## A SORT OF POLYNOMIAL IDENTITIES OF $M_n(F)$ WITH CHAR $F \neq 0$

CHANG QING (常 青)\*

## Abstract

Let F denote a field, finite or infinite, with characteristic  $p \neq 0$ . In this paper, the author obtains the following result: The symmetric polynomial on t letters

$$S_{ ext{sym}(t)}(x_1, x_2, \dots, x_t) = \sum_{\pi \in ext{sym}(t)} X_{\pi 1} X_{\pi 2} \dots X_{\pi t}$$

is a polynomial identity of  $M_n(F)$  when  $t \ge pn$ , and this is sharp in the sense that if  $t \le pn-1$ , it is not a polynomial identity of  $M_n(F)$ .

All terminologies used in this paper are agreeable to those in [1, 2, 3]. F is a field of characteristic  $p \neq 0$ , sym (m) is the symmetric group on m symbols which is the group of permutations of  $(1, 2, \dots, m)$ .

The standard polynomial of degree t is

$$S_t(X_1, X_2, \dots, X_t) = \sum_{\pi \in \text{sym}(t)} (\text{sg }\pi) X_{\pi 1} X_{\pi 2} \dots X_{\pi t}.$$
 (1)

The symmetric polynomial on t letters is

$$S_{\text{sym}(t)}(X_1, X_2, \dots, X_t) = \sum_{\pi \in \text{sym}(t)} X_{\pi 1} X_{\pi 2} \dots X_{\pi t}.$$
 (2)

Obviously, the symmetric polynomial of any degree is not a polynomial identity of  $M_n(Z)$ . In this paper we seek the symmetric polynomials which are polynomial identities of  $M_n(F)$ .

Lemma 1. Let

$$e_{i_1j_1}, e_{i_2j_2}, \cdots, e_{i_tf_t}$$
 (3)

be t matrix units of  $M_n(F)$ , and assume  $e_{i_1i_1}$ ,  $e_{i_2i_2}$   $\cdots$   $e_{i_ki_k}$  are all distinct matrix units contained in (3) with  $e_{i_2i_2}$  occurring  $m_x$  times in (3),  $x=1, 2, \dots, k$ . Then

$$S_{\operatorname{sym}(t)}(e_{i_1j_1}, e_{i_2j_2}, \cdots, e_{i_rj_r}) = \left(\prod_{x=1}^k m_x!\right) A, \tag{4}$$

for some suitable  $A \in M_n(F)$ .

Proof Let  $X_d = e_{i_d j_d}$  in (2) for  $d = 1, 2, \dots, t$ . Since  $e_{i_1 j_1}$  occurs  $m_1$  times in (3), we may assume  $X_{y_1} = X_{y_2} \dots = X_{y_{m_1}} = e_{i_1 j_1}$ , where  $1 \leq y_1, y_2, \dots, y_{m_1} \leq t$ . If

$$X_{i_x}\cdots X_{y_1}\cdots X_{y_2}\cdots X_{y_{m_1}}\cdots X_{i_y}$$
 (5)

is a summand of (2), then

Manuscript received October 4, 1985.

<sup>\*</sup> Department of Mathematics, Hubei University, Wuhan, Hubei, China.

$$X_{i_x}\cdots X_{y_{\sigma_1}}\cdots X_{y_{\sigma_2}}\cdots X_{y_{\sigma_{m_1}}}\cdots X_{i_y}$$
 (5')

is also a summand of (2), where  $\sigma \in \text{sym}(m_1)$ . If

$$e_{i_xj_x}\cdots e_{i_1j_1}\cdots e_{i_1j_1}\cdots e_{i_1j_1}\cdots e_{i_yj_y}$$
 (5")

is the summand of the left of (4) corresponding to (5), with the  $m_1!$  permutations of  $X_{y_1}, X_{y_2}, \dots, X_{y_{m_1}}$ , there produce  $m_1!$  terms of form (5') in (2), corresponding to these  $m_1!$  terms of form (5') in (2), there are  $M_1!$  summands of form (5") in the left of (4) due to  $e_{i_1j_1}$ . Using the same consideration used for  $e_{i_2j_2}, \dots, e_{i_nj_n}$ , we see that there are  $(m_1!)(m_2!) \dots (m_k!)$  summands of form (5") appearing in the left of (4). Hence we see that each summand of the left of (4) appears exactly  $\prod_{x=1}^k (m_x!)$  times. So we obtain (4) and the lemma holds.

Corollary If  $t = (p-1)n^2 + 1$ , then (2) is a polynomial identity of  $M_n(F)$ .

Proof Since (2) is multilinear polynomial, we may prove the corollary by taking  $X_1, X_2, \dots, X_t$  to be matrix units.  $M_n(F)$  has only  $n^2$  distinct matrix units. Given any  $(p-1)n^2+1$  matrix units, by pigeon-hole principle, there exists (at least) one which occurs at least p times in those given  $(p-1)n^2+1$  matrix units. By Lemma 1 and note that char F=P, our corollary holds immediately.

Now we delve the symmetric polynomial of the least degree which is a polynomial identity of  $M_n(F)$ . First some preparation. Let

$$e_{i_1j_1}e_{i_2j_2}\cdots e_{i_uj_u} \tag{6}$$

be a product of u matrix units. If  $j_x = i_{x+1}$  for  $x = 1, 2, \dots, u-1$ , then we say (6) is a path. If

$$e_{x_1y_1}e_{x_2y_2}\cdots e_{x_dy_d} \tag{7}$$

is another path of d matrix units, we say that (6) and (7) are equal if d=u and for all  $k=1, 2, \dots, u$ ,  $e_{a_kv_k}=e_{i_kj_k}$ , otherwise we say that they are different. Obviously (6) is not zero if and only if it is a path. If (6) is a path and  $i_1=j_u$ , then we say that it is an  $i_1$ -cycle and denote it by  $O_{i_1}$ . A single matrix unit  $e_{ij}$  is a path, which is a cycle if and only if i=j. If (6) is an  $i_1$ -cycle and cannot be written as product of two  $i_1$ -cycles, we say that it is a simple  $i_1$ -cycle. If (6) is a path and contains m  $i_1$ -cycles, we denote the v-th  $i_1$ -cycle by  $O_{i_1}$ ,  $1 \le v \le m$ . Obviously any permutation of the m  $i_1$ -cycles gives another path, the new and the old have the same product value. If (6) is a path (or a cycle), then we call u the length of the path (cycle).

For example, in  $M_n(Z)$ 

$$e_{12}e_{23}e_{31}e_{11}e_{12}e_{21}e_{13} \tag{8}$$

is a path, which contains 3 simple 1-cycles, i. e.,  $\overset{1}{O}_{1} = e_{12}e_{23}e_{31}$ ,  $\overset{2}{O}_{1} = e_{11}$ ,  $\overset{3}{O}_{1} = e_{12}e_{21}$ , and we can write (8) as:  $\overset{1}{O}_{1} \overset{2}{O}_{1} \overset{3}{O}_{1} = i_{13}$ . If  $\sigma \in \text{sym}(3)$ , then  $\overset{\sigma_{1}}{O}_{1} \overset{\sigma_{2}}{O}_{2} \overset{\sigma_{3}}{O}_{3} \overset{\sigma_{1}}{e_{13}}$  is also a path and  $\overset{1}{O}_{1} \overset{2}{O}_{1} \overset{3}{O}_{1} = i_{13} = i_{13}$ . Moreover, it is easy to see that the  $i_{1}$ -cycles:

appear one by one in a path.

Remark 1. Use the above argument, we see that the matrix A in (4) is, in fact, the sum of distinct paths consisting of  $e_{i_1i_2}$ ,  $e_{i_2i_3}$ , ...,  $e_{i_2i_3}$ .

Lemma 2. If

$$\begin{aligned} & \theta_{i_{x}ij_{xi}} \cdots \theta_{i_{xki}j_{xki}} \cdots \overset{\sigma^{1}}{O_{i_{x}}} \overset{\sigma^{2}}{O_{i_{x}}} \cdots \overset{\sigma^{(u-1)}}{O_{i_{x}}} \theta_{i_{xku}j_{xku}} \cdots \\ & \theta_{i_{x}ij_{xi}} = \theta_{i_{\tau i}j_{\tau i}} \cdots \theta_{i_{\tau k'j_{\tau k'i}}} \overset{\rho^{1}}{O_{i_{x}}'} \overset{\rho^{2}}{O_{i_{x}}'} \cdots \overset{\rho^{(u-1)}}{O_{i_{x}}'} \theta_{i_{\tau k'k'j_{\tau k_{u}}}} \cdots \theta_{i_{\tau i}j_{\tau k}} \end{aligned}$$

as paths,  $e_{i_x,i_{x1}} \cdots e_{i_{xk},j_{xk1}}$ ,  $e_{i_{\tau 1}j_{\tau 1}} \cdots e_{i_{\tau k}j_{\tau k_1}}$  contains no  $i_x$ -cycle, and  $O_{i_x}$ ,  $O_{i_x}$ ,  $d=1, 2, \cdots$ , u-1 are simple  $i_x$ -cycles,  $\pi$ ,  $\tau \in \operatorname{sym}(t)$ ,  $\sigma$ ,  $\rho \in \operatorname{sym}(u-1)$ , then  $k_1 = k_1'$ ,  $k_u = k_u'$ ,  $e_{i_x d_x d} = e_{i_\tau d_\tau d}$ ,  $1 \le d \le k_1$ ,  $k_u \le d \le t$ , and  $O_{i_x} = O'_{i_x}$  for  $d=1, 2, \cdots, u-1$ ,

Proof Compare the matrix units of the two sides of the above equality, the result is obvious.

$$\theta_{i_1i_1}\theta_{i_2i_2}\cdots\theta_{i_ri_r} \tag{9}$$

be a path, and some  $i_x \in \{1, 2, \dots, n\}$  appears u times in

Then (9) exactly contains u-1 simple  $i_x$ -cycles if  $j_t \neq i_x$ , and (9) exactly contains u simple  $i_x$ -cycles if  $j_t = i_x$ .

Proof Since  $i_x$  appears u times in (10), we may write (9) precisely as:

$$\theta_{i_2j_2}\cdots \theta_{i_{R_1}j_{k_1}}\theta_{i_xj_{k_1+1}}\cdots \theta_{i_{R_2}j_{R_2}}\theta_{i_xj_{R_2+1}}\cdots \theta_{i_{R_n}j_{R_n}}\theta_{i_xj_{R_n+1}}\cdots \theta_{i_rj_c}$$

the first  $i_x$  the second  $i_x$  the

It is easy to see that between the first and the second times that  $i_x$  occurs, there is a simple  $i_x$ -cycle, and between the d-th and (d+1)-th times that  $i_x$  appears, there exists one  $i_x$ -cycle,  $d=2, \dots, u-1$ . Hence if  $j \neq i_x$ , there exist exactly u-1 simple  $i_x$ -cycles in (9), and if  $j_t=i_x$  from the u-th time that  $i_x$  appears to the terminate of (10) forms another  $i_x$ -cycle. So (9) contains exactly u simple  $i_x$ -cycles.

Remark 2. In Lemma 3, we may write (9) as

$$e_{i_1j_1} \cdots e_{i_{k_1}j_{k_1}} \stackrel{1}{O}_{i_x} \stackrel{2}{O}_{i_x} \cdots \stackrel{u^{-1}}{O}_{i_x} e_{i_xj_{k_{u}+1}} \cdots e_{i_tj_t} \text{ if } i_x \neq j_t;$$

$$e_{i_1j_1} \cdots e_{i_{k_1}j_{k_1}} \stackrel{1}{O}_{i_x} \stackrel{2}{O}_{i_x} \cdots \stackrel{u}{O}_{i_x} \text{ if } i_x = j_t.$$

Obviously  $e_{i_1j_1} \cdots e_{i_{k_1}j_{k_1}}$  contains no  $i_x$ -cycle.

**Lemma 4.** If t=pn, then (2) is a polynomial identity of  $M_n(F)$ .

Proof As in the proof of the Corollary to Lemma 1, we may show the lemma by taking

$$x_k = \theta_{i_k i_k}, \ k = 1, 2, \cdots, t, \tag{11}$$

in (2) and proving

$$S_{\text{sym}(t)}(e_{i_1j_1}, \cdots, e_{i_kj_k}) \tag{12}$$

vanishes for any t=pn matrix units  $e_{i_kj_k}$ ,  $k=1, 2, \dots, t$ .

Now consider (10)  $i_1$ ,  $i_2$ , ...,  $i_t$ .

Case 1. If some  $i_x$  appears  $u \ge p+1$  times in (10), and

$$e_{i_{\pi 1}j_{\pi 1}}e_{i_{\pi 2}j_{\pi 2}}\cdots e_{i_{\pi t}j_{\pi t}}, \ \pi \in \operatorname{sym}(t),$$
 (13)

is a path of (12), under the substitution (11), (13) corresponds to the term

$$X_{\check{\pi}\mathbf{1}}X_{\pi 2}\cdots X_{\pi t} \tag{14}$$

of (2). By Lemma 3, there are u-1 simple  $i_x$ -cycles contained in (13) if  $i_x \neq j_t$ , and by Remark 2, we can write (13) as

$$e_{i_x i j_{x1}} \cdots e_{i_{xk_1} j_{xk_1} j_{xk_1} j_{xk_1}} \stackrel{1}{O_{i_x}} \cdots \stackrel{u-1}{O_{i_x}} e_{i_x \cdot (k_{u+1}) j_{x(k_{u+1})}} \cdots e_{i_{xr} j_{xr}}$$

where

$$O_{i_x} = e_{i_{x(k_v+1)}j_{x(k_v+1)}} \cdots e_{i_{xk_{v+1}}j_{xk_{v+1}}}$$

is a simple  $i_x$ -cycle. Denote  $\overset{v}{O}_{\pi} = X_{\pi(k_v+1)} X_{\pi(k_v+2)} \cdots X_{\pi k_{v+1}}$ . Obviously  $\overset{v}{O}_{\pi}$  corresponds to  $\overset{v}{O}_{i_x}$  under the substitution (11), so we have

$$X_1 X_2 \cdots X_t = X_1 X_2 \cdots X_{k_1} \overset{1}{O_{\pi}} \overset{2}{O_{\pi}} \overset{u-1}{O_{\pi}} X_{\pi(k_u+1)} \cdots X_{\pi t}$$

Let

$$D_{\pi}^{x} = \sum_{\sigma \in \text{sym}(u-1)} X_{\pi 1} X_{\pi 2} \cdots X_{\pi k_{1}} O_{\pi}^{\sigma 1} O_{\pi}^{\sigma 2} \cdots O_{\pi}^{\sigma (u-1)} X_{\pi (k_{u}+1)} \cdots X_{\pi t},$$

$$D_{\pi} = \sum_{\sigma \in \text{sym}(u-1)} e_{i_{\pi 1}j_{\pi 1}} \cdots e_{i_{\pi k_1}n_{\pi k_1}} \overset{\sigma^1}{O_{i_x}} \overset{\sigma^2}{O_{i_x}} \cdots \overset{\sigma(u-1)}{O_{i_x}} e_{i_{\pi n_{u+1}}, j_{\pi n_{u+1}}, \dots} \cdots e_{i_{\pi t}j_{\pi t}}, \ \sigma \in \text{sym}(u-1)_{\bullet}$$

Then the partially sum  $\mathcal{D}_{\pi}^{x}$  of (2) corresponds to the partially sum  $D_{\pi}$  of (12). Moreover by the argument preceding Remark 1, we have

$$D_{\pi} = (u-1)!e_{i_{\pi 1}j_{\pi t}}$$

Now we shall show that, except the zero summands, (12) is a sum of such  $D'_{\pi}s$ . Let

 $S_{ ext{sym}(t)}(x_1, x_2, \dots, x_t) - D_{\pi}^x = \Sigma \{ \text{summand of } (2) \text{ which is not summand of } D_{\pi}^x \}.$ 

(15)

Let

$$S_{\text{sym}(t)}(e_{i_1j_1}, \cdots, e_{i_tj_t}) - D_{\sigma}$$

$$\tag{16}$$

denote the partially sum of (12) which corresponds to (15) under the substitution (11).

If

$$e_{i_{\tau_1}j_{\tau_1}}\cdots e_{i_{\tau_\ell}j_{\tau_\ell}} \tag{17}$$

is a summand of (16) which is a path, and

$$X_{\tau 1}X_{\tau 2}\cdots X_{\tau t} \tag{18}$$

is the summand of (15) which corresponds to (17) under (11), (Note (17) may be equal to some summands of  $D_{\pi}$  as path), according to (17), (18) we may construct  $D_{\tau}$ ,  $D_{\tau}^{x}$  as above respectively. Now we show  $D_{\tau}^{x}$  and  $D_{\tau}$  are partially sum of (15), (16), respectively. If  $D_{\tau}^{x}$  and  $D_{\tau}^{x}$  have a summand in common, say

$$X_{\pi 1} \cdots X_{\pi k 1} \overset{\sigma_{1}}{O}_{\pi} \overset{\sigma_{2}}{O}_{\pi} \cdots \overset{\sigma_{(u-1)}}{O}_{\pi} X_{\pi (k_{u}+1)} \cdots X_{\pi t}$$

$$= X_{\tau 1} \cdots X_{\tau k i} \overset{\rho_{1}}{O}_{\tau} \overset{\rho_{2}}{O}_{\tau} \cdots \overset{\rho_{(u-1)}}{O}_{\tau} X_{\tau (k_{u}+1)} \cdots X_{\tau t}, \tag{18'}$$

 $\sigma$ ,  $\rho \in \text{sym}(u-1)$ , correspondingly we have

$$e_{i_{x1}j_{x1}} \cdots e_{i_{xk_1}j_{xk_1}} \overset{\sigma_1}{O_{i_x}} \cdots \overset{\sigma_{(u-1)}}{O_{i_x}} e_{i_{x(k_{u+1})j_{x(k_{u+1})}}} \cdots e_{i_{xt}j_{xt}}$$

$$= e_{i_{\tau_1j_{\tau_1}}} \cdots e_{i_{\tau k_1'j_{\tau k_1'}}} \overset{\rho_1'}{O_{i_x}'} \overset{\rho_2'}{O_{i_x}'} \cdots \overset{\rho_{(u-1)}}{O_{i_x}'} e_{i_{\tau(k_{u+1})j_{\tau(k_{u+1})}}} \cdots e_{i_{\tau^{(u)}}j_{\tau(u)}}$$

where  $O_{i_x}$ ,  $O_{i_x}^d$  are simple  $i_x$ -cycles contained in (13), (17) respectively,  $d=1, 2, \cdots$ , u-1 and  $e_{i_xi_jx_1}$ ,  $\cdots e_{i_xi_jx_k}$ ,  $e_{i_ri_jr_k}$  contain no  $i_x$ -cycle. By Lemma 2 we have  $k_1=k_1'$ ,  $k_u=k_u'$  and  $e_{i_xd_xd}=e_{i_xd_xd}$  for  $1 \le d \le k_1$ ,  $k_u+1 \le d \le t$ , and  $O_{i_x}^{d}=O_{i_x}^{d}$  for  $d=1, 2, \cdots$ , u-1. So each  $O_{i_x}^{d}$  has the same length as that of  $O_{i_x}^{d}$ . These force  $X_{\pi d}=X_{\tau d}$  for  $1 \le d \le k_1$ ,  $k_u+1 \le d \le t$ , and  $O_{x}=O_{x}^{d}$ , for  $d=1, 2, \cdots$ , u-1. Therefore  $D_{x}^{x}=D_{x}^{x}$  and (18) is a summand of  $D_{x}^{x}$ , it contradicts the fact that (18) is a summand of (15). This implies that  $D_{x}^{x}$  and  $D_{x}^{x}$  have no summand in common, hence  $D_{x}^{x}$  is a partially sum of (15). Correspondingly,  $D_{x}$  is a partially sum of (16). Inductively we can construct  $S_{\text{sym}(t)}(x_1, x_2, \cdots, x_t) - D_{x}^{x} - D_{x}^{x}$  and  $S_{\text{sym}(t)}(e_{i,i_1}, \cdots, e_{i,i_t}) - D_{x} - D_{x}$ , if the latter has a summand which is a path. Then using the above procedure, we may construct another partially sum  $D_{x}$  of  $S_{\text{sym}(t)}(e_{i,i_1}, \cdots, e_{i,i_t}) - D_{x} - D_{x} - D_{x}$ . So by finite steps we can show that  $S_{\text{sym}(t)}(e_{i,i_1}, \cdots, e_{i,i_t}) - D_{x}$  has no summand which is a path, this implies

$$S_{\mathrm{sym}(t)}(e_{i_1j_1}, \ \cdots, \ e_{i_tj_t}) = \sum_{\substack{\mathrm{suitable} \\ \pi \in \mathrm{sym}(t)}} D_\pi = (u-1) \,! \, \sum_{\substack{\mathrm{suitable} \\ \pi \in \mathrm{sym}(t)}} e_{i_{\pi 1}j_{\pi t}}.$$

Since  $u-1 \ge p$ , (12) vanishes in this case. (Note if  $i_x=j_t$ , (13) contains  $u \ge p+1$  simple  $i_x$ -cycles, the proof is the same as above. We omit it here.)

Case 2. If no  $i_x \in \{1, 2, \dots, n\}$  appears more than p times in (10), we claim that  $\{i_1, i_2, \dots, i_t\} = \{1, 2, \dots, n\}$ , and each  $i_x \in \{1, 2, \dots, n\}$  appears exactly p times in (10). If  $\{i_1, i_2, \dots, i_t\} = A \not\sqsubseteq \{1, 2, \dots, n\}$ , let A contains d < n elements. Then  $t \le pd < pn$ , which contradicts t = pn, so  $A = \{1, 2, \dots, n\}$ . The fact that each  $i_x \in \{1, 2, \dots, n\}$  appears at most p times in (10) forces each  $i_x \in \{1, 2, \dots, n\}$  to appear exactly p times in (10), our claim stands.

Now if 
$$e_{i_{x1}j_{x1}}\cdots e_{i_{xt}j_{xt}} \tag{19}$$

is a path of (12), since  $j_{\pi t} \in \{1, 2, \dots, n\}$  appears exactly p times in (10) by our claim, by Lemma 3 and Remark 2 we may write (19) as

$$e_{i_{\pi 1}j_{\pi 1}} \cdots e_{i_{\pi k 1}j_{\pi k 1}} O_{j_{\pi k}}^{2} O_{j_{\pi k}} \cdots O_{j_{\pi k}}^{p}.$$
 (20)

According to (20) we, again, construct  $D_{\pi}$ , and  $D_{\pi} = p! e_{i_{\pi}i_{\pi}t}$ . In a way analogue to the proof in Case 1, it is easy to show in this case that (12) vanishes. Hence the

Lemma is true.

Lemma 5. If t=pn-1, then (2) is not a polynomial identity of  $M_n(F)$ . **Proof** Consider pn-1 matrix units in  $M_n(F)$ :

$$\underbrace{e_{11}\cdots e_{11}e_{12}e_{22}\cdots e_{22}e_{23}\cdots e_{n-1n}\underbrace{e_{nn}\cdots e_{nn}}_{p-1}}$$

and calculate

$$S_{\text{sym}(t)}(\underbrace{e_{11}\cdots, e_{11}, e_{12}, e_{22}\cdots, e_{22}, e_{23}, \cdots e_{n-1,n} e_{nn}\cdots, e_{nn}}_{p-1}). \tag{21}$$

 $S_{\text{sym}(t)}(\underbrace{e_{11} \cdots, e_{11}, e_{12}, e_{22} \cdots, e_{22}, e_{23}, \cdots e_{n-1,n} e_{nn} \cdots, e_{nn}}_{p-1}). \tag{21}$ Since  $e_{12}e_{23} \cdots, e_{n-1n}$  is a "staircase" (21) has a sole path  $\underbrace{e_{11} \cdots e_{11}e_{12}e_{22} \cdots e_{22}e_{23}}_{p-1}$ .

 $e_{n-1,n}e_{nn}\cdots e_{nn}$ . By Lemma 1 and Remark 1, it is easy to see that (21) is equal to

 $[(p-1)!]^n e_{1n} \neq 0$  in  $M_n(F)$ . Hence our lemma stands.

**Theorem.** The symmetric polynomial (2) is a polynomial identity of  $M_n(F)$ when t=pn, where F is a field (finite or infinite) of characteristic  $p\neq 0$ , this is sharp in the sense that if t < pn, (2) is not a polynomial identity of  $M_n(F)$ .

Proof Trivially by Lemma 4 and Lemma 5 we can prove the theorem.

**Remark 3.** Obviously, for  $t \ge pn$ , (2) is a polynomial identity of  $M_n(F)$ . By Amitsur-Levitzki theorem<sup>[3]</sup>, if  $t \ge 2n$ , (1) is a polynomial identity of  $M_n(F)$ . So we have the following corollary.

Corollary. Let

$$f_E(x_1, \dots, x_t) = \sum_{\substack{\boldsymbol{x} \in \operatorname{sym}(t) \\ \operatorname{is even}}} x_{\pi 1} x_{\pi 2} \dots x_{\pi t},$$
 $f_0(x_1, \dots, x_t) = \sum_{\substack{\boldsymbol{x} \in \operatorname{sym}(t) \\ \operatorname{is odd}}} x_{\pi 1} x_{\pi 2} \dots x_{\pi t}.$ 

If Char F=p is an odd prime, when  $t\geqslant pn$ ,  $f_E(x_1, \dots, x_t)$  and  $f_0(x_1 \dots, x_t)$  are polynomial identity of  $M_n(F)$ .

Proof Trivially by noting that under the given conditions (1) and (2) are polynomial identities of  $M_n(F)$ , and  $2 \neq 0$  in F, we see that (1) added to (2) or (1) minus (2) leads to the result.

## References

- [1] Procesi, C., Rings with polynomial Identities, Dekker. New York, 1973.
- [2] Formanek, E., The polynomial Identity of Matrices, Contemporary Mathematics, 13 (1982).
- [3] Rowen, L. H., Polynomial Identities in Ring theory, Academic press, New York, 1980.

a carrier (iii) had the field of bally of