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ON ROTATED VECTOR FIELDS IN
HIGHER-DIMENSIONAL SPACES

CHEN YIYUAN (fk—7)*

Abstract

- In. this paper, the author introduces the concept of rotated vector fields in higher—
dimensional spaces and proves some theorems which are similar to those in;theory of rotated

vector fields in plane.
Besides, some applications are given.

§1. Definition and Basic Properties

The theory of rotated vector fields in plane has many important applications im
the planar qualitative theory™., We now give a definition of rotated vector field in
higher—dimensional spaces. ‘ -

Let vector field X (w, ) =é1 Xi(z, ) 539;_ be continuous on R"x [0, T], where
= ] .

o= (21, T3, ***, T,) ER*, pis a parameter. X (», w) is uniformly Lipséhitz continuous.
with respect to # in any bounded region Dc R, and has continuous partial derivative,

3—8— X (2, w), the singular points of X (=, w) are isolated.
w

Definition 1. If the singular points of X(w, u) are fived for uc [0, 71, there
exisis a continmous differential 1-form o (X ) dependent on X such that

D o(-X)=-w(X);

(2) (X (2, )X (2, u)=0;

(8) For the regular point » of X (w, u) and we o, 1],

(X (@, 1)) (5 X (@, w))>0;

(4) For the regular point « of X (z, 1) and w€ 0,71
o(X (2, 0)) X (2, u)+0, .
(5) Let K (w, r) be a filld of hyperplanes defined by (X (z, w))=0 for the
regular point @ of X (x, w), A(z) = [DT ] K (2, u) is a vector space of dimension

(n—2), and X(w: l") ¢A(w)'
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The vector field X (#, w) is called a rotated vector field in R with respect to
jparameter we o, T]. :

‘We can consider a region DCR" and give a definition of rotated vector field on D.

For n=2, the above definition coincides with the definition of rotated vector field
in plane. Let X (z, w) = (P (&, ), Q(x, w)) be a vector ‘field in plane and o(X)=
—Q(x, w) d¢1+P(w, w)dazs. Conditions (1), (2), (5) of Definition 1 are satisfied, and
conditions (3), (4) mean that o

P Q
oP 9@ |>
ow w

and (P (=, 0), Q(z, 0)),(P(z, w), Q(w, w)) are not on the game lme for y,E (o, 11.
Hence X (w, ) is a rotated field in plane if it satisfies the conditions of Deﬁmtlon 1.

In view of X (z ,u) € K (@, ), we have the followmg theorem.

Theorem 1. ILet X(w, u) be a rotated vector field in R". Then the (n— 1)—
.dimensional integral surfaces of the ﬁeld of hyperplanes K (w, ) are the invariant
-manifolds of X (w, w). '

Theorem 2. Let X (w, w) be a rotated wector field in B". (n—1)-dimensinal
integral surface O of K (&, o) does mot meet another (n—1)-dimensional integral
surface of K (&, wo) and splits B" into two parts. Then o P(P*, P™) stable trajectory
of X (&, p), w# po, different from a singular point, can not meet C.

Proof Let integral surface U satisfying the conditions of Theorem 2 split R" into
parts I and II, €0 the regular point of X (z, w). K (=, Mo) sphts T,R* into two
parts I’ and II’, the vectors in I'(II") point to I(II) o(X (v, o)) takes different
signs, say, positive (negatlve) in I’(II"). From conditions (3), (4) of Definition 1, we
know that X (&, w) points to I(II) for u> wo(w< o). It is-true for any regular point
- w€C, because K (@, o) is continuous and C does not meet another (n—1)-dimensional

integral surface of K (x, wo). Hence any trajectory of X (w, wm), w# tho, can not
intersect O twice, and in view of the conditions (3), (4) of Definition 1, X (o, w) €T.0
for w+ wo. This means that a P(P"' P~) stable tragectory of X (x, w), o, can nob
meet O.

Corollary. Let X (w, ) be a rotated vector field, and the field of hyperplanes
K (@, wo) completely integrable. Let all (n—1)-dimensional integral swrfaces of K(=,
p,o) not meet each other in D and each (n—1)-dimensional integral surface splits D
4nto two parts. Then X (w, W), W o, has no P(P*, P~) stable trajectory which is not
@ singular point in D.

§ 2. Examples

We now give two examples about the rotated vector ‘fields in R® and apply the
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conclusion of § 1 to prove these fields have no P(P*, P ) stable traJectory dlﬁ'ererd;:
from singular point. . :

- In order to prove a given vector field X (@, w) to be a rotated vector field, we-
must find a suitable continuous differential 1-form o(X). We give several useful.
differential 1-forms in R®, which can be generallzed to hlgher—dlmensmna.l spaces.

Let X (o, p)= 2 X; (a: ,w)— satisfy the assumption before Definition 1.

1. co(X )= (sz 2— a1 X 3) dxi—i— (@3 X 53— @2 X 1) dwa+ (1. X 4 — @ X 2) dw3, where @y,
@3, a3 are O functions of ®= (@4, @, 25). This form satisfies the conditions (1), (2) of’
Deﬁmtlsn 1. Obviously, vector (as(®), wi(w), asx(z)) €EA(x). If (as (m) a1 (z), ag(zv))
# (0, 0, 0), and (as(z), wl(w), a@a(2)) is not parallel to X (=, w) atthe regular points-
of X (#, u), then condition (5) is satisfied. We can g1ve an analogous 1-form in other-
odd-dimensional spaces R*, n>8.

Ezample 1, Consider system

Lo —u(@) +pd(a),
-@”—%mﬁ(w), ~ @

25 ~ 1 (@) +u(@)).

where u, ¢, i are O functlons and >0, 4 € (— o0, +o0),
In the above form we take @y =a@s= az=1,
o(X)= — pude; + (,ml!-i—,u,u u— ) dwg+ (— pP+ut ) das.
Obviously, conditions (1) , (2), (5) of Definition 1 are satisfied. On the 'other hand,
we have

2 \\_ .2
(X (& 1) (5 X @y ) =u>0,
(X (2, 0)) (X (2, p)) = (—wdwat+udes) X (z, 1)
=uu?+0, if u+#0.
Hence system (1) is a rotated vector field.

We have w(X (z,0)) = —udm2+udw3, the ﬁeld of hyperplanes K (z, O) is com~
pletely integrable, and integral surfaces are wy— w5 =const. which satisfy the conditiong
of the corollary to Theorem 2, so system (1) has no P (P* P~) stable trajectory.

2. 0(X)=(—a:X3— a2 X3)dws+ a1 X 1022+ a3 X 1d X 3, where @y, @y are O* functions
of o= (24, @5, 5). This form is a special case of the form in 1, but it can be generalized.

10 arbitrary higher-dimensional spaces.
Ezample 2.- Consider system
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by _ (wa+w5) B4+ vy,

@t =
,1251;2 (‘vz-l-ws) w1+ (wa+2g) 3+ D (2), : (@)
925 — s - &),

where @ () is O* function, u€ (—oo0, +00).
Taking o (X) = — (X o+ Xs)dw, + Xsdwa+ X dws, we have
(X (@, 1)) (5 X (2, w)) == [(aatao) *+o1+1] (eato)ad,
(X (2, 0)) X (2, 1) = — u[(2a+2)*+23 +1] (wa-+as) k.
Planes 2, =0 and #,+2;=0 divide R* into four regions where (0, 1, —1) € 4(x)
is not parallel to X (z, w), so system (2) is a rotated vector field in: the four regions. .
The field of hyperplanes K (x, 0) defined by ‘

(X (, 0)) = — oy (@a+23) [ (@a+2) 2+ 03] dwy — 4 (@a+5) (dwg+dws) =0
is completely integrable (in the four regions), but we can not obtain its first 1ntegral

from
Gm (@a+m5)*—ai, '
owy ~
o ®
g — _1‘ .
8932
Let a9+ 23>y, 011, a—>@a. (8) becomes
c
awyi =Y 2— mg}
e @)
Y_—o.
341:2

Analysmg the intersections of the integral surfaces of (8") with x.y—plane and
osy-plane, we know that the integral surfaces in the four regions satisfy the conditions
of the corollary to Theorem 2. Hence system (2) has no P(P*, P7) sta,ble tra]ectory
in the four regions for w+0.

Plane 24=0 is an invariant manifold of system (2) and there is no P(P*, P7)
stable trajectory different from singular point in the plane. A trajectory of system (2)-
intersects half plane #y+x3=0, 2,>>0(or my+25=0, 23<<0) at one point at most. There-
fore system (2) has no P(P*, P~) stable trajectory different from singular pomt for:
p 0. The conclution is also true for w=0, but we do not prove it.

§3. Limit Surfaces

Definition 2. If B isan (n—1)-dimensional closed invariant manifold of vector
field X (%), which does wot meet other (n—1)-dimensional invariant manifold in its
. ewterior (interior) neighbourhood and the singular points on which are isolaied, and for
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each point xo € B, there is a trajectory ¢(p, ) in the exterior (interior) neighbourhood
of B such that xo € 2,C B and $(p, t) is .unifoa"mly asymptotic to .Q;,(cf [2], Ohapter
5, § 9, Definition 2)then B is called an exterior (fmtemor) ung formly stable limit surface
of X ().

Similarly, we can give a definition of exterior (inferior) uniformly unstable

~ limit surface. SRR

For abbreviation, we call the surface given by the above definition limit surface.

Theorem 3. 1f X (», u) is a rotated vector field and closed mtegml surface
B(w:) of K (, w;) s the limit surface of X (x, i), 4=1, 2, then B(u1) NB(ws) s
composed of the singular points of X (@, w). ‘

Proof Suppose that B(uy) is an exterior uniformly stable limit surface of X (w,
1) and L=B(u1) N B(uwa). If a €L is ‘a regular point of X (#, u), which is also a
regular point of X (z, w,) (Notice that the singular points of X (x, w) are in'dep'éndent
of ), there is a trajectory ¢ (p, t) in the exterior neighbourhood of B such thata €Q,
<B(u1) and ¢(p, ) is uniformly asymptotic to Q,CB(ws). From [2] (Chapter 5,
§ 9, Theorem 40), we know that @, is the minimal set which is compact. Hence the
trajectory I' of X (z, wy) passing @ is P stable([2], Chapter B, § 7, Theorem 27) and
can not meet B(us) (Theorem 2). But this is contrary to the hypothesis « € B(u1) N
B(us). So Theorem 8 is proved.

From the above proof, we can come to the following conclusion.

- Corollary. If X (w, u) isarotated vector field in DR, all (n—1)-dimensional

closed integral surfaces of K (x, uo) do not mect each other and ﬁll D. Then X (z, w),
M7 o, has not any limit sur face.

§ 4. Absence of Limit Surfaces

Tt is difficult to prove a vector field X (#) in R*(n>2) has no limit surfaces. But
woe can use the following theorem to assert that some rotated vector fields have no limit
surfaces with property in Theorem 8. '

~ Theorem 4. Lei K(x) be a O* field of hypefiplanes dé fined in 'a-sq}mple connected
region DCR*. There ewist a O* function B(x) and a C* differential (n—1)—form Q in
D, such that

@) QUu(®), la(@)+, l,_1(2)) =0 for sED and l;(s) €K (x), 4=1, 2, -, n—1;

(ii) Let d(B(2)Q) =W (@)dwy Adza A-++ Ad,. W (x) - does not change its sign in D
and the set{w| W (x) =0, # € D} contains no n—dimensional region. Then K (@) has no
(n—1)-dimensional closed integral surface in D.

Proof Suppose that S is an(n—1)-dimensional closed integral surface in D, and
region V' D has boundary S§. We have (stokes formula)
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[(2@o=[ iB@a =[ W@andshNim @

Condition (i) means that LB(w)Q=O. But condition (ii) means that LW(w)da;i/\

dwy A\ -+ Ndw,#0. This is contrary to (4). The conclusion is reached.

This theorem is a ‘generalization ‘of Dulac’s theorem in plane™. Let n=2. A
closed trajectory of X (z) = (X41(2), X2 (a;)) is a closed integral curve of K (#), where
K (z) is defined by ‘

Q=— X () dws+ X1(x)dwa=0.

So we have d(BQ)= ( 6]; X aBX” )daa Ndza, W (z) = anXi + agf” We obtain
2

Dulac’s theorem from Theorem 4

Theorem 5. Let X (z, p)= ZX i (o, /.o)— be a O* rotated wector field in R3,

where :
o(X (z, ) = (@ X3~ 31 Xs) s+ (a3 X s~ @y X 1)dws+ (@1 X1~ asX 2)dws,
ay, as, as, are O functions of ., Thefre evists @ O* function B(x) in R, such that

W= 2 agf* does not change its sign and the set {z| W (x) =0, € R%} contains no 8—
=1 5

dimensional region. Then X (w, w) has no limit surface consisting of 2-dimensional
integral swrfaces of K(x, ).

Proof Let Q=X sdwy Ndwa+ X 1da \dwg+ X adws \de,. From § 2, we know tha.t
X (v, w) and (as(2), a1(2), aa(x)) span K (z, ). Itis easy to check that Q (X (@, w),
(as(@), a1(®), az(x))) =0. So Q satisfies the condition (i) of Theorem 4. From the

6BX f

condition (11) of Theorem 4 and d(BQ) = Z we obtain Theorem 5.
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