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A SORT OF POLYNOMIAL IDENTITIES OF
M.(F) WITH CHAR F+0 .

CH_ANG QING ('%’ H)*
Abstract
Let F denote a field, finite or infinite, with characteristic p=+0. In this paper, the
author obtains the following result: The symmetric polynomml ont lettera
Swm(t)(“"l) T, wt)_ 2 XWIXW2
@we€Sym(t) .

isa polynomml identity of M,. (F) when t=>pn, and this is sharp in the sense tha,t zf t< pn 1
4t s not @ polynomzal zdentzty of M.(F).

All termlnologles used in this paper are agreeable to those in [1, 2, 8]. F' is a
“field of characteristic p#0, sym (m) is the symmetne group on m symbols Whlch

-8 the group of permutations of 1, 2, m).
The standard polynomial of degree t is : :
8:(Xs, Xy - y Xo=_2 (SgW)Xmez X,,. . @
“The symmetrlo polynomml on't letters is o , ,
sym(t)(le X - ,‘ Xt) = wegﬂ:‘“) X o1 X za s X s o (2/)

Obviously, the symmetrie polynomial of any degree is not a polynomial identity of
M,(Z). In this paper we seek the symmetric polynomials which are polynomial
.identities of M,(F).- ' . ' ’
Lemmal. ZLei :
Oinirsy Ciriay ***5 Oirte N G
-be t matriz umts of M,(F), and assume 6.z, €ujs *** i, aTE all dzstzfrwt matrie. units
Lcontmned in (3) with e, ocouring my, times in (3) o= 1 2.+, k. Then

SSYm(t)(ehm Gisjny **°y 6,,,;‘) <H Mg ) L . (4)
_for-some suitable A€ M W(F). o U ol

~ Proof Let Xo=6i in (@) for d=1, 2, -, t. Since @,; ocours m times in (3),
we may assume Xﬂl=Xy|"'=Xym,=';'3ﬁin where 1<y11 Ya, *** Ym St If

. e X Xy Xy Xy o X, LAYy
is a summand.of _(2), then :
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Xy oo Xy oo Xy o X
- is also a summand of (2), where ¢ € sym(my). If

) Giyi, *** Cinjy - Cinp ** Oy *** Oi,i, o N (5!!)
is the summand of the left of &) .6orrespond’ti'1‘1g to ’), with the. my! permutations:
of X, X, *+, Xy, there produce m;! terms of form (5’) in (2). corresponding to
these m, ! terms of form (5') in (2), there are M;! summands of form (8") in the

- Xy, L (&)

.e
Yom

loft of (4) due 10 e,;,. Using the same consideration used for e, -, €, We see
that there are (my!)(ms!) --- (my!) summands of form (8") appearing in the left

. : . & !
of (4). Hence we see that each summand of the lefi of (4) appears exactly [ (m, 1y

#imos. S0 W8 obtain (4) and the lemma holds, S ,_
Corollary Ifit=(p—1)n?+1, then (2) isa gﬁoiynomial q}dentitg) of M,..(F)."
Proof Since (2) is‘multilinear -polynomial, we may prove. the corollary by

takihg X 1, X, ey X, t0 bo inatiix units. M ,.(lf') has ohly ‘_'rvrr"-v diétihéﬁ matrix ﬁnits,.

Given any (p—1)n®+1 matrix units, by pigeon-hole principle, there exists (at

least) one.which, ocours at least p times in those.given ( Pp—1)n?+1 matrix units, By

Lemma.l aﬁd, ;ﬁé{qe that char F=P, our.icorolla,ry holds immediately.

- Now we delve the symmetric polynomial of the least degree which is a poly-

nomial identity of M,(F). First some preparation. vLet : '

(L v CanBiage Oy, L D 6y

be a product of » matrix units. If jo=4g,4 for =1, 2,"+.., u—1, then we say (6) is a.

path. If o | o

o eaiysem; e@;ﬂa | o (7):

is another path of d matrix units, we say that (6) and (7) are equal if d=u and for
all b=1,2, <+, t, '€py;=@,,,, Otherwise we say that they are different. Obviously (6)
i8 not zero if and only if it is a path. If (6) is a path and ¢,= Juw then we say that it.
is an ¢;-cycle and denote it by 0,. A single matrix unit e; is a pafh, which is a.
- eycle if and only if = J. If (6) is an iy~6yole and cannot be ‘written as product of
two.is—eycles, we say that it is a simple 43-cycle. If (6)"is a path and contains m"il‘-ﬁ
cycles, we denote'thé v—th ir-cyole by O,. l<v<m, ObViouéiy a,hy} permutation:.
of the m i;—cyoles gives another pajh, the new and the old have the same product:
value. If (6) is a path (or a cycle), then we call u the length of the path. (cycle). 3
GRreemple mM.(Z) oo 0 T
A - éé%s%ﬁuﬁz@ﬁw ween T o REE 8-
is-a path, which contains 8 simple 1-cyoles, i. e., (1)1 ==¢19693631, 51=311‘ 51=612621, and-
We can write (8) as: O1 01 O1 e13. If 0 €sym(83), then o1 3253391315 also a path.

o2

1 2 3 ol 3 A R
~and 01 01 O1 e43=01 O1 61313=613 _Moreoygr, it is easy to see that the. 4y-cycles:
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appear one by one in a path.
Remark 1. TUse the above argument we see that the matnx A in (4) is, in
faot, the sum of distinet paths oonsmtmg of. e;,;,, em.. o0y Biydye '

Lemma 2. If AT -
o'1 0'2 er(u—-l)
© Bigadm ** Cigadam 0; 0., 0., Gm,,im bee
R s pl P2 pu=1)
9‘,4,.='06ﬂ'1n + Bimyjay OOl * 0::&' Gimntgery Gcnh.

-as paths, Ot **" Oinidary Oimaim *** Oimijons contwms no i,—cycla, and 0.,, O;z, d =1 2,

u—1 are simple %—cycles v, q,-Gsym(t), o, pEsym(u—1); then ki=ki, ku=.

Oosins =iy 1<A<Es, ku<d<t, and 0.,=0,, for d=1, 2, -, u—1, o
Proof Compare the matrix units of the two sules of the above equa.hty, the

-yesult is obvious.
Lemma 3. Let

CuiOiis *** Oidy . ' . ®
be a path, and some 1€ {1, 2, o, 1} appears v times in '
., By Ty vty e, . o (10)

“Then (9) ewactly contwms u—l szmple %—cycles if ji#e, and (9) ewactly contams u
-simple i,—cycles if ji=1q. . ;
Proof Slnoe 'z,, appears u times in (10), we may write (9) preclsely as:
Gap *°* ecx,ikﬁ,&mm 00 CipinOisinan *° Oinyin, iz 7 Girde
. ~ the firsti,  the second iy the u~th i,

Tt is easy to see that between the first and the second times that 4, ococurs, there is a
:gimple %—oycle, and between the d-th and (d+1)-th times that ¢, appears, there-
. exists one q,,,—cyole, d=2, .-+, u—1, ‘Hence if j#4a, there exist exactly u—1 snnple Go—
-icydles in (9), and if j,=4i, from the u-th time that ¢, appears to the terminate of
\-ﬁ(10) forms another ¢,—cycle. So (9) contains exacily u simple ¢,—cycles. !

" ' Remark 2 In Lemma 8, we may write (9) as~

u~1
G+ Ounit 04; Otz * O, Ciipyn *** iy if %*jn
2 %
Cnnr *** Oty 04, O, *+ Oy, if 4= j1.
»Obvmusly Biun *** i, CODERINS 1O §,—0yole.
Lemma 4. Ifi=pn, then (2) is a polynomial identity of M.(F).
Proof As in the proof of the Corollary to Lemma 1, we may show the lemma

”by taking ‘
" 0= OBy k=1, 2, +, %, o ) (11)

_in (2) and proving

’ Ssym(t)(eh]“ % e‘t."e) (12)
vamshes for any t=_,pn matrix units e.m, F=1, 2, o, &, |
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Now consider (10) 41, 4a, *-, 4s. _—
Case 1. If some 4, appears u=p-+1 times in (10), and

: CriinOinains ** Oyt WESyM(2), I - (18)
is a path of (12), under the subsiﬁitution (11), (18) corresponds to the term
. 9. G RIED. ¢ - ' (14)

~of (2). By Lemma 3, there are u— 1 simple 4,~cycles contained in (18) if 4,% j» and
by Remark 2,. we can write (18) as '
s : : 1 u~1 -
e Oimde ** Chatantan, Ot 20 O, 81, sistraiin ** Cigrgus

where
} V. 6¢,=6;

- e ‘ whorvdathgrn ** Gigy,adonyy )
. v ) v
is a simple 4,~cycle. Denote O =X e, 41y X cieray *++ X akune Obviously O, corresponds:

- to 6‘; under the substitution (11), so we have

1 2 u—1~
X1X2 oo Xt'—‘Xng oo XMOWOW "'Owa(kua-l) .o -Xsr'to
’ el o2 o(u—1)

) Let Di= X XpuXge X w1004 Or X a1y *** X,

oesym(u—1)
’ ol o2 o(u—1) :
Dﬂr: e 2( D Cigiim **° Cinratan 05.7.-05@ o O‘z' e‘“m.,u)iﬂwun) *** Cigriner O‘GSym (u—l)‘ o
ocesym(u— .
Then the partially sum B2 of (2) corresponds to the partially sum D, of (12).
Moreover by the argument preceding Remark 1, we have
. . ' ‘DW = (u— 1) !eizljart'
Now we shall show that, except the zero summands, (12) is a sum of such D's.
Tt R

| Ss,n‘l(t) (@1, g, *++, ;) — Dz =2 {summand of (2) which is not summand of Dz},

Co . (15)
‘ Ss&m(t)(@hm "t €i5,) — Dy I (16)-
denote the partially sum of (12) which corresponds to (15) under the substitution:
. SE Pt et S
If

_ Oisiny " Cingry ST Q).

is a summand of (16) W"ﬁi'c’h isa f)a,th, and | . T C
S  XaXpe X, . (18).

is the summand of (15) which corresponds to (17) under (11), (Note (17) may be-
equal 0 some summands of D, as path), according to (17), (18) 'we may costruct D,

Dz as above respectively. Now we show D7 and D, are partially. sum of (15), (16):
respectively. If D7 and D2 have a summand in eomm(m, say :
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ol o2 o(u—1)

Xw.’l ...VXWEIOW'OW b 0 Xw(k +1) °°° th

ol p2 p(u—l)

=Xt o Xo0:0r -+ Ox Xutuans +++ Xy (18)
o, p€sym(u—1), correspondmgly we have

- ol o(u—1)
' e‘anj:n' ot eiark;fzh lz o0t 0".1: e‘z(kuu)jar(n“ﬂ) ot eiztfxf
' p(u—1)
_e‘nin °* ei’"ﬁl‘"‘xo O, °" O’ e"'r(k“ﬂ)ﬂ":(k,}ﬂ) pee e‘ﬂt’j‘r(t”

od
where O, 0;, are smaple fo,—cycles contamed in (13) an respectlvely, d=1, 2, e
u—1 and 6i50, *** Cramimy Ciniin * Gimation contain no i,~cycle. By Lemma 2 we ha,ve'

d
i By b=t a0 64,1 = 61, f07 1<A<hy, B+ 1<d<t, and 0,,=0l, for d=1, 2, -,
u—1. So’ each 0;, has the same length as that of O These force X =X ¢ for 1<d ‘

<ky, hyt+1<d<i, and 0 O,,, for d=1, 2, ---, u—1. Therefore D2=D% and (18) is

a summand of D2, it contradicts the fact that (18) is a summand of (15). This
jmplies that D7 and D7 have no summand in common; hence D” is a partially sum
of (16). Oorrespondingly, D, is a partially sum of (16). ‘Inductively we ocan
construct Seyme (@1, @2, v, @) —Dg—D3 and Seymy(Cnjy =+ €ini.) —Dx— Dy, if the
latter has a summand which is a path. Then wusing the above procedure, we may
construct another partially sum D, of Ssym (€any =+ é,5,) —Dg— D, and construct
Seyme €y *** €ise) — Da—De— Do, So by finite steps we can show that Ssym<t;(ei15,, ,
€i,) — o Dghasno summand which is a path, this 1mplles

suitable,

-wesym(* : o
Sss'm(t) (euin R ei:i.-) = 2 @ = (u— 1) ! 2 Cigriges
suitable suitable
wesym(t) © . wesym(d)

Since u—1=>p, (12) vanishes in this case. (Note if 4,=js (13) contains u>p+1
simple 4,~cycles, the proof is the same as above. We omit it here. )
Qase 2. If no 4,€ {1, 2, «, n} appea,rs more than p times in (10), we claim that
{84, Ga, *+y 2y ={1, 2, -, 0}, and each i,€ {1, 2, - n} appears exactly p times in
(10). If {44, b9, +or, Gy =AE{, 2, -, n}, let A contains d<mn elements. Then t<pd
< pn, which contradicts ¢=gpn, s0 A={1, 2, ---, n}. The fact that each i,€{1, 2, -,
n} appears at most p times in (10) forces each i,€ {1, 2, --- n} 10 appear exactly p
times in (10), our claim stands.
Now if
' Cinsias **" Cineine . (19)
is a path of (12), since ju:€{1l, 2, ** n} appears exactly p times in (10) by our
claim, by Lemma 8 and Remark 2 we may write (19) as

R | (20
e‘xl-’ian. ot e‘zkﬂ:wklojwtojxi o Ojart' )

According to (20) we, again, construct Dy, and Dg=p!6ij. In a way analogue 1o
the proof in Case 1, it is-easy to show in this case that (12) vanishes. Hence the
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Lemma is true. » o .
Lemma 5. If¢=pn—1, then (2) is not a polynomial identity of M,(F).
Proof Consider pn—1 matrix units in M, @&E: '

611 *** €11€1623 *** €263 *** €p_12€nn *** Oy
h_w Lo [—

p—1 - p-l R 2t

and calculate 7 ,
Ssym(t) (611 A el‘l.v‘ 613, é22 °°*, €ag, €gg, °°° €n—1sn Cun *°°, erm)- . - (21)
p—1 - p=1 »—1 e
BInce 61s¢a5 *+*, €n_14 18 a “stairoase” ™, (21) has a s0le Path 6y -+ eyye1409 +-r €aslag *+*

. = ° 2 <

: ' . : - p—1 . p—1 .
€n1,n€mn *** €. By Lemma 1 and Remark 1, it is easy t0 see that (21) is equal to

-1 : S
[(p—1)11"%1.%0 in M, (F). Hence our lemma stands. , , » Co .
Theorem. The symmetric polynomial (2) s a pblgmomfial identity of M,(F)
when ¢=pn, where F is a field ( finite or infinite) of Characteristic p+0, this s sharp
n the sense that if t<pn, (2) is not a polynomial identity of M,(F).
Proof Trivially by Lemma 4 and Lemma 5 we can prove the theorem.
Remark 3. Obviously, for ¢=pn, (2) is a polynomial identity of M,(F). By
Amitsur-Levitzki theorem™, if $>>2n, Q) isa polynomial identity of M »(£). So we
have the following corollary. ‘
Corollary. Let

fE(miy eny @) = DI ST P Dty
wesym(t)
is even . .

Jo(@, =y @)= 3 @p1@0s -+ vy
. weEsym(t)
! is odd

If Char F=p is an’ odd pr'imq, when t=pn, fy(as, oty @) and foawy oo, @) are .
polynomial identity of M,(F). —_ ‘. . C o ,
Proof Trivially by noting that under the given conditjons (1) and (2) are
polynomial identities of M,(F), and 2+0 in F, we see that (1) added to (2) or @
minus (2) leads to the result. '
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