COMPLETE DISTRIBUTIVITY OF AN I-GROUP

Tong Daorong (全道荣)*

Abstract

This paper gives twelve equivalent topological conditions to the complete distributivity of an O(D)-contractible l-group.

§ 1. Introduction

There is a variety of known ways in which an l-group G may be given a topology. For example, we may define a natural, interesting and important order topology on any l-group as follows. Let G be an l-group. A net $\{x_{\alpha} \mid \alpha \in A\}$ of elements in G is O_1 -convergent to x, in symbols O_1 - $\lim_{\alpha \in A}^{(G)} x_{\alpha} = x$, if there exists a net $\{y_{\alpha} \mid \alpha \in A\}$ in G such that $|x_{\alpha} - x| \leq y_{\alpha}$ for all $\alpha \in A$ and $y_{\alpha} \downarrow 0$. O_1 -convergence is also called order convergence in [4] and O-convergence in [5]. A convergence in a set is called σ -convergence, if each subnet of a convergent net is also convergent to the same limit. From a σ -convergence of nets in a set E we can induce a topology, denoted by τ_{σ} . That is, a subset $S \subseteq E$ is τ_{σ} -closed if, whenever a net of elements in S σ -converges, the limit is also in S. The topology induced by O_1 -convergence in an l-group G is called the order topology, denoted by O.

We may also introduce Dedekind topology D. Let P be a partially ordered set and S be a subset of P. S is Dedekind closed if for every subset K of S which is upper directed and has a least upper bound in P, $\bigvee K$ is in S, and dually (see [6]). The reader may verify that the class of all Dedekind closed subsets of P is closed with respect to arbitrary intersection and finite union. By the Dedekind topology of a partially ordered set P, in symbol D, we mean the topology defined by taking all Dedekind subsets as its closed sets (see [7]). In general, this is a different topology from the order topology. However, it is clear that $O \geqslant D$.

In [1] we showed the following results;

Lemma 1. An l-group G is a topological l-group in its order topology O if and only if G is O-contractible.

Lemma 2. An l-group G is a topological l-group in its Dedekind topology D if

Manuscript received September 9, 1985.

^{*} Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, China.

and only if G is D-contractible.

In this paper we mainly show some equivalent topological conditions to the complete distributivity of an O(D)-contractible l-group. For the standard definitions and notations the reader is referred to [1, 2, 3, 8, 9].

§ 2. Complete Distributivity

Now we turn to the complete distributivity of an l-group in view of a topological l-group. An l-group G is completely distributive if

$$\bigwedge_{i \in I} \bigvee_{j \in J} g_{ij} = \bigvee_{j \in J^I} \bigwedge_{i \in I} g_{i f(i)},$$

where $g_{ij} \in G$ and the indicated joins and meets exist. Let G be an l-group with a topology τ . The lattice order in G is lower (resp. upper) semicontinuous provided, whenever $a \leq b$ (resp. $b \leq a$) in G, there exists $U \in \tau a$ such that if $x \in U$ then $x \leq b$ (resp. $b \leq x$), where τa is the neighborhoods filter of a. The lattice order in G is semicontinuous if it is both upper and lower semicontinuous. Clearly, the fact that the lattice order in an l-group G is semicontinuous with respect to a topology τ is equivalent to $i \geq \tau$, where i is the interval topology on G (see [10]).

Let (G, τ) be a topological l-group. If M is a convex l-subgroup of G, then there exists a unique natural way to partially order the right coset G/M of M so that G/M is a lattice and the natural map $\varphi: G \to G/M$ is a lattice homomorphism. If τ_{φ} is the quotient topology generated by φ in G/M, then the quotient space $(G, \tau)/M = (G/M, \tau_{\varphi})$.

Lemma 3. Let (G, τ) be a topological l-group. If M is a convex l-subgroup of G, then the quotient space is a topological lattice.

Proof Suppose M+x, $M+y\in G/M$ with x, $y\in G$. Then $\varphi(x\vee y)=M+x\vee y=(M+x)\vee (M+y)$. Let $\tau_{\varphi}[(M+x)\vee (M+y)]$ be the neighborhoods filter of $(M+x)\vee (M+y)$ with respect to τ_{φ} . Assume $P\in \tau_{\varphi}[(M+x)\vee (M+y)]$. Then there exists a τ_{φ} -open set P' such that

$$P' \subseteq P \text{ and } P' \in \tau_{\varphi}[(M+x) \lor (M+y)].$$

Let $\tau(x \lor y)$ be the neighborhoods filter of $x \lor y$ with respect to τ . Then $\varphi^{-1}(P')$ is τ -open by the definition of quotient topology. Moreover, $x \lor y \in \varphi^{-1}(P')$. Hence $\varphi^{-1}(P') \in \tau(x \lor y)$. Since (G, τ) is a topological lattice, there exist $N_1 \in \tau x$ and $N_2 \in \tau y$ such that

$$N_1 \vee N_2 = \{n_1 \vee n_2 | n_1 \in N_1, n_2 \in N_2\} \subseteq \varphi^{-1}(P'),$$
 (1)

that is $\varphi(N_1 \vee N_2) \subseteq P'$. By [9, 36.10] φ is an open map from (G, τ) onto $(G/M, \tau_{\varphi})$. Hence $\varphi(N_1) \in \tau_{\varphi}(M+x)$ and $\varphi(N_2) \in \tau_{\varphi}(M+y)$ because $M+x \in \varphi(N_1)$ and $M+y \in \varphi(N_2)$, where $\tau_{\varphi}(M+x)$ and $\tau_{\varphi}(M+y)$ are the neighborhoods filters of M+x

and M+y, respectively. Thus, it follows from (1) that $\varphi(N_1) \vee \varphi(N_2) = \varphi(N_1 \vee N_2)$ $\subseteq P' \subseteq P$. Therefore the operation of join in G/M is continuous. Dually we can show that the operation of meet in G/M is also continuous. That is to say, $(G/M, \tau_{\varphi})$ is a topological lattice.

Lemma 4. Let (G, τ) be a topological lattice of T_1 -type. Then the lattice order in G is semicontinuous with respect to τ .

Proof Assume a, $b \in G$ and $a \not \leq b$. Let τa be the neighborhoods filter of a. If for every $U_a \in \tau a$ there exists $x_a \in U_a$ such that $x_a \leqslant b$, then we may regard the index set A of all U_a as an upper directed set, i.e., $\alpha \geqslant \beta$ if and only if $U_a \sqsubseteq U_\beta$. So we get a net $\{x_a \mid \alpha \in A\}$ such that $x_a \leqslant b$ for all $\alpha \in A$. Obviously, τ - $\lim_{\alpha \in A} x_\alpha = a$. On the other hand, τ - $\lim_{\alpha \in A} b = b$ because τ is of T_1 -type. Thus

$$b=\tau-\lim b=\tau-\lim_{\alpha\in A}(x_{\alpha}\vee b)=(\tau-\lim_{\alpha\in A}x_{\alpha})\vee(\tau-\lim b)=a\vee b.$$

Hence $a \leq b$, contrary to the assumption $a \leq b$. Therefore there certainly exists $U \in \tau a$ such that $x \leq b$ when $x \in U$. Dually we can show the upper semicontinuity.

We recall that a subset M of an l-group G is called order closed, if $\{g_{\alpha} | \alpha \in A\} \subseteq M$ and $g = \bigvee_{\alpha \in A} g_{\alpha}$ imply $g \in M$. Now we discuss the question when a convex l-subgroup M of an l-group G is order closed.

Lemma 5. Let M be a convex l-subgroup of an O-contractible (a D-contractible) l-group G. Then the following conditions are equivalent:

- (I) M is order closed.
- (II) M is closed with respect to the order topology O (the Dedekind topology D).
- (III) The quotient topology O_{φ} (D_{φ}) of G/M is of T_1 -type.
- (IV) The lattice order of G/M is semicontinuous with respect to $O_{\varphi}(D_{\varphi})$.
- (V) $O_1-\lim_{\alpha\in A}{}^{(G)}x_\alpha=x$ and $M+x\not\leq M+b$ imply that $M+x_\alpha\not\leq M+b$ holds eventually $(x_\alpha\uparrow x \text{ and } M+x\not\leq M+b \text{ imply that } M+x_\alpha\not\leq M+b \text{ holds eventually}).$

(VI)
$$x = \bigvee_{\alpha \in A} {}^{(G)}x_{\alpha} \text{ implies } M + x = \bigvee_{\alpha \in A} {}^{(G/M)}(M + x_{\alpha}).$$

Proof (I) \Leftrightarrow (II): This follows immediately from the above Lemma 1 and the Proposition 4.6 in [4].

(II) \Leftrightarrow (III): By[9, 36.10], the quotient topology $O_{\varphi}(D_{\varphi})$ of G/M is of T_1 -type if and only if M is O-closed (D-closed).

(III) \Leftrightarrow (IV): Suppose that the quotient topology $O_{\varphi}(D_{\varphi})$ of G/M is of T_1 -type. It follows from Lemma 1 and Lemma 3 that the quotient space $(G/M, O_{\varphi})$ ($(G/M, D_{\varphi})$) is a topological lattice of T_1 -type. And Lemma 4 implies that the lattice order of G/M is semicontinuous with respect to $O_{\varphi}(D_{\varphi})$.

(IV) \Rightarrow (V): Suppose that the lattice order of G/M is semicontinuous with respect to O_{φ} . Assume O_1 - $\lim_{\alpha \in A} (G) x_{\alpha} = x$ and $M + x \leqslant M + b$. Since O_1 -convergence is stronger

than the convergence with respect to the order topology^[111], $O-\lim_{\alpha\in A}{}^{(G)}x_{\alpha}=x$. This implies $O_{\varphi}-\lim_{\alpha\in A}{}^{(G/M)}(M+x_{\alpha})=M+x$. By definition of semicontinuity there exists a neighborhood U of M+x with respect to the topology O_{φ} such that $U\not\leqslant M+b$. Therefore there exists $\alpha_0\in A$ such that $M+x_{\alpha}\not\leqslant M+b$ when $\alpha\geqslant\alpha_0$.

Now suppose that the lattice order of G/M is semicontinuous with respect to D_{φ} . Let $x_{\alpha} \uparrow x(\alpha \in A)$ and $M+x \not \leq M+b$. Let. U be a D-open set containing x. If there exists a subnet $\{x_{\alpha'} | \alpha' \in A'\}$ of $\{x_{\alpha} | \alpha \in A\}$ such that $\{x_{\alpha'} | \alpha' \in A'\} \subseteq G \setminus U$, then $x \in G \setminus U$, since $G \setminus U$ is D-closed and $\{x_{\alpha'} | \alpha' \in A'\}$ is increasing with $x = \bigvee_{\alpha' \in A'} (G) x_{\alpha'}$. This contradicts $x \in U$. This contradiction shows D- $\lim_{\alpha \in A} x_{\alpha} = x$. In addition, by [9, 36.10] φ is a continuous map from (G, D) onto $(G/M, D_{\varphi})$. It follows from this that

$$D-\lim_{\alpha\in A}(M+x_{\alpha})=M+x. \tag{2}$$

By semicontinuity there exists a neighborhood U of M+x with respect to the topology D_{φ} such that $U \leqslant M+b$. The formula (2) implies that there exists $\alpha_0 \in A$ such that $M + x_{\alpha} \leqslant M+b$ when $\alpha \geqslant \alpha_0$.

(V)
$$\Rightarrow$$
(VI): Suppose that (V) holds. If $S = \{x_{\alpha} | \alpha \in A\} \sqsubseteq G \text{ and } x = \bigvee_{\alpha \in A}^{(G)} x_{\alpha}, \text{ put}$
$$S' = \{x_{\alpha_1} \lor \cdots \lor x_{\alpha_k} | x_{\alpha_i} \in S, \ \dot{v} = 1, \cdots, \ k\}.$$

Then S' is upper directed. Since $x = \bigvee_{\alpha \in A} {}^{(G)}x_{\alpha}$, $x' \leq x$ for any $x' \in S'$. On the other hand, if \overline{x} is any upper bound of S', then \overline{x} is also an upper bound of S, and so $x \leq \overline{x}$. Therefore $x = \bigvee^{(G)}S'$. If we regard S' as an increasing net, then

$$O - \lim S' = x$$
.

Since φ is a lattice homomorphism, and so is an order-preserving map, we have $M+x' \leq M+x$ for any $x' \in S'$. Assume $M+x' \leq M+b$ with all $x' \in S'$ and some $b \in G$. By (V) we have $M+x \leq M+b$. Thus $M+x = \bigvee_{x' \in S'} {}^{(G/M)}(M+x')$. In addition, $\{M+x' \mid x' \in S'\}$ is consists of the finite joins of elements in $\{M+x \mid x \in S'\}$. If M+b is an upper bound of $\{M+x \mid x \in S\}$, then M+b is also an upper bound of $\{M+x' \mid x' \in S\}$. But M+x is an upper bound of $\{M+x \mid x \in S\}$. Therefore

$$M+x=\bigvee_{\alpha\in A}{}^{(M/G)}(M+x_{\alpha}).$$

(VI) \Rightarrow (I): Suppose that (VI) holds, that is, the natural map φ from G onto G/M is complete. It follows from Lemma 4.4 in [12] that M is order closed.

Let $\{M_{\delta} | \delta \in \Delta\}$ be the collection of all minimal prime subgroups of an l-group G. Put $D(G) = \bigcap_{\delta \in A} M_{\delta}^*$,

where M_{δ}^* is the order closure of M_{δ} for every $\delta \in \mathcal{A}$, D(G) is called the distributive radical of the l—group G. A family $\{M_{\delta} | \delta \in \mathcal{A}\}$ of subgroups of an l-group G is said to intersect to zero, if $\bigcap_{\delta \in \mathcal{A}} M_{\delta} = \{0\}$. The following lemma is known [10][12, Theorems3, 4, 310.].

Lemma 6. D(G) is the intersection of all order closed prime subgroups of G. Equivalently D(G) is the intersection of all order closed regular subgroups of G. G is completely distributive if and only if $D(G) = \{0\}$.

From Lemma 5 and Lemma 6 we obtain the following theorem.

Theorem. Let G be an O-contractible (D-contractible) l-group. Then the following conditions are equivalent:

- (1) G is completely distributive.
- (2) There exists a family $\{M_{\delta} | \delta \in \Delta\}$ of order closed prime (or regular) subgroups that intersects to zero.
- (3) There exists a family $\{M_{\delta} | \delta \in \Delta\}$ of O-closed (D-closed) prime (or regular) subgroups that intersects to zero.
- (4) There exists a family $\{M_{\delta} | \delta \in \}$ of prime (or regular) subgroups that intersects to zero and the quotient topology $O_{\varphi_{\delta}}(D_{\varphi_{\delta}})$ of G/M_{δ} is of T_1 -type for every $\delta \in A$.
- (5) There exists a family $\{M_{\delta} | \delta \in \Delta\}$ of prime (or regular) subgroups that intersects to zero and the lattice order of G/M_{δ} is semicontinuous with respect to $O_{\varphi_{\delta}}(D_{\varphi_{\delta}})$ for every $\delta \in \Delta$.
- (6) There exists a family $\{M_{\delta} | \delta \in \Delta\}$ of prime (or regular) subgroups that intersects to zero, moreover $O-\lim_{\alpha \in A} (x_{\alpha} = x \text{ and } M_{\delta} + x \not\leq M_{\delta} + b \text{ imply that } M + x_{\alpha} \not\leq M + b \text{ holds eventually for every } \delta \in \Delta \ (x_{\alpha} \uparrow x \text{ and } M_{\delta} + x \not\leq M_{\delta} + b \text{ imply that } M_{\delta} + x_{\alpha} \not\leq M_{\delta} + b \text{ holds eventually for every } \delta \in \Delta$.
- (7) There exists a family $\{M_{\delta} | \delta \in \Delta\}$ of prime (or regular) subgroups that intersects to zero and $x = \bigvee_{\alpha \in A} {}^{(G)}x_{\alpha}$ implies $M_{\delta} + x = \bigvee_{\alpha \in A} {}^{(G/M^{\delta})}(M_{\delta} + x_{\alpha})$ for every $\delta \in \Delta$.

References

- [1] Tong Daorong, The intrinsic topologies of an lattice group, J. of University of Science and Technology of China (Supplement), (1982), 1—9, (in Chinese).
- [2] Tong Daorong, Topological completion of a commutative l-group, Acta Math. Sinica, 29 (1986), 249—252 (in Chinese).
- [3] Tong Daorong, The structure theorem of complete l-group, J. of Shandong Normal University, 2(1985), 6—13 (in Chinese).
- Ball R. N., Convergence and Cauchy structure on lattice ordered groups, Trans. Amer. Math. Soc., 259 (1980), 357—392.
- Papangelou, F., Order convergence and topological completion of commutative lattice groups, Math. Ann., 155, (1964) 81—107.
- [6] Mcshane, E. J., Order-preserving maps and integration processes, Princeton Dniversity Press, 1953.
- [7] Wolk, E. S., Order-compatible topologies on a poset, Proc. Amer. Math. Soc., 9 (1958), 524-529.
- [8] Birkhoff G., Lattice Theroy, 3rd ed. New York, 1967.
- [9] Kowalsky, H. J, Topological Space, Academic Press, New York and London, 1964.
- [10] Ward, L. E., Partially ordered topological space, Proc Amer. Math. Soc., 5 (1954), 144-161.
- [11] Rennie, B. C., Lattices, Proc. London Math. Soc., 52 (1951), 386-400.
- [12] Byrd, R. D., Complete distributivity in lattice ordered groups, Pacific J. Math., 20 (1967), 423-432.