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Abstra.ct

This paper studies critical points of a time-varying vector field f:M X R>TM on & »
compact Riemannian manifold M. It is shown that if a critical point a, Iadmit_s an exponential
dichotomy, then there are two families of manifolds, stable manifold family and unstable’ "
manifold family of f through 2 in some open neighborhood ¥ of ,, moreover, the: critical

- point @, is isolated. Also it is shown that the solution curve family of the perturbed time—
varying vector field yielded by a small change of f is qualitatively the same as that of f.

§1. Introdu :tion

In study of ordmary differential equatlons many Works have been done for the
autonomous systems, but few for the time—varying systems. On the other hand, since
the theory of the exponential dichotomy was introduced by Lin Zhensheng and other
mathematicians, there have been consrderable development in study of stablhty of the
time—varying systems in FEuclidean space. In this paper we study the lccal property of
a critical point @, of a time-varying system fona mamfold by using exponentral
dichotomy. We show that if the critical point @, admits an exponential dichotomy
there exist, umque ‘stable manifold family {W{ (zo)|¢€ R} and unstable mamfold
family {W7 (wo) |t € R}. We also show that such point is isolated. If all of the tlme—
varying vector fields make up a Banach space in C" norm, there is a umque solutron
curve of the perturbed. tlme—-varymg field ylelded by a small change of fin this norm
the vrcmlty of which is the same structure as that of a,. Thus the point @y admltlng
an exponential dlchotomy hag similar propertles with the elementary critical point of
(autonomous) vector fields. The similar argument for the periodic solutions of the
perlodlo systems can be glven we shall study them in [9] '

This paper is organized as follows: Section 2 is concerned with ome deﬁnltlons
and basic properties. In Section 8 we present the statement of the main theorems and
corollaries. Section 4 is concerned with the proof of ‘thege therems. Finally in Section &
we study the generic poblem.
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§2 Dlﬁnltlons and Basm Propertles

D1ﬁn1t10n 21. Let M bea C- manifold, and f: MxR—>TM g O”(Ir>1) map.
We say f isa O tzme—fvwrymg vector field on M if f(w, ¢) ET,M for oll tER. (R is
the real awis, TM is the tangent bundle o f M.)

Difinition 2.2, Let f be a C" tq,'me—fmrymg vector field. A O™+ curve ¢: I->R (I
s an open interval of R) is called an integral curve of f thfrough @ at time by (or
solution) ¢f the equction L
'(t) f(c(t), t), c(to) =m0,  to€IL
holds, where ¢’ (¢) =Dc(t)=l. '

Proposition 2.1. Let f be a OF tq}me—mfrying vector field. Then

(i) For each (w, to) € M X R, there ewists an open interval I containing %o and @
C"** curve o: I—>M such that ¢ is an integral curve of f through @, at time to;

(ii) There are an open neighborhood U of x,, open intervals I and I, which both
contain o and a O" map ¢: I XU xIy—>M, ¢(to, @, to) =, to€E 1Ly, w€U, such that
Partn: I>M is an integral curve of f and ¢e,9: UM a O imbedding from U to M,
where P, (t) =P (2, @, to), Pe.ia(@) =P (%, o, to). |

Proof 8See [6, p60]

Proposition 2.2. Let f be a O time—varying vector field on M. If M is compact,
Sor every non—continuable integral curve c:I—>M of f we have I=R.

 Proof Let¢: I->M be a non-continuable integral curve of f, I=(t_, t,). If t,

< 400, we take t,, n=1, 2, v, <A <SE<See+, 8%, Since M is compact, without
loss of generality there is a point @ € M such that ¢(£,)—>,. For (ao, ¢,), by Proposi-
tion 2.1 (ii) there exists a neighborhood U-of @y, an open interval I, containiﬁg 1y
and a O" map ¢: I, XU xI,—>M. Take n large enough, so that £,€1, and c(t,.)'é U,
¢ (¢, @, t,,)Ais an integral curve of f on I,. On the other hand, by uniqueﬁess c(t) |
=¢ (%, @, t,) for t€INI,. So ¢ is continuable to I U I,, but this contradicts the fact
that I is non-continuable, Therefore, ¢, =+oco. The proof for ¢_ is similar,

Let M Dbe a compact Riemannian mamfold %" is the set that consists of all of O
tlme—varymg vecﬁor fields such that fE€ %" iff tsgep{ [feley<+4oo, where fi(w)=

f(=, ), norm of O" vector fields on M (cf; [1, p. 811).
Let sup {[fs],} =[f]. Then & i

Difinition 2.3. Let i(w, f, ¢) be the integral curve of f satisfying Y(», f, 0)
=ao. For (o, f) EM XE", we denote D(wo, f, t) =Dyh(m, f, t). If there ewists @
projection operator P(wo, f): ToeM—T ;. M, and positive numbers o, K such that

[© (o, £, )P (2o, £)P (w0, f, ) | <K&, =5,




No. 1 Lin, 8. D. TIME-VARYING VECTOR FIELDS 97

1D (@0, f, ) (T—P (2o, £))P (20, f, )| <Ke ™", s>t,
then we say (o, f) admits an ewponential dichotomy. o ,
Difinition 2.4. Let f:M x R—>TM be a O" time—varying vector field, and a;OEM
If for all t € R we have f(#o, t) = =0,,, where Oy, 43 the null element of Ty, M, then xo 4s
called @ critical point of f. ' SRS
Tt is easy to.prove that if @, is an elementary critical point of O" vector field f M
->TM, (mo, f) admits an exponential d1chotomy Ty :

§3. Main Theorems

In this section, we suppose that M is a connected n—dimensidnal_ compa,cf ,Riemé?
nnian manifold without any loss of the generality.

Theorem 3.1. Let f: M X BT M be O (r=>1) time—varying vector ﬁeld and
@0 be a critical point of f. If (@, ) admits an exponential dichotomy, there ewist two
manifold families {W (@) |t € R}, {W (%) |t € R} satis fying:

(i) For each sEWF (w0), let $(3, @, 5) be the integral curve of f. through z at
time s, then , .

limd(p(¢, @, s), @) =0,

where d is the metric-on M generated by Riemannian metfrw,

(ii) There ewists a neighborhood U of o (mdepedent of & (th s) suck that if
b(t, @, s) €U, t=s, then s EW (wo); :

(iii) There are positive numbers A, B (independent of ¢ and s) such that for each
. pair m, YyEWF (20) we have

ad(Pp(t, o, 8), ¢(t, y, 8))<Ae™8¢™9 {>s;

(iv) For every s€ R, Wi (w,) is a O submani fold;

(v) {W#(wo)|tE R} is continuous in ¢, that is, for every sER and any e-neigh-
borhood Vs of Wi (), there exists 3>>0 such that Wi (@) SV, as t € (s—9, s+9);

((i)—(v) also hold when “—7, “¢”, “s” and “—oo substztute for “+7, “”, “@pr
and “+00”, respectively.)

(vi) For every tER,

- Wi (%) NW ;i (@) =05 -
Wi (o) NeW5 (20);

dim T, W3 (wo) =rank P (@, f), dim T, Wi (#) =rank (I — P (a0, f)).
Corollary 8.1. If (a, f) satisfies the conditions in Theorem 3.1, there exists @
- neighborhood U of mo, in which no integral curves lie except ¢ (1) = wo.

Proof It is true by the Theorem 8.1 (ii) and (vi). -
Corollary 8.2. If (ao, f) satzsﬁes the conditions én Theorem 3. 1 then @o-4s an
tsolated critical point of f. g
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Theorem 8.2. [f (wo, f) satisfies the conditions in Theorem 3.1, then for any
sufficient small €0 there ewists . newghborhood U of f in €™ such that for every
JEU there ewists a unique. ‘integral- curve ¢,(£) of g satisfying d(py(?), fvo) <e.
Meanwhile, ($y(0), g) admits an ewponential dichotomy. . ‘

Gorollary 8.8. If (wo, f) satisfies the conditions in Theorem 3.2; then thefre are
two manifold families {W.i (by(£)). ]tER} and Wi (¢,(8)) |t € R}, where ¢y(8) is gwen
in Theorem 8.2, such that

(i) For every s€Wi(p,(s)), _

Hm d($, (2 3, 5), $5(£)) =0,
- where ¢y(2, @, 8) is an integral curve of g through o at time s

- (ii) There is a positive 8>>0 such that if d(sbg(t @, 8), ¢g(t))<8 forr all t>s,
then sEW (gbg(s)), : -

(iii)  There are positive numbers A and B such that for every pzwr @, yE W (6,(9)),

d(¢g(t @, 8), $o(t, y, 9)) <AeTHE9, 455

Gv) Wi (d,(s)) is a O submani, fold for all s€ R;

(v) {WH(g;@))|tER} s continuous in : S

(The conclusions above are true for {W; (gb,,(t)) ItER} when =7, 47 g and
“—oco” substitute for “+7, “s”, “t” and “4-00".).

(V1) For dll tER, ' '
’ Wi (¢g(t)) NWe (b () =, (1),

Wi (By(£)) Moy Wi (4(2)),

" dim Tvbg(t)Wt ((759(77)) rank P (g, f );
dlm Ttﬁq(t)Wt (‘f’y(t)) =rank (I — P (a, f))- -

§4. The Proof of Maln Theorems

Flrst ‘We prove some lemma,s
Lot FE ™ (r=1) and o be a critical pomt of f Under a local chart (U a)
around @,, a (@) =0, f is represented by the equation.
=AM o+ f1(w, t),
F1(0, t).' 0, D1f1(0, £) =0.
Lemma 4. 1. (@, f) admits an ewponential dfwhotomu zf and Only of for o' =
A=, there are a projection operator PEL(R" R"), posq,twe K and o such that
| | X @) PX(s) | <Ko=, ¢>s,
| X&) T-P)X () [ <Ko, s>t,
where X (t) 4s a fundemental solution matriz of ——A(t)a; satzsfymg X©0)=1I, and
rank P=rank P (o, f).
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We also say that o’ =A(t) o admits an exponentlal dlchotomy ’

-~ Proof Put X (t) =T ® (2o, f, t)oTo ™, P=TaoP (a0, f)oTa™., By Dlﬁnltlon
2. 3 we prove easily the lemma.

Lemma 4.2. For every n—dimensional meamnwn mamj‘old there emsts @
metric d on it. For g/wen local chwrt (U oa) there fz,s a. posztfz/ve A such that d(w, ¥) <
Ma(@) —a@]

Proof - See [2, p.187]. . -

Lemma 4.3. Let ¢(¢) be a. non—negatwe continuous j‘unctwn on [s, +o0),
satisfying ¢(#) <2K and ' ‘

O<Ke 0+ J ""‘”‘“(]S('v)dfr s,

'whem K, o are positive. Then _
b () <;2__7—Ke H“f*’.
- Proof Qonsider the integral equation
(@) =K & ety (o)dr, e,
If Y (¢) is a bounded solution of this equation, then o
) = D).
4

8o = % 00—72_“ 9. and O= — K.
b= 2+ ‘\/
Thus this equa’mon has a unique bounded solutlon .
lll( ) — L K x/f(t 8).

2+J2-
“Taking Po(t) =2K, and ; S
| lIJ,.(t) Ke_w(t_8)+_.[ Pl 'vlll, ('v)d'r,'

"by induction it is easy to prove
' da() <2K,

Il Pu(8) — Boa (D] <— | s () — z!rn_ (t)ll

780, P (t) converges uniformly to’ ¢r(t) , :
Since ¢ (t) <o(t), by 1nduct10n (&) <tpa(t) for overy positive 1nteger n. Thus

() <p(?), thatis

¢( )\ 5T \/_2_ _K‘e~a(t—s)

Proof of Theorem 3.1 Choose a local chart W, B around a:o, B(xo) =0, and f is
-represented under the chart by _ .
o’ =A@)w+f1(w, t), ||a>||<'ro, ro>0, ' @
10, #)=0, D1 f1(0, ) =0. |
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Let X (¢), X (0) =I, be a fundemental solution matrix of
’ o' =A)a. N ¢))
By Lemma 4.1 there are P, K, and o such that
| X @) PX ()| <Ke ™, ¢>s,

| X (&) (T—P)X1(s) [ <Ke*e0, s>t,
Ohoose 0<w<% such that when [z|<a,

I1D:f1(@, D<o

Now, the proof is divided into four steps.
Step 1. Define W (%) - (In the proof below, s is always fixed). Define

B ~{0€ B'| o] < 5%, FE R suchthat o= X (5)Pi}.

-
Then Ef¥ is continuous in s and for each CASH I

16¢, @ )] <5 e, 1=,

where ¢ is a solution of (2).
Next, define the map
Hi: B} (a)>B(a), |
where Z{ (a) is the closed subset of the Banach space of all the continuous functions:
from [s, +co0) to B" satisfying |y (3) | <a, by

Hiy®) =3¢, 0,9+ XOPX@)fa(), Dar

' +co .
-[, XOUET-P X @)W, v
It is easy to prove that| H}y| <a, . ’
[ Hiys- Hiyal <:lya—gil.

So, there exists a unique fixed point, denoted as y(¢, ) € ,%’j_ (a). Hence tﬁe equation:
u(t, ) =3, &, 9+ [, XOPX () fuly (s, @), D)dr
- [TxeUE-PE @A 9, Dir
holds. Now we define Lj: Ef—L} (E})=W(0) by
L@ = X©I-P)X @) i, o), D,

and put W (wo) =R71(W#(0)). Thus the conclusion (i) is reached.

If y(t) is a solution of (1) and ﬂy|| <f%, putting
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FH=y® [, XOPX @U@, dw
+E“X(t) (I-P)X (@) f1(y(v), v)dw,

then ¢ is a solution of (2) and ||$||<—23K—. So &(s) EE} and (i) also holds. By
Lemma 4.2, (iii) is true. '

Step 2. Prove (iv).

First, we prove L;" is a homeemorphism. If a;1, 2o € BF, w1+, Lf (w1) =L (a),
by the uniqueness of s_blution, y(t, @) =y(t, ®a), hence @y=wy. This contradicts the
fact that @1% wa. Thus L is a bijection. '

Since ¢ is linear in @, for ;€ HY, =1, 2,

ly(t, @2) —y (@, @) <lox—aa| Kot
o

oo ’
+ 8 [ ety (z, @) ~y (v, @) |0

By Lemma 4.8,
4K

ly(t, =) —y (@, o) | <m"%—%“-

“Hence, L7 is continuous. .
Next, if there are y(t, o), ¥(, @), n=1, 2, -, y(s, m)—>y(s, @) as n—>+o0o,
-from the proof of Step 1 one has :

"y<t: %) " <—£ﬁ:e—ﬁ(t—8)) t=>s,
2+/2 :

ly(t, a) | <5mgre 727, 125,
“Thus, for any given >0, there is a T>0 such that when t>s+T,
“y(t: “‘o) "<‘%1 "y(t; wn) ||<%') n=11 2: ;"9

«On [s, s+7T], since the solutions are continuous in the initial valus, there is a positive
integer N such that n>N implies [y (¢, @) —y(%, @) | <e. Thus y(¢, #,) converges
-uniformly to y(¢, @) on [s, +00). Since '

so=y(s, o)+ X W) T-P) X @, ), ),

8

4o
o=yl a)+ [ X T-P)X@f1(, o), Ddn,
. 8 )
~we have @,—>x, as n—>-+oo. Therefore L is a homeomorphism.

Now we prove LF €Cr. For given « € B, we consider the integration equation:

T () = XOPX )+ | XOPXH)Difa(y(, ), )Y @z

[ X T-P) X @ DSy, ), DT @),

3In a way similar to the prbof in Step 1, we can prove that it has a unique bounded
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solution, denoted as W* (¢, ). Let F be the linear space generated by E¢. Detme
t,b"‘ (¢, ©): Fi—>R
by the diagram : »
| B T+ (¢, 7)
X (s) PX-1(s) i ,
v -,
It is easy to prove such map is unique. Give z € Hf, 2+, and pub

p@) = 190G 2) —y (¢, ) =4t G, ) G-2)|

|lz—a]

R
/W, 3)

Then . - . ‘
() =1 ,,{||X<t>x-1<s>w+ [ XOPX @G ), N

-[Tx@ - w06, B, Ddr— X () X ()
- [ X®PX W fit(s, @), myar ’

8
Foo

+), XOUT-P)X () f1(y (=, 2), v —X @) X7(s) (g —a)

1

-

[ XOPX @AW, @), DI, ) G-o)te

+h

+L X O TP X @Difs(u(5, 0), D (r, a) G-a)inl}-
<l XOPT @ 166, B, 9166, 2, 2
~Difs(s, @), Dp* (5, @) (G-a)1ds]

+HTXOT-P X Lo, B, ) ~fily e, 2, %)
=Dufaly (s, 8), D (s, ©) G- w)]«z»q/}

<—r g1l ('r)d'v‘—l-A '

4
where -

A=K e, B, D)~ faly(, ©), 7
— D1 f1(y (v, @), v) [y (v, ) ~y(z, @)1/ |z2—o|ds.
- Bince for given >0 there is a >0 such that when |z —a] <3,
If1(y(w, 2,)2) = fa(y(w, @), =) — Difi(y(v @), )+ [y (v, ) —y(z, D)1

&0
<z 4<3 |
. o e —o|t=7] 8
Thus : p(t) <Zj e p('v)dz'—l—-z—.
. s
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‘- Putting D=st1;? »(t), one has D<—é— D-]—%— and then D<8 It follows that y(t, x)
is differentiable in @ and Dy (¢, ) =¢* (¢, #). By induction . we can easily prove
y(¢,2) is " in @. Let t=s, one has L} €O". Since L €C" and L is a homeomorphism,
L; is a diffeomorphism and W(0) is a O" submanifold, so is W3 (a).

It is similar for W¢ (wo)
. Step 8. Prove (vi). :
First, we prove W (wo) NWi (o) = {wo} Tt suffices to prove W* )N (0) = {O}
For a solution y (¢, #) of (1), if y(s, @) EW* 0) NW;(0), then |y(t, =)|<a, tER.
Define . i
| D=y 0~ XOPX@faly(, 9), Dds

| +], X T-PY X @Dfay(z, 2), D).
Then ¢ (¢) is a solution of (2), and |¢(£) | <. So 5?5(5) =0. This means that
vt 0 =] XOPX @) faly(r, o), v)dw |

-, XOU-P X @6 9, D
It is easy to prove this 1ntegra1 equation has a unique bounded solution, that is the
trivial solution. Hence y (¢, #)=0, this implies W7 (0) N5 (0) = {0}

By the representations of ¢*(s, 0), ¢~ (s, 0), one has ToLf —'I;dp;, ToL; =idp;. As
F+r@F; =R, W#(0) is transversal to Wi (0) at 0. Therefore Wi (@) MoV (20) .
 Finally, it follows from dim F{=rank P(=, f), dim Fy=rank(l— P (a0, f))
that dim 7, W7 (w) =rank P (a, _f), dim 7, Wy (@) =rank (I — P(xo, f)).

Step 4. Prove (v). '

In order to prove (v), it suffices to prove that W (0) is continuous in s. If W (0)
i not continuous in some point s,, there are an s-neighborhood ¥V, of W (0) and

g(s,,, wn) EW;(O) s Su—>So, such tha't Y (S,,, wn) €V.. Since " y(sm m») " <a, "wﬂ" <'2a?:
we can assume there are points @b, g such that 4,5, y(ss, #»)—>Yo, YoE V. Asin Step
2, one can prove ¢ (¢, @, s.), ¥(t, #,) converge uniformly to ¢o(t %o, S0), Y(£), ¥(s0)
—yo respectely. But

6, )=, 5 5)+[ XOPX Sy, ), i

-[MX@a-PI®hHGE o), 7
Let n—>-+oc0, one has '

¥ =F, 2, ) + [ TOPX@fa), v)dw

= [Txea-» I @HeE, D,
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Since = € closure (H;), yo € closure (W (0) ), this contradlcts YoE EVe. So we. complete
the proof

Proof of Theorem 3.2 Choose a local chart (V 8) around go. Let f, g€ (g 7+l and
be represented under the chart by

=Fa, 1), o/ =g, 1), |a]<ro.
In a way similar to the proof of Lemma 4.1, one can prove that if @y (t) is a solutmn
of g and ¢,(t) EV, tER, (¢, (0), 9) admits an exponential dichotomy iff o -—B(t)m
admits an exponential. dlchotomy, where B(t) Dyg (B,(t), £). So 113 suffices o prove
that, for ¢>0 small enough there is a >0 such that when
| Dilg (=, 8)— F (=, )1[<8, k=0, 1, -, r+1,

o' =g (z, t) has a unique solution $,b(t) satisfying |@,| <s and &' =B(t)x admits an
eXponential dlchotOmy

Denotmg Fla, )= A(t)az+ fi(w £), we choose 0< s<-r° such that when =] <s,

2
|.f1(a, t)ll< 7 1Dufa(20) |<5%

Putting §=-2

e and g (w, t) =A(¢)x+g:(x, £) one has

lox(e, ) | <% 1 Daga(e, <% gl l=] <.

Oonsider the integral equation o
o= XTOPX@9u@®, v
[T XOE-P X @@ @), .

The same argument as in the proof of Theorem 8.1 proves this integral equation has a
unique bounded solution ¢,(¢) and |¢,| <s. Moreover, this solution is also the unique
solution of ' =g (w, £) lying in the region {z| || <&},
Finally, since .
- Dig (s (3), 8) = A(8) +Daga (b (%), ¥),
by [8, Corollary 2.7],4'=B(¢)= admits an exponential dmhotomy and rank P(¢,(0),
. §) =rank P(wo, £, provided that & is small enough.

§5. Problem of Genericity

By Theorem 3.2, we have known that if a crifical point , Iof a time-varying
vector field admits an exponential dichotomy, then there are a neighborhood V of
and a neighberhood % of f such that for every g€ %, g has a unique integral curve ¢,
lying in V. However, is ¢, trivial (that is ¢,(¢) =¢,(0))? And how many time-
varying vector fields satisfying ¢, (#) =¢,(0) are there in #? In this section, we shall
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show that for almost every g€ %, ¢ has no crifical points on V. This case is different
from that of the (autonomous): vector fields. :

Let fE€¥ 741 and @, be a critical point of f. If (w0, f) admlts an exponential
" dichotomy, by_ Theorem 3.2 one can choose a local chart (U, B) around w,, an open
neighborhood ¥’ <¥ U of #, and an open neighborhood % of f such that for every
g € % there is a unique integral curve of g, which lies in V. In this case, we assume
that B(U) ={e € R"||e| <1}=B, BV ={e GR"I le] <r<1} =D,. Denote the set ¥ "= {g
€ %| g has no critical points on V}.

Lemma 5.1. ¥ s an open set of .

Proof For each g€ %, define

8,(z) =sup|g (=, 1) Ilo,

whe

Since g € €4, S, is continuous on M. Recall that g has no critical points on V
and ¥ is compact. Hence there is a >0 such that S,(2) =3, #€V. Thus for hE %,
when ;|h~g||,<£,, §3(2)>8,(®) — | 83(®) —8,(®) | =8 — [h—g| >3 So h has mo
critical points on V.

Lemma 5.2, (Riesz’s Lemma}”’) Let B be @ Banach spac e. If there is a close(ﬂ
ball in E, which is compact, then E is a finite dimension space.

Proof See [12, p. 81].

Lemma 5.8. Let O"**(R, R") be the Banach space of ol the bounded O™ maps
from R to R* in the O"** norm, then C"**(R, R") is an infinite-dimension space.

Pq‘oof For n=1, let &x:. R—>R be the C map satisfying

B AOESS
, Gu(t) =0, tE (=00, k—11 U [h+1, +00).
Then {$k},‘;° 1 8 linearly independent.

Generally, define ¢ (t) = (Fu(8), 0, 0,++,0). {Pp}iny is also ljnearly 1ndependent

Lemma 5.4. If O™ map f: BxR—>R" has only one critical point (Yo 45 @
eritical point of f iff f (yo, t) =0), there are O"** maps Jn: BX R—R" such that ai—F
in O™ gorm as n—>~+oo, and for every y€ Dy, gu(y, t) #0. Moreover, if W is an open. -
set and D, W W CB, g, can be chosen such that 9u(y, t) = f(y, t), yeB-W.

Proof Without any loss of generality, we can assume that 0 is the only - critical
point of f. Deﬁne F: D,—~C"**(R, R") by

F(yt=F(y, t), yED:.
Then F has only one zero pomt y=0, and’ F€0"*!, Now, we shall prove that there
" are P,EO™(R, R"), n=1, 2, -+, such that P, F(D,) and P,—0, n—>+oo. If it is
"ot true, then there is a closed ball O with center O and radius go in O** (R R") such
that F(D,)DC. Since D, is compact and F is continuous, F'(D,) is compact, 8o is o.
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By Riesz's Lemma, C"*(R, R") is finite-dimensional, this contradicts Lemma 5.8.
Hence there exist p,; n=1, 2, ---, such that p,—0, P.EF(D,).

Put %, (y, £) =F(y, t) -—p,,(t) Then A,€0"*! and, for every yE€D,, h.(y, 1) =0.
Thus %, has no critical points on D,. Now, for the open set W D, CWC WCB we
choose O™ function A: B—>[0, 1] such that

AMy) =1, y€D,, ?»(y) 0, yeB w,
~and define -
gn(y, t) ]“ (v, t) ?»(y)pn(t)
Then g, is the desired map. .

Theorem 5.1. ¥ is an open dense subset 0 f Y. \ , :

Proof Let(U, B) be a local ¢hart around a, and fis represented under the ch'u't
by 7 B x B—>R". By Lemma 5.4, there are g,, B—>R" such that g, has no critical points
on D, and f=g, on B-W, Define gt M X R—>TM by

(@, 1) = (TB)(B(2), Gu(B(ar), 1)), wEU
9 (@, ) =F (s, 1), , z€M-U.
Then g,E0"*, g,~>f and g, has no critical poinks on V. .

For any h€ %, if @, is a critical point of & on ¥, then by Theorem 3.2 a, is the
only critical point of 4 on 7. The same argument as above easily proves that there are
ha€ U, hs—>h and h, has no critical points on 7. Hence W is a dense subset of %. By
Lemma 5.1, #”is an open dense subset of %.

Acknowledgments Lam very indebted to Professor Lin Zhensheng for his
guidance.
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