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AN INEQUALITY CONCERNING THE
DEVIATION BETWEEN THEORETICAL
AND EMPIRICAL DISTRIEUTIONS**

ZuA0 LINCHENG (,umaz) *

Abstract

In this paper the author establishes an inequality conéerning the uniform deviation
between theoretical and empirical distrlbutions. An application in strong convergence of

nearest neighbor density estimate is also discussed.

§ 1 In_tro‘duction

The result. Let @y, -+, @, be r points in R%and .o/ be a class of Borel sets in R?.
-Denote by 4%(w4, +++, @) the number of distinct sets in {{wy, -, 2} N4, ACH}.
Define : ' : '
‘ m*(r) =%£|,13,r€deA” (@1, @)
Vapnik and Ohervonenkis (1971) showed that either m*#(r) =2" for any positive
integer r or m< (r) <r*+1, where s is the smallest & such that m~(k) #2*. A class of
sets .o7 for which the latbter case holds will be oalled a V-0 class with index s.
Suppose that w ig a probability measure on R%. Let X4, X, - be a sequence
of i. i. d. random vectors with common distribution w, and u, be the empirical
‘digtribution of X4, +:+, X,. Denote a “Jdistance” between w, and @ by
D,(, ) =sup| pun(4) = (4) |.
“Throughout this paper we assume that D,(<, w), sup | ha(A4) — 2, (4) | and sup

pn(4) are all random variables. We shall prove the following theorem.
Theorem 1. Let o7 be a V-0 class with indew s such that
' sup p(4) <8<1/8. . €Y
(Sp-2

Then for any >0 we have
P{D,(, w)>e}<b (2n) oxp ( ns?/ (918 +4s) ) _
+7(2n)* exp (— On/68) +22**n*Bexp (—On/8), @
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provided n=max(125/¢? 68(1-+s) (log2)/d).
' The proof of (2) is based on an important inequality proved by Devroye and
‘Wagner (1980). ’

§2. Historical Notes

A fow remarks concerning this inequality are in order. In 1971, Vapnik and
Chervonenkis proved that for any >0,

P{D, (o4, u)>s}<4exp(—ne?/8) BA*(Xy, +++, Xa,). @)

This inequality is quite general since no restrictions such as (1) are imposed. In

nsing this inequality, an estimate of m*(n) must be given, see, for example,
Gaenssler and Stute (1979), Wenocur and Dudley (1981).. '

The weakness of (8) lies in the fact that in many applications e=g,—>0 as n—>

oo, In this case ns2 may not tend to oo or tend to oo very slowly. For this reason,

the inequality proved by Devroye and Wagner (1980) is somefimes more useful.
They proved that if sup w(4) <8<1/4, then for any £>0,
-2

P{D,(, w)>e}<4m“(2n)exp(—ne?/(645+4¢))
+2P{sup pan(4) >20} . (€Y

for n=>83/¢ If we further have _
- sup sup Ja—y|<p<oo
Aced x,yc A

and

sup (8 (@, p)) <D<, 5y

‘ ~where ||| is the L, or L, norm in R’ and 8(w, p) is the olosed ball with radius p
centered at », then '
P{D,(, w)>e}<4m*(2n)exp(—ne?/(645+4s)) +4n exp(—nd/10) (6)
for n=>max(1/5, 85/¢?). '
~ This inequality is most useful when .o/ is the class of balls with the same
diameter (norm L, or L.). Otherwise & may be much larger than sup w(4), and

(6) gives no improvement over (8). Chen and Zhao (1984) made an essential
improvement in the one-dimensional case: '
Let .7 be a olass of intervals in R, satisfying sup w(I)<d<1l. Then there
Ies

exist positive absolute constants Oy, Oy, ¢+, O, such that for any >0,
P{sup | pn(I) —p(I) | > &}

<O01(e7*/3/n+1/b8)exp (— Cane?/8) +Ozexp(—Ogms), )
provided n/log n>Cy/s. :
The proof of (7) relies on a result concerning the strong approximation to

N
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Brownian bridge of the empirical process on R, The argument fails in the general
case d>>1. The inequality (2), to be proved in the next section, gives a satisfactory
generalization to the case d>1. ‘

'§3. Proof of The,oi'ém 1

Set 8y 2E IS G D,
" where r will be chosen later. Then V . o
T

When n> 125/s2, we have n=>85;/¢2. From (4), the.dqﬁnition of V-0 class and the
fact that

0918, <8, <20

| sup (4) <Bi< 1
o >
it follows that
P{D, (L, ) >&}<4{(2n)*+1}exp(—ns?/ (643, +4g))
+2P{sup wa,(4) >28,}
2

<5(2n)%exp(—ne?/(64~/28+48)) +2P{D,,(H, u)>5},
‘provided n=>125/¢2, v - v
" When 3n=>68(1+s)log2, we have 29-n>85,/8%_; for j=2, 8, .-, r. As befors,

from (4) and sup w(4) <82<;4L-, it follows that
o . .

P{D,(f, w)>e}<b5(2n)*exp(—ns?/(915+4s))
4 (2+5) (2+2n)%exp (—2nd3}/ (649,+494))
+27P {Dﬁ’n ('% ,u') >65‘}v
provided n=>max (68 (1+s)log 2/3, 125/5?).
Using (4) and sup w(4) <8,<% repeatedly, we obtain
P{D, (oA, )>e}<B(2n)* exp(—ns®/(915+4s))
A ’ |
+ 312/+5(2/+2n)* exp (—2nd}/ (68311))

+2P{Dyo(t, 1) >} AT st TasntToum ®)
provided n=>max (68 (1+s)log 2/, 125/¢%).
It is easy 1o see thai ‘
2983/8;41>2j0, j=1, ++r, r—1. S ®
Henoe it follows from (8), (9) and 2V+<e®™/68 that | '
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Taw<B(2n)* | 2040-cxp (— 23}/ (683312))
<5(2n)* g (2145 exp (—2/9n/€8)

<5(2n)8§”1 exp (—jon/68)
‘=5(2n) sé:—&»/eS ¢! _ e;a»/GS) -1
<5 (2’)’5) 8 (1 — _2_(1-1.8));—-13_6"/68
<7 (2n)*exp (—56n/68), | F (10)
where s>1 is inveked. ' ) ' ’
When 3n=>68(1+s) log 2, we have 2d,>2. By (8)
 Taas<2( (2’+1n)‘+1)exp( 27nd2/8). (11)
Take r=r, to be an integer such that n/2<2"<n. When dn>68 (1+s)1og 2, we
have n?32>2, nd,>+/2 and nd? >23. By (11) we have
J5,n<2n((2n*)*+1) exp (—n?37/16) <4n(2n?)* exp (—dn/8). (12)
Formula (2) follows from (8), (iO) and (12). The theorem is proved.

§4. Applications
Theorem 1 has some applications in sirong convergence problems involving
the uniform deviation between frequencies and probabilities of a olass of events. As
an example, we consider the nearest neighbor (NN) density estimates proposed by
Loftsgarden and Quesenberry (1965). Suppose that X is an R“—valued random

vectors with distribufion w and unknown dens:d:y function f. ‘The so called NN
estimate of f(2) has the form ' ‘

1.0 = b/ 0 @) 6D, oy SO ER, (13)

where k= Io,.<fn is a positive integer chosen in advance, @,(s) is the smallest ¢>0
e

such that the cube [w—a, z+a]=]][2"—a, s®+a] contains at least k¥ sample
=1 : R

points. As an application of Theo;'.e,m 1, we prove a theorem about the convergence

rate of sup | Fa(@) —F @) ].

In the sequel, we use U, a, Oy, Oy, -+ for some positive constants independent
of n and «. For o= (2™, i:++,-2®) €ER?, y= (y©, ++-, y®) ERY, write

. - 3f B _®)
and take |y—a| —max| y¢ )—-m“>| We say that the density function f belongs to' A~

class for some A€ (0, 2], if A€ (0, 1] and |f(y) —f(w) | <0]|y——a;|l’“ for any z, y € RS,
or, A€(1, 2] and f is bounded and

If ) —f @) —f"(@) (=) | <O|ly—a|*
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for any @, y € R®. We have the following theorem.
Thoeorem 2. Suppose tkat f belongs to A.—class for some AE (0.2]. Take k= o(n)

and L . .
(d+z)/(d+s;.) T o
‘ 'where B>0 is any gwen comtant Tkm
llmsup{(n/k)’“/“’*“suplf (@) —f(2) I}<Ua s. B )

To prove this theorem, we need the following lemma. In the sequel, w, denotes
the empirical measure of Xy, «++, X,. Besides, a cube of the form [#—a, o+a] is
called a regular cube. . ' Coal ‘

Lemma 3. Let M be a class o f fregulwr cubes satisfying the measurability
conditions mentioned in paragraph 1 and the condition - :

sup ,44,(4) <k_/n<1/8ﬂ.
Take k=0 (n) and ‘
_7]% =g ( 10_5,,,,_ )1/(1+2r) ' ’ @)
where r>0 and B>0 are two given constanis. Then ‘
lim sup {(%)“ sup | i (A) — u (4) | }<O; a. 8.
AcoA

Noticing that .27 is a V-0 class, one can obtain Lemma 3 from Theorem 1
'immediately. The proof is omitted.
Proof of Theorem 2 Take k=o0(n) and

_]c- >B ( log n )(d+7.)/(d+3}.)
n n

__; 1 (B \ME
I_f" 61 '\n) ’

C A/(d+a)
@07 =076 ()77,

B,={a: f(&)=V.},
where 64, 026 (0, 1) will be chosen later. ‘
" Let u(w, @) and w,(x, @) be the probability measure and empirical measure of

Pui

[—a, x+a] respectively. Put M =max(sup f(x), 1). We have -

P{ sup | Fu(@) —f (@) | > g} <T,+d | )

where '
L=P(U) (@ >F @ +a), 3
| L= P(U (@) <f @ ) €

LeP(Ua@<t@D. (19



194 A "~ CHIN. ANN. OF MATH. o -+ Vol. 9 Ber. B

”2“‘”‘)={ f]{c>( f()) T

Fix s € B,= {z: f (#)=>V,}. Take #2<1/8. Then g,./f(w)<02<1/8 Noticing 1/(1+t)
<l- 7t/8 for 0<<t<1/8, we have

26(2) <{ ) ( 8},?;) )FN (nf(w) )m

w b@)=["fwa
< 2,0 () O 21,0}
= (26,(@))% (@) [}+02 (261(2))"/f (@)]

<E(-F sty )ovo g /19)
) 4 A/d
<n( T f‘ZIZ:))“L nf(w)) /f(””))

Fix #,. Take #; small enough such that 0,09/ "<—§ 6,. Then

0O, ( ngw—)— );./d< 020%/4 ( ——1]% )M(#d) < _3_ 01_105 ( lc_ ){z./(d-n.) _ % Tne

It follows that

where

T+ follows that

y,(m,b(a;))<k<1 ;fg") L)<k, | .[

and
e b.(a)) b/ 2nl).
Hence, by (19) and Theorem 1, 'WG have
- L<P{p(ua(a, 50(@) — (@, 5,@)) >,/ M)}

<Ot {omp (— AL ) oxp (108,

where & is a constant depending only on d. In view of (14), we have for large n
I,<Osn*{exp(— g 05 M 2p1+24/@+2) log n/400) 4+exp(— ]c/ 68)}.
Taking 6, small enough, we have

2I,< 0. (20)

In the same way, we can take #; and @, such that
SS<oo, . , (21)

By (17), (18), (20) and (21), we have
3 Pigy' sup| fu(2) —f (@) | >1} <o,
By Borel—Oantelli’é lemma
limsup {g7* sup| /(@) —f (@) [}<1 a. s, (22)

“ " 'Fix 0y, 05, and take 2b,= Oy (b/n) @ Fix 5 € B = {o: f(2)<V.}. With small
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O; we have

B, b = [ F@)I< (28 (o) + 028,04

_’“_ [0710%+0,08+%] < s /2n<Fs /.

Taking r=A/(d+A) in Lemma, 3, we can assert W1th probablhty one ’aha,t for n
large enough, the inequality

(@, b,) <u(w, b,) +20;(k/n)@+2n/@+
<Fk/2n+20;(b/n) @20/ @40 < |

holds uniformly for « € B;. By definition, for € B,

(%) =>b,— % O (b /m) @+,
Fu(@) =04k /n)»@+»,

It follows that

lim sup {(n/k)"“*» sup | f.(2) —f (@) |} <O, a. 5. (23)

n;eB

Theorem 2 is proved in view of (22) and (28).

Remark. After this paper was in proof, we learned of the results by

Alexander, K. S. (Probability inequalities for empirical processes and a law of the
iterated logarithm, Ann. Probability, 12 (1984), 1041-1067). In some cases, his
inequalities are sharper. However, the Theorem 1 of the present paper provides a
uniform inequality, which is easier to understand and apply.
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