A CHARACTERIZATION OF SUBMETACOMPACTNESS

ayan soʻrla ahbu

JIANG JIGUANG (蔣继光)*

Abstract

The following results are obtained:

- 1. A space is submetacompact iff it is almost discretely θ -expandable and strictly quasi-paracompact.
 - 2. A space is paracompact iff it is θ -expandable and strictly quasi-paracompact.

§ 1. Introduction

In order to generalize the classes of metacompact spaces and subparacompact spaces simultaneously, Liu Yingming introduced strictly quasi-paracompact spaces^[6]. In 1984, Zhu Jun ^[11] and Long Bing ^[7] proved independently that every submetacompact space is strictly quasi-paracompact but not conversely.

In this paper, we give a necessary and sufficient condition for a strictly quasiparacompact space to be submetacompact. We also characterize paracompactness by conditions which are similar to that of the definition of submetacompactness.

Our terminology follows that of [3]; we do not, however, require paracompact or metacompact spaces to satisfy any separation axioms. Let \mathscr{U} be a family of subsets of X. For each $A \subset X$, the family $\{U \cap A \colon U \in \mathscr{U}\}$ is denoted by $\mathscr{U} \mid A$. The letter N denotes the set of positive integers. If $n \in N$ and $(n_1, \dots, n_k) \in N^k$ for some $k \in N$, then $(n_1, \dots, n_k) \oplus n$ denotes the element (n_1, \dots, n_k, n) of the set N^{k+1} .

Definition 1.1. Clot A space X is submetacompact (= θ -refinable) iff every open cover of X has a refinement $\bigcup_{i=1}^{n} \mathcal{G}_{i}$ satisfying (a) each \mathcal{G}_{i} is an open cover of X, and (b) for each $x \in X$, there exists $n \in N$ such that \mathcal{G}_{n} is point finite at x.

Definition 1.2. [6] A space X is strictly quasi-paracompact iff every open cover of X has a refinement $\bigcup_{i=1}^{n} \mathscr{F}_i$ such that \mathscr{F}_1 is a discrete family of closed subsets of X and $\mathscr{F}_n|(X\setminus\bigcup_{i=1}^{n-1}(\cup\mathscr{F}_i))$ is a discrete family of closed subsets of subspace $X\setminus\bigcup_{i=1}^{n-1}(\cup\mathscr{F}_i)$

Manuscript received July 8, 1985.

^{*} Institute of Mathematics, Sichuan University, Chengdu, Sichuan, China.

 $(\bigcup \mathcal{F}_i)$ for each $n \ge 2$.

Remark 1.3. Let $\bigcup_{i=1}^n \mathscr{F}_i$ be a cover of X satisfying the conditions in Definition 1.2. It is easy to show by induction that $\bigcup_{i=1}^n (\bigcup \mathscr{F}_i)$ is a closed subset of X for each $n \in \mathbb{N}$.

Recall that an expansion of a family $\mathscr F$ of subsets of X is a family $\{G(F)\colon F\in\mathscr F\}$ of subsets of X such that $F\subset G(F)$ for each $F\in\mathscr F$.

Definition 1.4.^[8] A space X is θ -expandable (almost discretely θ -expandable) iff every locally finite (discrete) family \mathcal{F} of closed subsets of X has a sequence $\langle \mathcal{V}_n = \{V_n(F): F \in \mathcal{F}\}\rangle_{n=1}^{\infty}$ of open expansions such that for each $x \in X$ there exists $n \in N$ such that \mathcal{V}_n is locally (point) finite at x.

The following results will be used in the proof of our theorems.

Theorem 1.5.^[11,7] Every submetacompact space is strictly quasi-paracompact but not conversely.

Theorem 1.6. $^{[2]}$ A space X is subparacompact iff it is collectionwise subnormal and submetacompact.

Theorem 1.7.[1] (i) A space is metacompact iff it is almost discretely expandable and submetacompact.

(ii) A Hausdorff space is paracompact iff it is collec-tionwise normal and submetacompact.

Theorem 1.8. [4] A space is paracompact iff it is θ -expandable and submetacompact.

§ 2. Characterizations

Theorem 2.1. A space is submetacompact iff it is almost discretely θ -expandable and strictly quasi-paracompact.

Proof Necessity follows from Theorem 1.5 and the fact that every submetacompact space is almost θ -expandable (see [5, Theorem 1.5]). To prove sufficiency, let \mathscr{W}^i be any open cover of an almost discretely θ -expandable and strictly quasi-paracompact space X. Let $\bigcup_{i=1}^{\infty} \mathscr{F}_i$ be a refinement of \mathscr{W} satisfying the conditions of Definition 1.2. Let $\mathscr{F}_i = \{F(i, s) : s \in S_i\}$ for each $i \in N$. For each $i \in N$ and each $s \in S_i$, there exists $W(i, s) \in \mathscr{W}$ such that $F(i, s) \subset W(i, s)$. By induction, for each $t \in \bigcup_{i=1}^{\infty} N^i$, we can find a family $\mathscr{V}(t)$ of subsets of X such that:

- (a) $\mathscr{V}(t) = \{V(t, s) : s \in S_n\}$ is a family of open subsets of X for each $n \in \mathbb{N}$ and each $t \in \mathbb{N}^n$;
 - (b) $\mathscr{V}(t)$ is a partial refinement of \mathscr{W} for each $t \in \overset{\circ}{\bigcup} N^t$;

set

- (c) $\bigcup_{i=1}^{n} (\bigcup \mathscr{F}_i) \subset \bigcup_{i=1}^{u} (\bigcup \mathscr{V}(t_1, \dots, t_i))$ for each $n \in \mathbb{N}$ and each $t = (t, \dots, t_n) \in \mathbb{N}^n$;
 - (d) $(\bigcup \mathscr{V}(t)) \cap \bigcup_{i=1}^{n-1} (\bigcup \mathscr{F}_i) = \emptyset$ for each $n \ge 2$ and each $t \in N^n$;
- (e) For each $x \in X$, each $n \ge 2$ and each $t \in N^{n-1}$, there exists $t_n(x) \in N$ such that $\mathscr{V}(t \oplus t_n(x))$ is point finite at x.

Now we prove this fact. Since \mathscr{F}_i is a discrete family of closed subsets of X and X is almost discretely θ -expandable, there exists a sequence $\langle \mathscr{V}(t_1) \rangle_{t_1=1}^{\infty}$ of open expansion of \mathscr{F}_i such that for each $x \in X$, there exists $t_1(x) \in N$ such that $\mathscr{V}(t_1(x))$ is point finite at x. We may suppose that $\mathscr{V}(t_1)$ is a partial refinement of \mathscr{W} for each $t_1 \in N$. Let $n \in N$ and assume that we have defined the family $\mathscr{V}(t)$ for each $t \in \bigcup_{i=1}^{n} N^i$ such that the conditions (a)—(e) are satisfied. By the induction hypothesis, we have

$$\bigcup_{i=1}^{n} (\bigcup \mathscr{F}_{i}) \subset \bigcup_{i=1}^{n} (\bigcup \mathscr{V}(t_{1}, \, \cdots, \, t_{i})) \text{ for each } t = (t_{1}, \, \cdots, \, t_{n}) \in \mathbb{N}^{n}. \tag{1}$$
It follows from Definition 1.2 that $\mathscr{F}'_{n+1} = \mathscr{F}_{n+1} | \left(X \setminus \bigcup_{i=1}^{n} \bigcup \mathscr{V}(t_{1}, \, \cdots, \, t_{i}) \right) \text{ is a}$
discrete family of closed subsets in the closed subspace $X \setminus \bigcup_{i=1}^{n} (\bigcup \mathscr{V}(t_{1}, \, \cdots, \, t_{i}))$. Since \mathscr{F}'_{n+1} is a discrete family of closed subsets of X , there exists a sequence $\langle \mathscr{D}(t \oplus t_{n+1}) \rangle = \{D(t \oplus t_{n+1}, \, s) : s \in S_{n+1}\} \rangle_{t_{n+1}=1}^{\infty}$ of open expansion of \mathscr{F}'_{n+1} such that for each $x \in X$ there exists $t_{n+1}(x) \in \mathbb{N}$ such that $\mathscr{D}(t \oplus t_{n+1}(x))$ is point finite at x . For each $s \in S_{n+1}$,

$$V(t \oplus t_{n+1}, s) = D(t \oplus t_{n+1}, s) \cap W(n+1, s) \cap \left(X \setminus \bigcup_{i=1}^{n} (\bigcup \mathscr{F}_{i})\right).$$

By Remark 1.3, $V(t \oplus t_{n+1}, s)$ is an open set for each $s \in S_{n+1}$. Then $\mathcal{V}(t \oplus t_{n+1}) = \{V(t \oplus t_{n+1}, s) : s \in S_{n+1}\}$ is an open expansion of \mathcal{F}'_{n+1} for each $t_{n+1} \in N$ and

$$(\bigcup \mathscr{V}(t \oplus t_{n+1})) \cap \bigcup_{i=1}^{n} (\bigcup \mathscr{F}_{i}) = \varnothing.$$

Thus the collection $\left\{ \mathscr{V}(t) : t \in \bigcup_{i=1}^{n+1} N^i \right\}$ meets the conditions (a), (b), (d), (e). To see (c), by (1) and

$$F(n+1, s) \setminus \bigcup_{i=1}^{n} \bigcup \mathscr{V}(t_{1}, \cdots, t_{i}) \subset V(t \oplus t_{n+1}, s)$$

for each $t_{n+1} \in N$ and each $s \in S_{n+1}$ we have

$$\bigcup_{i=1}^{n+1} (\bigcup \mathscr{F}_i) \subset \left(\bigcup_{i=1}^n \bigcup \mathscr{V}(t_1, \, \cdots, \, t_i)\right) \cup \left(\bigcup \mathscr{F}_{n+1} \setminus \bigcup_{i=1}^n \bigcup \mathscr{V}(t_1, \, \cdots, \, t_i)\right) \\
\subset \left(\bigcup_{i=1}^n \bigcup \mathscr{V}(t_1, \, \cdots, \, t_i)\right) \cup \bigcup \mathscr{V}(t \oplus t_{n+1}) \\
= \bigcup_{i=1}^{n+1} \bigcup \mathscr{V}(t_1, \, \cdots, \, t_i).$$

We have now defined the family $\mathscr{V}(t)$, $t \in \bigcup_{i=1}^{\infty} N^i$. By (a) and (e), $\mathscr{H}(t) = \bigcup_{n=1}^{\infty} \mathscr{V}(t_1, \dots, t_n)$ is an open refinement of \mathscr{W} for each $t = (t_1, t_2, \dots) \in N^N$. For each i, $n \in N$, set

$$T_{in} = \{t \in N^N : t_k = i \text{ for each } k > n\}.$$

Then $T = \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} T_{in}$ is countable and $\{\mathscr{H}(t) : t \in T\}$ is a countable family of open refinements of \mathscr{W} . For each $x \in X$, there exists $n \in N$ such that $x \in \bigcup \mathscr{F}_n$. By (e), there exists $(t_1(x), \dots, t_n(x)) \in N^n$ such that $\mathscr{V}(t_1(x), \dots, t_n(x))$ is point finite at x. Let $t_k(x) = t_n(x)$ for each k > n. Then $t(x) = \langle t_1(x), \dots, t_n(x), t_{n+1}(x), \dots \rangle \in T$. By (d), $x \notin \bigcup \mathscr{V}(t_1(x), \dots, t_{m+1}(x))$ for each $m \ge n$. Therefore, $\mathscr{H}(t(x))$ is point finite at x. Thus X is submetacompact.

Definition 2.2.^[2] A space X is collectionwise subnormal iff for each discrete collection \mathcal{F} of closed subsets of X, there exists a countable family $\langle \mathcal{V}_n \rangle_{n=1}^{\infty}$ of open expansions of \mathcal{F} such that $X = \bigcup_{n=1}^{\infty} E_n$, where E_n is the set of all $x \in X$ that are not contained in two different elements of \mathcal{V}_n .

Every collectionwise subnormal space is evidently almost discretely θ -expandable. By Theorem 1.6, we have the following corollary to Theorem 2.1.

Corollary 2.3. A space is subparacompact iff it is collectionwise subnormal and strictly quasi-paracompact.

By Theorem 1.7, we also have the following corollaries.

Corollary 2.4. [6] A Hausdorff space is paracompact iff it is collectionwise normal and strictly quasi-paracompact.

Corollary 2.5. [7,11] A space X is metacompact iff it is almost discretely expandable and strictly quasi-paracompact.

Recall that a cover \mathscr{U} of X is semiopen if $x \in IntSt(x, \mathscr{U})$ for each $x \in X$.

Theorem 2.6. The following are equivalent for a space X:

- (i) X is paracompact;
- (ii) X is strictly quasi-paracompact and every open cover of X has a refinement $\bigcup_{i=1}^n \mathscr{G}_i$ satisfying
 - (a) each \mathcal{G}_i is a semi-open cover of X, and
 - (b) for each $x \in X$, there exists $n \in N$ such that \mathcal{G}_n is locally finite at x;
 - (iii) X is strictly quasi-paracompact and θ -expandable.

Proof Clearly (i) \Rightarrow (ii). (iii) \Rightarrow (i) follows from Theorems 1.8 and 2.1. To prove (ii) \Rightarrow (iii), let $\mathscr F$ be a locally finite family of closed subsets of X. Set

 $S = \{ \mathcal{B} : \mathcal{B} \text{ is a finite subfamily of } \mathcal{F} \}.$

For each $\mathscr{B} \in S$, set $V(\mathscr{B}) = X \setminus \bigcup (\mathscr{F} \setminus \mathscr{B})$. Then $\mathscr{V} = \{V(\mathscr{B}) : \mathscr{B} \in S\}$ is an open

cover of X such that each element of $\mathscr V$ intersects [only finitely many elements of $\mathscr F$. By hypothesis (ii), there exists a refinement $\bigcup_{i=1}^{\infty} \mathscr G_i$ of $\mathscr V$ satisfying the conditions of (ii). For each $F \in \mathscr F$ and each $i \in \mathbb N$, set

$$H(F, i) = \operatorname{Int} St(F, \mathcal{G}_i),$$

 $\mathcal{H}_i = \{H(F, i) \colon F \in \mathcal{F}\}.$

It is easy to prove that $\langle \mathcal{H}_i \rangle_{i=1}^{\infty}$ is a sequence of open expansion of \mathcal{F} such that for each $x \in X$, there exists $n \in \mathbb{N}$ such that \mathcal{H}_n is locally finite at x. Thus X is θ -expandable.

Corollary 2.7. A space X is paracompact iff every open cover of X has a refinement $\bigcup_{i=1}^{\infty} \mathscr{G}_i$ such that

- (a) each \mathcal{G}_i is an open cover of X, and
- (b) for each $x \in X$, there exists $n \in N$ such that \mathscr{G}_n is locally finite at x.

References

- [1] Boone, J. R., A characterization of metacompactness in the class of θ-refinable spaces, Gen. Topology and Appl., 3 (1973), 253—264.
- [2] Chaber, J., On subparacompact and related properties, Gen. Topology and Appl., 10 (1979), 13-17.
- [3] Engelking, R., General Topology (PWN, Warszawa, 1977).
- [4] Junnila, H. J. K., On submetacompactness, Topology Proc., 3 (1978), 375-405.
- [5] Katuta, Y., Expandability and its generalizations, Fund. Math., 87 (1975), 231-250.
- [6] Liu Yingming, A class of topological spaces which containing the classes of weakly paracompact spaces and subparacompact spaces, Acta Mathematica Sinica, 3 (1977), 212-214.
- [7] Long Bing, On several covering properties and separation properties (to appear).
- [8] Smith, J. C., On θ -expandable spaces, Glasnik Mat., 11 (1976), 335–346.
- [9] Smith, J. C. and Krajewski, L. L., Expandability and collectionwise normality, Trans Amer. Math. Soc., 160 (1971), 437—451.
- [10] Worrell, J. M., Jr. and Wicke, H. H., Characterizations of developable topological spaces, Canad. J. Math., 17 (1965), 820—830.
- [11] Zhu Jun, Some properties of quasi-paracompact and strictly quasi-paracompact spaces, Journal of Mathematical Research and Exposition, 1 (1984), 9—13.