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I*—HYPOELLIPTICITY FOR A CLASS OF
OPERATORS OF MIXED TYPE

~HoNe JIAXING (3t 3%)*

Abstract |

The present paper gives the notion of L*-hypoellipticity for differential operator and
proves that a class of differential operators of mixed type are of L ~hypoellipticity on their
degenerated curves.

Consider a second order operator
Lni =2, D% s+ w2 D% 25+ aD gt + D 0+ cu, . ()
where @, b, ¢ are smooth functions. Evidently, (1) is of mixed type in any
neighbourhood of =0, and its Hamiltonian vector fields is '

+2a;2§2 51 —fz 5 2)

It i8 easily seen that the set of radlal pomts, 2, conslsts of three parts 21U22U20,
where

HL=2w1§1

21={(0, @3, &1, 0) |§1#0, 2. €R'},

2s={(a1, 0, O, §2) l§2#0 miERl}, 3

Eo—{(o 0, &1, &2) |§1=E2+#0}. v

. We say that the operator P(wz, D,) is of Lz—hypoelhptmlty at point =z, if for

any given neighboﬁrhood of @, O(wo), there exists another neighborhood of o
O (w5) O (@) such that ¥ €0~ (0’ (w)) when u€ L?(0(a)) and Puc 0~(0 (o)) « [P~
hypoellipticity for (1) in E?\{0} has been discussed in [4]. If ns €31 (na € 2p) We
have proved in [4] the following lemma.

Lemmal. ILet Re ~/ —1a(ws, 0)>8/2(Re~/ —15(0, v5)>8/2) and let u€
L2,.(R?), ny(ng) EWF (Ias). Then ny(ng) EWF (w).

Next we shall study the hypoellipticity at (0, 0, 1, 1) =mn,.

Lemma 2. There ewist conical nesghbourhoods of mo, no= (0, 0, 1, 0), A" (no) =
T*(R2) and N (nh) =T*(R2), and an elliptic Fourier operator F defined on A (1) X
N (np) T (RE) XT*(R}), and an elliptic pseudodifferential operator A_y€OPS™
(A" (ng)), such that
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FA LF = le,,,+2y2Dy,+Q(y Dy) mod OPS—= (./V' (np)). 4)
Here the principal symbol of Q satisfies '
Imge(0, 0, 1, 0) =Im(a(0, 0)+5(0, 0) +~/—1)). (5)

Proof Find a generating function p==8(y, {) &, {=E&,/€; such that S satisfies

the following partial differential equation _ '

(8 =80 +8,L7= 18y, +2y58,,. (6)
Obviously, §=y1+y.(1—1/¢) is a solution 0, (6). Therefore

det(pye) #0. a8 y=0f &= &a—1,
for p= (y1+ya(1—§1/€5)) €. It follows that @ may be regarded as a generating
function for a homogeneous symplectic transformation 2 of T* (Rz) DA (ng) onto
A7((0, 0, 1, 0)) cT*(RZ), which satisfies :

@1 = ;=8 — Zs,, wz Pea= Sz,

Y
M=Qy, = Sylflv N2= Py, = Syagi'
Combining (6) with (7), we have
F (w1€1+w263/€1) = Y1m1+2yams. ®
On the other hand, in A" (n,)
D7 Li=w4D,, +2,D2,+ D31 + (@+~"=1)+bDyD'+R_4. 9)

Here and later, R; denotes an oper atorGOPSt. From the theory of [1], it follows
that there exists a Fourier integral operator F' which is élliptic at nyx (0, 0, 1, 0)
such that (4) is valid for another neighbourhood A47((0, 0, 1, 0)). (5) is the

immediate consequence of Lemma 4, the proof of which is postponed until the end
of the present paper. In fact

subprincipal symbol of F (D, L) F~'=qo+ % N =1
and
subprincipal symbol of D;sz =g+~ =1 +b&/6+ —g— N =1,

which implies (5). The proof is completed. _ '
Lemma 3. ILet v€L* andlet Lyw= le,,,V—l—ZYgDy,V +Q(y, D)V =fcI? If

Re~v/ —1 ¢0(0, 0, %) > , for all nE€ 84, (10)
then there is a constant p>>0-such that for any @ E 07 (B,) (B,=A{y| ly| < p}) with
_ 9 (Y) =0, yipy, + 2430, <0, (11)
the inequality _
O, lpv|><Re(~ =T pLw, gv)+ o2, 12)

where C, depends on only @ and Ly, is valid.
Proof For any p €07 (R?), we have
Ly (pv) — (y1Dy,p+2y2Dyp) v— [Q, ¢lo=pLyw.
Therefore '
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(V=T oL, gv). _ : S
=<<‘\/ '—1Q - )(‘Q’U fP’U> ('\/ 1 [Q; gD:l‘U, QD'U) +( (yi¢y1+2y2¢yz) v, pv.

(13)
Noting Condition (10) and using the techniques of [8, Th2.2] and Garding's
inequality, we can obtain for any ¢ €07 (By)

Ro((v =T @—2) oo, po)=2min (Rev=Tau0, 0, 1)—5 )il

Inl=1
~Orplprl*—C,lo]2s.
Here 0z, depends on only @ and is independent of p. Because condition (11)

guarantees that the last term of (18) nonnegative and [, ¢] is an operator of
order—1, it is easy $o conclude (12) when p is small enough
Theorem. Suppcse that Re ~/ —1 Ta(0, 0)>8/2, Re N =15(0, 0)>3/2 Then
1) is L*~hypoelliptic at x=0. o
Proof If the conditions in this theorem are fulfilled, then one can ﬁnd a
constant d>0 such that Re~/ —1 a(@y, 0)>8/2, and Ren/ —1 b(0; @3)>8/2 when
|o1| <d, |@2]| <d. Hence one can find a disk O; in which any characteristic curve is
bound to approach to (@, 0) (or (0, wa)) with |@1|<d (or |as|<d). By
hypoellipticity of elliptic operators, it is easily seen that (@, £) EWF(u) when
&3+ 0263%0 and Lu € 0°(04). On the other hand, from Lemma 1 it follows that
(w1, 0, 0, &) and (0, s &, 0) are not in WF (u) and P is L*~hypoelliptic at (21, 0)
(or (0, ) with 230 (or @2#0). In fact, we come to the conclusion that the set
81=T*(0)\{(@1, &5, &1, €2) | w1+22=0 and &1=E&,} does not meet WEH (u). Lét (=,
| £) €8, with ##0. Then the bicharacteristic  passing through(w, £) are bound to |
enter a coniocal neighbourhood of (21, 0, 0, £2) or (0, 3, &1, 0) for some (a1, £3) 6r
(o5, £, which does not meet WF(u). By Hoérmander’s theorem on the-
propagation of singularities we have y N WF (u) =@. Let (0, £) =(0, 0, &, &) €8y
with &>&,>>0. The bicharacteristic v(s) passing through (0, &) is of the form
xi(s) 0, wz(s)—O

e v I ==yt (14)

T4 is easy to see that (s) is bound to enter any conical neighbourhood of (0, 0, 1,
0). The remainder of proof is the same as before. Analogously, we can get the
results expected if (0, 0, &1, £2) €81 with 0<§; <€, or other cases.

Now we proceed to study the set 7%(0:)\Si. Let F be the Fourier 1n’a90'ra,1
operator mentioned in Lemma 2. Set v=F""y, FD;*L; F‘w=f;. Then the'
intersection of WF(f1) and a conical neighbourhood of (0, 0, 1, 0), A7, is empty.

Lyw=y1Dy,+2y:Dy,+Qu= fy, in N, (15)
where @ satisfies (5). Construct a homogeneous function {(n) of order zero, in 7,
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with (n) =1 as |7o/m|<8/2 and P(n)=0 as |na/m|>8. Let g(y) €07(R?)
with g(y)=1 near y=0 and supp ¢g(y) Xsupp P(n)N,. Denote by ¢ the 4
pseudodifferential operator with symbol (z) A+nD)¥2(1+e*})71/2, where 0<s<<
1. Obviously, £ are uniformly bounded in OPS*(R?) with respect to .
If v€ Hi' (R?), then W =1 (g9v) makes sense and satisfies
LW — (= ~"=T Hz, () (0)
=3 (gf1) +Ri1v -+ ((yiDylg+2y2Dusg) v). (16)
Here (Hz,(y3)) stands for the pseudodifferential operator with symbol H ., (¢9),
R;_, are uniformly bounded in OPS*~* with respect to ¢, and the first and third
terms are smooth at origin. Computing yields
(Ho (§2)) = — (s— D) iz + By,
where
& (§2) = = (P () s+ 2 (n) 13) (LA-12) 2 (1+ £ 202
and B®_; is ano ther pseudodifferential operator uniformly bounded in OPS*~*(R?)
with respect 10 s. Rewrite (16) in the form
LW+~ =1 (1=)W
=z (9fs) +4i (90) + Re1(gv) + Beao+ 9 (39 +2929,00)/~ =1, (17)
- Ohoose function @,=(o™(yi+95/2)) with @(¢)=exp[—1/(1—2¢)] if 0<t<1/2
and @ (#) =0 if >>1/2. We can check that this function g, satisfies (11). Besides, we
always assume that p is so small that g=1 in the support of .. By applying
Lemma 3 to (17) it 's easy to see that
(O, + (s—1)) oW |l2< IWlZi+Re (V=T 0, (LaW) + (s— D) Wp,), ¢, W).
(18)
Note that the ¢ (gv) and o5 (Y19, +2Y 29,,,)@) are 0. By mduotlon and (18), it
follows that
(Op+s—1) |@ W |* <O} +0{ |, W |,
which implies
(s—1+40,,/2) |, W|?<0. if s>1 (19)
for another constant O;. Letting ¢|0 in (19) we get v € H,(0, 0, 1, 0), which
implies w€ H,(0, 0, 1, 1). Here H,(y, n) (H,(w, £)) denotes the Sobolev space in
the microlocal sense. Hence there exists a conical neighbourhood of (0, 0, 1, 1),
N4 such that 4 € Hy(z, £) for any point (w,‘ &) € 4,. Form the same reason ag
before, it follows that w€ H,(», £), when @;+w,=0, £1=¢§, x€0,. Now we have
proved w€ H,(O1). Repeating the discussion above, one can get w€ H,,(0O7) for
any n € Z. The proof is completed.
Remark. The condition Re /=1 a(0, 0)>8/2 (Ren' —1 (0, 0)>8/2)cannob
be dropped. For example, H (#;) € L}, is the solution to @, DZu+wsD2u— ﬁDw,u
—8~/ =1 D,u=0, but H{)is not in 0=({0}).
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Remark. It is easily seen that operator (1) has H'-hypoellipticity if
Re~ —1a(0, 0)>1/2, Re/ —1 (0, 0)>1/2. By the same argum‘en’a as in the
proof of the theorem we can know under what eond1t10n @) is of H "
hypoellipticity for m<0. ‘ ' '
What we shall do next is involved with the invariance of subprineipal symb:ol.‘
As is well known, under miocrolocally equivalent transformation subprincipal
symbol is invariant on multiple characteristics. Under the present circumstance,
19 € 21U Zo|_JZ, is only radial, and not muldiple characteristics. In order fo avoid
$his difficulty, we also need the following lemma.
Lemma 4. Let Z be a homogeneous canonical transformation of T*(Ry) DI (ng)
onto I' (ny) CT'* (Ry) . Assume that P €OPS™(R") has real principal symbol and ny is in
" the characteristic set, 2 (p). Then one can find an elliptr&c Fourier integral operator F
associated with & such that
Im(subo(FPF1))=Im(subo(P)eZ ™) on Z(Z(p)) NI (ny). (20)
Proof From the definition of subprincipal symhol and the hypothesis that P
has real principal symbol, it follows that
v Im (subo(p))=—~/—1 (the principal symbol of (P-P*)/2).
. Let us study a Fourier integral operator

Fu(a) = | e e@n=m oz, m)u(y)dodn (21)

associated with %, where s(#, %) is the generating function and z€8° does not
vanish at the conical neighbourhood discussed. Then by the result in [2] we know
On(FPF™) =p,0 % . Therefore, it is easy 1o see that
2Im(sub o (FPF)=—+/—1 {the principal symbol
of [(F— (F)MPF '+ (F )" (P-P)F'—(F)*P*(F*—F™")]}. (22)
If '

(F— (F3)")u(@) = [T g (o, myu(y)dydn

with q(w, n) €877,
then ops (F—(F)") PF) = (puo® Dby (y, 1), onos ((F2)*P* (F*— F 1)) =
(PmoZ” ™) ho(y, m) for some smooth functions A;. So (22) implies at once (20), for

Pn=0 on 2(p).
Now it remains only to find a suitable amplitude (s, ) in (21) to guarantee
the validity of (28). Assume that

Flo(y) = je“mw-“w) b(a, 7)o (a)dwdn.

By the standard calculus of Fourier integral operators, we obtain b€&8° and the
principal symbol of b, »
bo (w, n) = ldet Sen(, 1) I/“O(wv 7).

(28)

-
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Obviously, (23) is valid if ao(w, ) = |dets,, (2, 1) |*/2.The proof is completed.
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