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MULTIPLIERS OF SEGAL ALGEBRAS 4,(G)
OuvaNe GuaNcHONG (B fg % gr)*

o Abstract
Let G be a locally compact but non—combact abelian group. It is proved that
M(4,(@); Li(@)=M(@) and M(4,(@), Li(@)n C0o(@)=M(Li(@);, Li(&n
Co(@)). If G is discrete, then M(A,(@), Li(@))=A4,(@), MA4,(@, L@ NC(@®))=
A (B). S o

Let G be a locally compact but non-compact abelian group with Haar measure.
'?\,, and G the character group of G. The space of all complex—valued integrable
funections with respect t0 A is denoted by Ly (@), which is a Banach a,lgebra, where
the multiplication is convolution. Let
| (@ ={fELy(®): FEL(D} 1<p<oo,
The norm of an element in space 4,(Q) is defined by

I a=1fla+1Fls  VfE A4y (ED.

Then 4,(@) is a Segal algebra.

Suppose that (81(@), | |s,) and 8@, | |s) are two Segal algebras and
T is a bounded linear operator from 81(@) to 83(@), if T commutes with every
translation operator T.(# €G), that is T z,==,T, then T is called a mutiplier from
81(@) 10 83(@). We denote the collection of all multipliers by M(8:(@), 8:(&)),
which is a Banach algebra.

Figa-Talamanca and Gaudry™ proved that the following are equivalent:

D TeM(4y(@), 4,(@).

(2) There exists a unique measure wEM(Q) such that

Tf=nxf, V€ 4,(Q),
where M (@) is the Banach algebra of all bounded reglilar complex valued Borel
measures on G. ' ‘ o

Moreover, the correspondence between 7' and w defines an isometric algebra
isomorphism from M(4,(@), 4,(@)) onto M @.
Ouyang™ has studied the character of M (Ly (@), Ay(@)). Let

M. (@) ={peM(Q):iE LD},
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el =T ot

where {a.} is a bounded approximate identity of Ly(G) such tha® la,.]1=1 and &,
has the compact support for every n. Then the following are eqmva.lent '

(1) TEM(Li(G), A(@)).

(2) There exists a unique measure wE M, (G) such tha.t

Tf = pnf, VFE€La(@).

Moreover, the correspondence between T' and H defines an Jsometnc algebra
isomorphism from M (Iy(&), 4,(G)) onto My (@).

Now, in this paper, we will consider M (A,,(G‘) Li(@)) and M(4,(G), Ly(@) N
Oo(@). | -
Let O,(@) be the space of all continuous complex valued functlons with
compact support in G and let

- P(L(@®)={fel(® fECG(G)}

We have known that P(L:(@))c8 (&), 8(@) is any segal a,lgebra on G. The space
P(L(®)) is dense in S(G).®

Let f be a function belonging to P(I4(@)), 7 (wEG) a translation operator.

For wo, @1, ***, ¥m {%n} CG, mo=e the identity of group @, we define
o Voo fFTaf A+ Vo, f
fa n+1 - o @
From

<y L (g, ) et (@ Y) 2
Fo = L ACO N

and F(7) €0,(@), we have 7,€0,(@) and f,€P (Ls(&).
For every &0, there exists g €0, (G)- (C.(G) is the space of all continuous
complex valued functions on ‘G which have compact support) such that

I f—gli<e.

Let

_ Ted +Te gt HTe
o= e @

By the homogeneous structures of Iy (G‘) it is easy to see that

Ilf..—g;.ll1< U= g|l1+|!n,(f D lateee+l7e,(f = 9)|l1)

1 (n+1) | f—gli<e. | | @

We first establish the following lemma.

Lemma. There em',sis @ SEqUENCE To, M1, ***y Tny*** 4N @G such that

(@) [gals™>0(n—>00), , : @
(®) [ fala>0 (n>00), - ()
(©) 1 Fal=>0 (n—>00), 1<p<oo, : : S )
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where {fu} and {g.} are defined by (1) and (2) respectively.
Proof Suppose supp =K, -a compact set in @. There exists a sequence o,
@1, ***, Tw, -+ in @ such that
(Ka) 1 (Ka) =3, iy
Smce G is a non-compact locally compact abehan group.
Furthermore we have

| SUDD 74, gNSUPP THg— (B, i%j.
‘We now prove the proposﬂ:lon (a.) '

1923~ G5 [, (700 @) 4w @) -+ 9 )0 )

D o (B @1 42, 3 g w9 @ o),
but ) . T
[ g @ra@ - 190

J.G 729 (@)  7o,9 (@) (#) =0, %4,
Therefore L : S v

".%"2 c :1)2 (n+1)llgllz—>0 (n—-—)oo)

* In order to prove the proposﬂuon (b), we write

Il = Gomigs [, [70f @) 707 @) 4o £ (@) 1200 2)

= (n-il)” IG [g'&.ﬂ(fv) +§ 7o (f—9) (w)]2d}\,(a;)

st oo +[§mi-0@]

. +w§n=]0w,y (@) *va,(f=9) (w)} (@)

a2 T 13 j . _
I8+ 1S = 0l s S g @), (= ) (@) k()
=IP+IP+IP®.
IP—0 (n—>o0) since (4). Estimate 72 ag follows: f—g is a bounded function
on G because g €0,(@) and f €0 (Q) (0o(@) denotes the space of all continuous

complex valued functions on @ Vanlshmg ab mﬁmty) Suppose [f(z) —g(x) | <B,
Vo €@, where B is a constant. Hence -

| 51— 0 3<B [ | £a@) —gu() |do—>0 @_m)

#ince | f,— gu[:—>0 (n—>00).
Last, we estimate I, There exists a constant 4 such’ that [ g(w) [<4, VwEG
since g €C,(Q@). Hence [709(@) | <4, Vo€G, i=0, 1, 2,
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|j (@) 50 (f = g) (@i (@) {<Aj |5e,(f=9) (@) |d0(@)
“ | <Alf-gla<Ae.
Thus I ‘3’—>0('nr—->oo) and (b) is true »
" As for (c) F2€EP (L1 (@) and | f.]a—>0 (n—>o0) 1mp11es that | f 1:—>0 (n—>o0),
~then there exists a subsequence {Fmt of {fuks Fu(7)—0 (B—>c0) almost everywhere
on @. But f,, are continuous functions, it shows that f,.k('y)—>0 (k—><0) ab every
pomt on G. ’
By the facts

Falpy =t Dbt @) o), vyed,

| (@i ) |<1, v«/eé, i=1,2 - n

Then, clearly,
lfn,(v)l<|f('>')l Vy€@G.
But f,,€C,(&) and f€0,(@). Lebesgue dominated covergence theorem gives
| Fuls—0 (h>00).
If we choose the sequence o, 1, ***, T *** 88 B0, Tnyy Tuyy ***, Tnyy **+, the lemma is
proved. ' |
Theorem 1. The following are equivalent:
(D) TEM (4@, Li(@).
(2) There ewists a unique measure w€ M (Q) such that
Tf=pxf, Vfe€A4(@.
Moreover, the correspondence between T and . defines an isomeiric algebra
ssomorphism from M (A,(Q), Li(@)) onto M(Q).
Proof We first pi'ove that (1) implies (2). Suppose T'€ M (4,(G),Ls(G)). For
every f EP(I4(@)), Tf € Li(G). Then for every >0, there exists sEG such that-

1Tf +vs(Tf) |1:=>2]f |1 —e. - (D)
It shows that there exists a sequence @g, @1, ***, Tp, ***, 1%t ©G, Bo=e, such that
|0 (TF) + 70, (Tf) + - +76, (Tf) 1= (n+1) | Tf |1 —mne. (8)

Futhermore, we can require that the sequence {a,} satisfy the requirement of the
lemma at all. '

Recall that T is a multiplier and the definition of f,, then

Tf =T(7¢of+7¢1f+ -+, f — T (Tf) +7s, <T.f) +-- +7¢n(Tf)
* n+1 n+1
Substituting it into (8) and noticing that T’ is a bounded linear operator from

A4,(@) to Ly(G), we have

VTF < ITFuls+ e<IT U1 ful s+ o< T (U ||1+llf Is) +e. )
By the lemma | f,|,~>0(n—>c0), >0 is an arbitrary number and (@) is a
homogeneous Banach algebra, || Sfalli=1fl1 them '
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ITAI<ITH f s VfEP(Li(G‘))

This shows that T defines a bounded linear operator from P(Ly(@)) which
possesses L; (&) —norm to Ly (@) and T commutes with translation. Since P (L;(G))
is dense in I, (@), T determines a unique bounded linear operator T (we also use
the same notation 77) from L1 (@ to L;(G), whose norm remains the same.
Moreover, it is easy to see that T is a mu1t1pher from L; (&) to L, (@).

Accord_mg t0 a wellknown theorem on the multiplier of L1 @, there .exists a
unique measure w € M () such that

Tf=p=f, VfeL(@,
and this correspondence between 7' and p defines an isometric algebra isomor-
phism from M (Ly(&), Li(@)) onto M (G).
Conversely, suppose fhat, ;/JG‘M (@) . We define an operator 7'
Tf=pxf, Vf EAZ;(G) .

Obviously, uxf € Ly (@) since Ly (Q) is an idea in- M (&). By the properties of
convolution, it is easy 40 prove t!iat T’ is a bounded linear operator from A,(@) to
L; (@) and commutes with any translation operator, that is 7' EM(4,(@), Iy(@)).

We now consider the character of M (4,(®), L, (@) NGC(@)), where L;(@) N
GO0 (@) is a Segal algebra with the norm - . v

[ flmac, = £ li+ 1w VFEL(G) NO(@).
Theorem 2. M (4,(@), Li(G) NCy(@)) =M (Lu(@), ILi(@) NOC(@)), where
means isometric and algebm £S0MOorphism.
Proof - Suppose T'€M (A4, IL;(G)N0, (G‘)) For every fE€0,(G) and each
8>0, there exists s €@ such that ‘
llf+7sf|lm>2llfllw—8,

so that there exists a sequence o, @i, *+-, @, «--, {@.} =@, mo=e, such that

|%e0f + 0 f ++ 470, f = (n+1) | f]| . —ne. (10)

Let f be an arbitrary function in P(Li(@)). We have Tfc Li(@) NO(@).

Reocall tha% T is a multiplier and fnis deﬁned by (1). Then
Nl zano, = I1Tfull s+ ”Tfn”w
I f it o (TF) () et (T |
= |Tf i+ TS _S—HTf”Llnoq
by (10). Hence we get the following inequality
VTS 0o <ITfal oo+ e<IT| | ful 4 +5
=171 Sl + 1 ) +e.
But | f,li=fl, [ ful;>0(n—>c0), >0 is an arbitrary number, then
NTA 2o <ITfly  VfEPLu(@)).
P(Li(@)) is dense in I,(@) that T determines a unique mulfiplier from

@ __»
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Li(@) %0 Li(@) NOo(G) and remains the same norm.

Oonversely, suppose T'€ M (L1(@), Li(@) NOo(@)). It is easy to see that T is a
multiplier from A,(G) o Iy @ NC(@) it T is restricted on 4,(G).

Theorems 3 and 4 will consider the case when @ is discrete.

Theorem 3. Suppose G is a discrete group. Then the following aie equiwlent::

1) TEM U@, Ls(@). |

(2) There ewists @ unique function gr€ A, (@) such that

Tf = goxf, Vf € 4y (&)

Moreover, the correspondence between T and gr defines an algebra isomorphism
from M(A,(G), In (@) onto Ay(@), and the norms are equivalent.

Proof We have 4, (@ =L,(@=M@Q if G is discrete, where ‘=’ means the
eqnality of the $wo sets in both sides and the preservation of algebra operations. .
Moreover, Li(G)—norm is the same one as M (@)-norm if G is discrete.

Take gr="T9, where & is an identity of A,(G) =1Ly (@). Obviously

Tf=T&xf) =To«f, V€A ), |
and |T| = |T8|x=|T3]1 by Theorem 1. It remains to prove that Iy (@)-norm and
- A,(@)-norm are equivalent. : ’

Since |uxv|:1<|ulslvls for every u& A4,(@), v€In(&), L, (@) is a Banach
A4,(@)-module. According to Module tactorization theorem™, for every f & Li(G)
and each >0, there exist g€ A,(G), hE Ly (@) such that

f=g%h, gl <K, | f—9l:1<s | (11)

where K is a constant number.
On the other side, |g*h]4,<|gl4lrl1. Substituting it into (10), we have

I £1la,= lg%h] 4, <K (I fl1+8).
Tt is obtaind that |
I li<Ifle<Klflsy VfEL(@),

sinoe £>0 is arbitrary. Then, L;(@)-norm and A,(@)-norm are equivalent when
G'is discrete.

Theorem 4. Suppose G is a disorete group. Then the following are equivalent.

(1) TEM(A, (@), Li(@) NO()).

(2) There ewists @ unique function gr € Ay(Q@) such that

Tf=gr+f, VfE€4,(&).
Proof It is similar to Theorem 3. We also have
Ay (@) =Ly (@) = M (G) = Ls (&) NCo(G),

and L; (@) N Co(@)—norm is equivalent to L1(@)-norm when @ is discrete.
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