

For p=T7mod 8, p+7, the equation p= 8+2m3+y”+z Wl‘l:h m/zaéO is solvable.

~ (See. Lemma 1.) . : :

For p=38 mod 8 ‘p=T2, let ug consider the equation = . e

p=2+6+2a"+y?+2%
By Lemma 1, it is solvable. If ayz+0, thereis nothlng to. prove. If xyz=0, cons1der—
ing the congruence modulus 8, we can assume wy+0, 2=0. So p=2+22+24"+y* 482,

For p=8 mod 8, p<72. By computing, it is easﬂy gseen that p=38, 11, 19 ‘are the

only exceptions.

For p_5 mod 8, p>>200, let us consider the equatlon

p=2+102+222+y>+2%, v
By Lemma 1, the equation is solvable. If ayz+#0, there is nothmg to prove If wyz=0,
considering the congruence modulus 8, we can assume =0, yz#0. In this way p=
2:62+2- 82+y 422 ;

For p=5 mod 8, p<<200. It is easily seen that p=b, 18 are the only exceptlons.
The proof is completed.

Proposltlon 8. For any square—free composite number a, there is a quaternary
indecomposable positive definite Z-lattice of discriminant @, but for the 4 ewceptions:
a=6, 10, 14 and 26. In the ewceptional cases there are mo lattices with the desired
properties. v A v

Proof (A) First we prove the proposmon for a=p, ***;Ps, With odd primes py,
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‘5 Ds, and s=2. ,
- If there s a prime factor p of ¢ which is congruent to 3, 5 or 7 mod 8, construct

M=<f )J_Is, aM~a/p.

Then p=8+/,7; when p=38 mod 8, p#8; and p= 2+Da When p—5 mod 8. For p=7
mod 8, paé7 by Lemma 1 the equation o :
v : Pp=16+222+y2 422 wyzaéO
is solvable. So in these cases there are quaternary indecomposable lattices I with
dL=a. ' o
- Now we assume that ¢ has one of the forms:
@ =P1***Ps; G=3p1***Ds, G= 7101 *Psy @=3+Tpy+,,
where p;=1 mod. 8 . : _ :
Since the lattice in Lemma 2 represents 2 and 6, in the first three cases there are
quaternary indecomposable lattices I with dL =a. )
For a=8-Tp;-:p,, pi=1 mod 8. If s=>1. construct
2 1
1.2 1 . v A :
M= 1921 L (1) in the base {es, ---é5} with dM=a/21.
1 ¢ .
Put z=es4+¢;5. Then Q(x) =8 and M'=M (Q#)* in a quaternary indecomposable
lattice of discriminant a/7. Put y=e;— 2¢5. Then y € M ', Q(y) =6. Construct N=M’
1 (), and (I, '7) satisfies 4.
If =387, construct M =(3) 114 and H(M, 7) satisfies #:. This completes the
proof if @ is odd.
© (B) Assume g=2p,::-p,, with odd primes p;, where s=>1.,
(i) s=1. Oonstruct M= (2) | I,.
For pi>28 or py =17, (M, p,) satisfies . - :
For p;=11 or p;=19, by ([1], 5. 10) there is a quaternary Ia,ttlce of dlscrlmma,nt
a with desired propertles
- For a=6, 10, 14, or 26, there is no lattlce with the des1red propertles from [7]
and [10].

: 21 . A o . '
(ii) s=2. Oonstruct M =< 1 )_L(Z)_I_Iz, dM=a/p,. Then (M p;) satisfies

# by Lemma 8 when P,#38, 5, 11,18, 19, 7. In the following a=2p;-- ‘Ps, $>2 and
€48, 5,7, 11, 13, 19},
For 5[a, construct

M1= (2)_]_(? ;)_LIQ, when §=2;
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(2)_|_< A1 >_|_( 2 1 >, when §=>38; dM;=a/p;.
1 3 1 =
Then (M,, p,) satisfies # when p,=7, 11, 18 or 19. For a=2-3 B, n—4, from ‘the
proof of Proposition 2 there is a 5-ary 1ndecomposa,ble positive definite Z—lattlce of
discriminant 15, which Tepresents 2.

For 11| af construct

M= (2)_[_( 8 1 )__I_Iz, when s=2;
31 21
M= (2)_1_< )J.( : ) When s=8; dM =a/ps.
1 4/7\1 ‘ ,
Then (M;, p,) satisfies when ps="T, 18 or 19. For a=2+8.11, from the proof of
Proposition 2, there is a B-ary indecomposable lattice of discriminant 88 which
represents 2, In the followmg '
, G=2p1+Ds, s>2 and p; {3 7, 18, 19}
For s= =2, from the proof of Porposition 2. there is a. b-ary mdecomposable 1a1;’u109
of dlscrlmmant a/2, which represents 2.
For s>38, if 7|a, construct ‘
(3 (3 D)o awmam,
and (M, p,) satisfies # when p,=18 or 19, -
Finally, for ¢=2+3:13+19, construct

8 1\
M=<1f 9>-L<1 2)“1)’.

and (M, 19) satisfies #. This completes the proof of Proposition 8.
Lemma 4. The lattwes '

(2 1 2 1 : 3 1
CLi={1 2 1|, Le=[1 8 1), Ly=|1 2 1
1 ¢ 1 ¢ R '

-are indecomposable with dLy=3c—2, dL2—5c -2, dL3—5c 8, where c=2.

The proof is similar to that of Lemma 2 and is omitted.

Lemma 5, If the congruence ak®+b=0 mod p is solvable (where a, b are given
nabural numbers and p i @ prime), then there are w, yE L such that ax®+by*=mp,
where m<~/4ab is a positive integer. ‘ :

- Lemma 6™, The equation o*+2y*=p is solvable when p=1 mod 8 or p=38 mod
Lemma 7. The equation 8x*+2y*=1p is solable when p=2 mod 8 and p_3 or
b mod 8. S
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Proof Sinqe (_76>=1 V(Where <__P§> denotes the Legendre’s symbdl), we can
prove the lemma easily by using Lemma 5. : ,

Lemma 8. (1) The eguation 20°+y2+22=p, wyzaéO s sol'vable in Z when p— 1
med 3. . ‘

(2) The equation 62°+y*=p is solvable in Z when p..=..1 mod 8 and p=7 mod 8.

Proof (1) For p=1 or 5 mod 8, the equation p=22-+y2 is solvable, since p=1
mod 8, we may assume that 4 =38z, and so p=2(22)2+224 42, yz+0.

For p=3 mod 8, the equation p =22+ 2¢? is solvable by Lemma 6, since p=1mod
8, then y=38z and p= (42)?+ 222+ 22, xz+0. -

For p=T mod 8 (the condition p=1 mod 8 is not necessary), the equation p= 242
+ y2+z2, wyz+0, is solvable by Lemma 1. This proves Lemma 8(1). |

The proof for (2) is similar to that of Lemma 7 and is omitted.

Proposition 4. For any square—free compositive number a, therre s @ ternary
indecomposable positive definite Z-lattice of discriminant @, but for the 8 emceptions:
- a=6, 14, and 15. In the ewceptional cases there is no lattice with the desired pr operties.

Proof (A) First we prove the Proposntlon for odd . By Lemma 8 (1), we

21
construct M=
(1 -
congruent to. 1 mod 8 or congruent 07 mod 8. Because the lattice Ly in Lemma 4
represents 2, we need only consider the following cases: (i) a=pi---py (ii) a= 3101

)_[_I 2. We can assume that a has no prime factor which is

Ps; Where p; is a prime and py---p,=2 mod 8, p,=2 mod 8, p;==7 mod 8.
The proof of (i): Since a=2 mod 8 and p;=2 mod 8, the s is odd and s=8.
If p,=1 or 8 mod 8, construct (see Lemma 4) -

2 1
M={1 2 1]|L@),dM=a/p,.
1 ¢

Then (M, p,) satisfies # by Lemma 6.
If p,=5 mod 8, construct

' 21 3 1\ .
M=<1 *l)l(l_ %2)’ dM=a/?s.

Then (M, p;) satisfies 3 by Lemma 7.
- The proof of (ii): a=38py--ps, @/8=2 mod 8, and p,=2 mod 8, m="T mod 8.
Since ¢/3=2 mod 8 and p;=2 mod 8, s is odd. .
If s=1, for p;=2 or 8 mod 5, construct M L;| (1), where L;(q, 2, 8) are given
by Lemma 4 with dM — =ps. Then (M, 8) satisfies 3. For p;=1 or 4 mod 5, then ¢=2
-or 8 mod b and by Lemma 4 the proposition is true for these cases. For =15, it is an
exceptional case by [8] p. 181. ‘



No. 1l . Zhu, F.Z. & Shao, Y.¥Y. ON.CONSTRUCTION OF QUADRATIC FOEMS OVER Z 91

If =8, for 5|a, construct

- 2.1\ /38 1 :
M—<1 el >_J_<1 *2>, olll/.f{=a/5f

- Then (M, 5) satisfies 4. For Bta, the proof is similar to that of s=1, py#5 as above.
This completes the proof for (A). o

(B) Now we prove the proposition for even a. Assume a—2p1 ps Wlth odd primes
i, where sz=1. :

(i) s=1.If py1=1mod 8, by L uemma. 2 the prop051t10n is true for these cases.

Let M= (2)_| Is. p1=8+ 75 when p;=38 mod 8, p1%8; p1=2+[J; when p1=5
.mod 8. The equation p;= 164222+ y2+22, wyzaéO is solvable by Lemma b when p; =7
mod 8, pﬁé'? .So in  these cases the proposmon is also true a=6 and a= 14 are
exceptional cases by [8] p. 181.

(i) s=2. Let M=(2)_L(1 i)_l_(l), dM=a/p,. (M, ps) satisfies - when

p,=1 or 5 mod 8. And because of the L, in Lemma 4, we can assume that (1) a=2-
8py-++ps; (2) a=20ps---ps; Where p;=3 or 7 mod 8 and py---p,=1 mod 8. ; |

The proof of (1): Since 54’@ if a/8=8 or 2 mod B, construct M=L| (1) W]'ﬁhv

=a/8, where L; is the lattice in Lemma 4 (¢=2, 8). So (M, 8) sainsﬁes #. If /8

=1 or 4 mod 5, then ¢=2 or 8 mod 5 and Lemma 4 says that there is a ternary inde-
composable lattice of discriminant a. i

The proof of (2): a=2p;---p,, p;=3 or.T mod 8, a/2=1 mod 8. Because of Lemma
2, we can also assume that ¢/2=8 mod 4, so s is an odd number and s=38.

If @ has a prime factor, say ps, ps=38 mod 8, construct -

2 1

T ; . 1L (@), dM =a/2p,.
1 ¢!
By Lemma 6 there is a quaternary 1ndecomposable sublattice M’ of M with discrimi-
nant ¢/2 and M’ represents 2. So in the following we can assume that @ has no such
~ prime factor, namely a= 2p4+++ps p;=T mod 8, @/2=1 mod 8, ¢/2=8 mod 4. If ¢ has
a prime factor, say"jps, which is congruent t0 2 mod 8, construct .

1
w-@1@L(; ) at=osm.

Then (M, ps) satisfies # by Lemma 1. In the following we assume that each prime
factor of e is congruent to 1 mod 3 Since _Ips-—3 mod 4 we have P +Pe-r=1 mod 4.
Oonstruct (see Lemma 2)
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21
41 2 1
M=l 1 91

1 ¢
M'=M N (Qey)* is a ternary 1ndecomposable lattice of dlscrlmmant a/ps. Put v=e,
—2e5. Then s € M’, Q(x) =6, and 5o 6 is represented by M. Let Mi=M ’J_ @, dM1
=a/ps. Since p,=1 mod 8, p,=7 mod 8, by Lemma 8, (My, p;) satlsﬁes #. This -

completes the proof of Proposmon 4,

, dM =a/2p; in the base {e, »=, ea}.

Theorem 1 follows from Propositions 1—4.
'8. The case for n=2

To prove Theorem 8 we need oﬁly prove the following theorem.

Theorem 3. For Suﬁciently"larg:e values of a>0, there ewists a binary indecom-
posable positive definite quadratic form over Z with given discriminant a.

Proof In view of Theorem M (1) we mneed konly consider the binary properly
prlmltlve positive deﬁnlte quadratic form of the classic type

f (@, ¥) =a?+2Bwy +7y?

over Z with discriminant a=ay— 82>0. The class number of these forms will be
denoted by k(a,) Then by Siegel’s Theorem™® we have

log ha) __
Hm loga 2 !

or for every >0, ,

h(a)>a®
On other hand, if the lattice L associated with the form f (v, y) is decomposable, then

' L=P|R
with non-zero sublattices P and R, and rank P=1=rank R. Hence we have the
~discriminant relation N

dL=dP-dR, ‘
from which we deduce that 0<<dP|dL. So the number N, of decomposable lattices is
less than the number of divisors of dL=a. In fact, since we observe that both % and
a/ % are mmultaneous divisors of a, they lead to the same decomposable lattice and so
we have
- N, < . d(a),
where d(a) is the divisor function of a. It is well-known thatt®

d(a) =0(a®),

i.e. d(a)<Ka®, where K is a constant, say _lgé?’ which is independent of a. There-

fore we have ,
NJ/h(a) <% i )
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as ¢ tends to -+ co. This means that the number of binary decomposable forms with
dL=a is finite, when ¢ is sufficiently large. Theorem 8’ is proved. 4

‘We note that the proof of Theorem -3’ holds also for binary mdecomposable
positive definite quadratlc forms of non—classm type.

It is easily seen that Theorem g implies 'I‘heorem 8 or Theorem 3"

Teeorem 3”. There are binary indecomposable positive de ﬁmte quadratic forms
over Z with discriminant a>0, but for a finite number of exceptions.

Finally we give some information on the exceptlonal cases, i.e. for those values
of the dlscrlmlnant a there does mnot exist blna,ry indecomposable positive ‘definite
Z-lattices. '

It was proved by O’Meara™ that for every odd number a>1 there is a blnary

indecomposable positive definite Z-lattice ' '

-2 1
L;( (w+1))

with scale YLCZ and diseriminant dL =g and for every integer b>1and b= 1 mod
8 there is a binary indecomposable positive definite Z-lattice

3 2
Lg(_z -§-<é+2>)

with scale 8LCZ and discriminant dL=2b. It follows that the exceptional case is
possible only if dL=2b is even and b=1 or 1<bz1 mod 8. From the proof of
Theorem 8 we see that the number of values of such >0 is finite. It remains to
determine all the ekceptional discriminants. ’

In order to find the exceptional discriminants we give a crlterlon—Theorem 4, ‘

It is well-known that™ there does mnot exist binary indecomposable positive -
definite Z-lattices L with discriminants 1 and 2, but with discriminant 8 the binary

Z-lattice
I 21
“\1 2

is indecomposable. In general we have Theorem 4. )

To prove Theorem 4 we require the following lemma, which can be proved by
Eisenstein reduction. . -

Lemma 9. The necessary and sufficient condition for the ewistence of a bv}ndry
indecomposable positive definite Z-lattice with discriminant a is that the equation oz — y?
=g (0<2y<a<z) is solvable in Z. ' ‘

Proof of Theorem 4-If there exists a binary 1ndecomposable positive deﬁmte
Z-lattice with square-free discriminant e, by Lemma 9, the equation zz—y?=a
’ (0<2y<a<z, @, y, EZ) is solvable in Z. We claim that there is a prime factor of



®4 . CHIN. ANN. OF MATH. . - - - VolL9 Ser.B

which does not divide @, For otherwise, @ is not square—free if # has a square factor,
and y>uw if o is square—free. Hence in any case we get a contradiction, Thus there is
a prime p|o and pta, and 50 y°=—ae mod p, ie. —a is a quadratic residue mod p.

Since a=az— y2>w —la:2=—w2, p<w<‘/ .

00nversely, if there is a prime p;<< «/ = gsuch that —a is a quadratlc residue
mod p1, then y3=—g mod p1 is solvable in y1 with 1<y1< b 12 1 and so y1+a= D12

(z € Z) If z>p1, _the equatlon @z--y*=q is solvable with w—pi, Y=11, 'z 2, and
hence the suﬂicwncy of Theorem 4 is proved. If 24<<py, then there is a prime p, such
that Ps lzi and pata. For otherwise, @ is not square—free if k! has a square factor, ‘and
J.f z1 is square—free we would have y,>2 and then

°

w=p121—?/¥<101y1— yK——(pr 1)2
2

3
we can prove the sufﬁc; ency of Theorem 4 by induction.

and 80 p1> \/2a+1 contrary to p1< 4 @ . Thus pa<<z1<py. Proceeding in this way,

By Tteorem 4 and the information before Lemma 9 we obtain, by using com-
puter, in the kinary case (n=2) with dL<<4.14* only the following 18 exceptions:
dL=1, 2, 4, 6, 10, 18, 22, 80, 42, 58, '70, 78, 102, 180, 190, 210, 830, 462.
It is probable that there are no other eizcep_tions.
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