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THE TOPOLOGICAL AND DYNAMICAL
PROPERTIES OF NONORIENTABLE SURFACES

ZHU DEMING (k& n;])*
Abstréct

Four topological and dynamical properties of nonorientable surfaces are proved. ‘_Thé
first is that for every continuous flow defined on any nonorientable closed surface, ‘thé‘re
exist periodic or singular closed orbits. In the case of the projective plane, it confirms a
conjecture of professor Ye Yian—qian in his lecture notes “dynamical - systems on surfaces”
Secondly, the author gives an exact upper bound of the number of closed curves on
nonorientable surfaces, which do not intersect each other and the complement of their sum
is still connected. The third is concerned with the upper and lower bound of the number of
the periodic or singular closed orbits with certain propert1es The last is related to the
connectedness of the complement of a lifting curve on'two-fold covering space. The first

_ property may be considered as a gemeralization of Kneser theorem from Klein bottle to
general nonorientable surfaces and the second as a genera.hzatlon of [4] Theorem 9.3.6
from orientable surfaces to nononentable surfaces.

In thls paper, we show four topological and dynammal pI'OpeI"bleS of non-
orientable surfaces. .

First, we give a definition of singular closed orblts (sumply by SCO).

Definition. Let L be a connected set of singular poinis, generalized foc':, and.
pambolw orbits. Then L is called an SOO, if and only if v :

1) When two parabolic orbits belong tothe same parabolic sector, they must tend o
(or come from) different saddles or different para-bolic sectors of a saddle;
2) When we regard each generalized focus as a single point, L is a simple closed
ourve; :

 8) When the number of smgulwr points is finite, any two generalized foci (¢f

ewist) in L cannot be connected only by one parabolic orbit which belongs to L (here we
consider a generalized foous as a eritical point with only one parabolic sector).

In Theorems 1 and 2, we need the following hypothesis.

(H) The set of the accumulations of singular points is countable.

Now, we prove a general property of dynamic system on the real projective
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plane PR2,

For simplicity, we denote by PCO the periodic orbit, and let n (may be +oo)
be the number of the singular points, ny (na), % be the number of the resources
(sinks) and the singular points with index -1 respectively, supposing the latier
possesses &1 (£s) repelling (attractmg) pa,ra,bohc sectors and separatrices. We denote
m=Max{ks+ny, ka+mny}.

Theorem 1. Suppose f is @ continuous flow defined on PR?, and the condition(H)
is satisfied. Then there exists at least one POO or SCO. In particular,

1) if either there is only one singular point and it is elementary or there is a
closed tfmns'vefrsal to which the disiribution of the smgulwr PoOINts s concenirated, then
tlwq"e ws a one srz,ded POO

2) 'z,_f n< 400, k=0 (5>0), thm tkere are ai least two (m) POO’s or 8CO’s,
among which there is a one-sided PCO or SCO.

-In order to prove the theorem, we need some lemmas.

‘By virtue of [1] Lemma 8, we have the followmg lemma,

‘Lemma 1, If n<+oo, then

_ . [O fforr .Ia>0,

M(M )>{1 ' Jor k=0, o
, n—1 for k>0, ’

N(N)>{ for k=0, :

where M (M'") and N(N') are the wwmbers of the separatrices of class B and class A
going out (into) saddles respectively. :

Now, let T'(T") be the number of the separatirces going out (into) smgul'a,r
points, and regard each para,boho sector as a single separatrix. Then if we notice
that in the proof of [1] Lemma 8, the number of the separatrices gomg out (into)
the singular points with mdex +1 is considered as 0, we immediately have the
following lemma, .

Lemma 2 I f k>0, then

T>MA+N+k>n+k—1, '

T"=>=M'+N'+ka=>n+ka—1 @

. Lemma 8,1 For any positive integers K, K if B+K—1 orbits jomt B

singular points, and each end of each orbit tonds to one of these B points, then they
construct at least K SOQ’s.

For the sake of conciseness, below, we may as well assume m— =k1+n=>kat+na.

Proof of Theorem 1 Case 1) has been proved in the paper [2].

. Now we prove case 2).,

Let s be the number of the POO’s. We consider the tendency of the 7' separa-

trices. Because they cannot go into ny resources, their w-limit sets consist of no more



No. 2 Zhu, D. M. TOPOLOGICAL AND DYN AMICAL PROPERTIES 199

than n—n, singular points and s number PCO of. Then by
T>{n+1= (n+s)+ (2—s) —1 for k=0, &

. n+k—1=(n—=mny+s) + (ny+kb,—s) —1 for k>0,
and regard each POO as a point in the meaning of Lemma 8, the first part of case
2) follows immediately. ‘

‘We assume there is no one-sided PCO or SCO. Because each two-sided PCO or -
‘800 bounds a disk ([6] Lemma (4) (iii)), and the number of the SC0’s and the
families of homotopic PCO’s is finite, we can contract these disks into a single
singular point repeatedly. At last, there will be no PCO or SCO, but it is contraly
40 what we have proved, so the second part of case 2) is proved. .

Next we consider the cage n=+co, and suppose there is no PCO or SCO.: -

Under this assumption, it is easy to see that the following statements are true.

a) The boundary of each elliptic sector of any gaddle S contains no singular
ipoint besides S itself (otherwise the boundary will be an SCO by the definition).

b) An elliptic sector cannot be situated between two parabolic sectors (otherwise
its boundary must possess singular points besides §).

¢) An elliptio sector can only be situated between either two hyperbollc sectors '
or one hyperbolic sector and one parabolio sector (by b)).

d) Each elliptio sector can be contracted into the saddle itself and unchange its
index (by the index formula and ¢), so we may as well consider that there is no
olliptic sector. o

e) Any parabolio orblt (not a separatrix) cannot go info a parabolic sector
(otherwise by the strong w-stability of trajectories, this kind of parabolio orbits
will fill in a region and its boundary will be an SCO). ‘

f) Because the sum of the indexes of singular points is +1 and there is no
«elliptic sector, there exists at least one parabolic sector (here we regard a sink or
:source as a critical pomis with only one parabolio sector). We consider a parabolie

“orbit » (suppose r belongs to a repelling sector) of the smgula,r point S.By.e), r
only can go into a saddle §; and r is a separatrix of §1. By the same reason of e), r
must be the separatrix of two hyperbolic sectors of Si. Then there exists other
saparatnx Li, which goes out Sy, and only can go into some saddle Sz such that Iy

isa separatnx of S, and at least one side of L is a hyperbohc sector of Sa. Thus we
have another separatrix L, going out Sy, -+

g) Let L, be the curve made up of the orbit segments: r, Ly, Ly, <, 82 be the
two—fold covering space of PR? and Ly be a lift of L, in S2. It is easy to see that Ly

“can only tend to some point P; and its image P, (under the covering mapping)
must be an accumulation of sing'ula,r points (otherwise L, can be still extended
forward). |
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Now if we notice that the set of the accumulations of singular points ig
countable, and the set {L,|r is a parabolic orbit of S} is a continuum, we can
conclude that there are infinitely many SOO’s. But it is contrary to our assumptlon
of no SCO, thus the theorem is also true in case n=+oo,

Then we show the first general property of nonorientable surfaces.

Let M be a closed nonorientable surface with genus 9, a,nd f be a continuous
flow defined on M. ' :

Theorem 2. If n, the number of the smgulafr points, is fimte and there are ki
(ka) repelling (attracting) parabolic sectors and separatrices possessed by the singular
poinis with index +1, ny(ny) sources (sinks), then O, the number of the POO’s and
800’s of f, satisﬁes the inequality : ,
O>g+m—R—1, @
whefre m=max {'n,+k 5, B<[(g—1)/21* is the numbe«r of different closures of

|'r=,

nontrivial recurrent orbils; if n=+ oo, but the condition (H) is satisfied and there is
at least one parabolic sector (or a sink or source), tlwn there is :zt least ome POO or
SOO of f. : .

Proof - By Theorem 1> we need only to consider the case g=2,

The proof is smular to that of Theorem 1 we only need t0 make some remarks
as follows. ' ‘

i) The formula (1) now becomes

NN =n—(2—g)=n+g—2.

ii) When n< + oo we consider each olosure of nontrivial recurrent orbits as a
single “point” (in the meaning of Lemima, 3) Then the formulae (2); and (8), can
be rewritten as : Co
R T>M+N-+kiSn+ky+g—2,
and =

T>(n—- m+R+s)+(m+lo1-—R s+g 1)—1.

Then by Lemma 3 (E =n— n1+R+s, K= g+m s—R-1) and
O0>s+K =g+m— R, 1, ‘
the formula (4) foilows '

iii) If n= +oo the contmuous curve L, now, may go into a closure of nontn-
vial recurrent orblts besides the possublhty to g0 into an accumula,tlon

By [7], R<[(g9— 1) /2], so the proof of Theorem 1 ig still valid here.

Remark 1. Since we have used some new techmque in the proof of Theorem:
2, compared ‘with [8], we can give up here the finiteness assumption for the
number of singular points, and increase the lower bound for the number of DGO s

* The notation [ ] denotes the integral part.
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and SCO’s.

Now we show the second general property of nonorientable surfaces.

Theorem 8. Suppose M is a nonorientable surface with genus g. Then there ewist
m=s-+n closed curves, which do not intersect each other, such that the complement of
their sum on M is still connected, where s is the number of one-sided curves and n that
of the two-sided curves, if and only if (s, n) satisfies
' [g—1 if g—sisodd,

s+2n<{ . .
if g—s is even.

®

Proof We will use induction. _

When g=1, M=PR?. If there exist m=s+n non—intersected cloged curves such
that their complement is connected, then we must have (s, n) = (1, 0), beeause the
complement of any $wo-sided curve on PR? is disconnected ([6]) and any two one-
gided curves must have non—null intersection. On the other hand, only (s, n) = (1, 0)'
can satisfy ().

When g=2, M=K?, i. e., the Klein bottle. It is easy to see that only (s, n)=
{2, 0) or (0, 1) can satisfy (5), besides (s, n)=(1, 0). In the first case we may
choose two onesided curves of type k*'A" for some integer n ([5] or [2]). In the
second case we can choose a two-sided curve of type h*'. Obviously, any other m
non-intersected closed curves must cut K? into different pieces.

Supose the theorem holds when g=k—1and g=Fk, we want t0 show it is still
4rue when g=Fk+1.

Now assume there exist m=s+n non—intersected closedeurves such that their
.complement is connected. »

If s>>0, then let L be one of the one-sided curves, and g4 be the genus of M;=
M—L. From

89— g— (M) — (M) ={2—291—1 .if M4 orienfoable,
- 2—g,—1 if M, nonorientable,

-we have

| (g—1)/2 if My orientable,
1={ g—1 if My nonorientable.
If M, is orientable, then g is odd and by [4] Theorem 9.3.6
n<(g—1)/2, s=1. '
It follows that
: s+2n<g.
If M, is nonorientable, then by s=s;+1 and inductive assumption

we have
gi=g—1 if g—sis odd,

s+2n=1+s;+2 <{
" 1A g1+1=g if g—siseven.
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If =0, then L is a two-sided curve. We can prove (s, n)=(0, n) must satisfy

(6) in the same way, if we notice that in this case '

[(9g—2)/2 if M, orientable (9 must be even),

1={ g—2 if M, nonorientable. .(6)

On the other hand, if we have been given a pair of numbers (s, n) which

satisfies (5), we have to show there are m=$-+n non-intersected closed curves on M
such that their complement is connected.

It is very easy if we regard M as a sphere with g cross—caps, i, e. if M* ig a
sphere with ¢ boundaries by, Iy, -+, 1,, H is a mapping which identifies the diagonal
- pointg of l; (i=1,2 - ¢), L=H (L), then M=H (M *). Evidently, we may choose.
Ly, Ly, -, L, as s one-sided curves. If s<g and n>0, we may choose n Pairs of one—
sided curves: (Losr, Loys), ¢, (Lopan-i, Lg;2,). To each pair of curves (L, Lsyis1),
‘we first cut out a small are from each curve, then use two pieces of arcs contained
in sphere to joint them into a simple closed curve (see Figure 1.1), which must be.

two-sided and its complement is connected (see Figure 1.2), ‘ (

Figure 1.1 Figure 1.2

Thus we have finished the proof of the theorem.

As an application of Theorems 1-8, we prove the third generalproperty of
nonorientable surfaces.

~ Theorem 4. Suppose M is o nonorientable surface with ‘genus g, 8 @

coniinuous flow on M with m=s+n non—null-homotopic and non—intersected POO’s and,.
S8COO0’s which are 10t homotopic to each other, where s (n) is the number o f one—sided.
(bwo-sided) POO’s and SOO’s. Then .

1) s<Xg and there ewists a Jlow f such that s=g;

i) s=14f g is odd and the number o I singular points is finite;

iii) g—sis even if the number of singular points is Jinite; moreover, n+r<<
max{1, (8¢g+s—6)/2} if 9>1 and M is compact and without boundary, where 1 is the:
number of the different closures of nontrivial recurrent orbits. 2 +s<<g*™,

| ** Ii follows that nt-2r<2g—3 and s+ntar<max{l, 3g—3}.
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Proof The first part of conclusion i) is a simply corollary to Theorem 3, since
the complement of any one-sided curve is connected.

If we construct a continuous flow on the south sem—sphere (with g cross—caps)
as Figure 2.1 and on the north semi-sphere as Figure 2.2, then it is easy o see that
the second part of conclusion i) is also true.

‘We use induction e prove ii).

Figure 2.1 Figure 2.2

By Theorem 1, the conclusion follows when g=1.

Suppose it keeps true when g<<2k—1, for k>1.

Now we consider the case g=2k-+1. Assume there is no one-sided PCO and
SCO. Then by Theorem 2, there exists a two-sided PCO or SCO L. By the same
inference in the proof of the second part of Theorem 1, we may assume L is
non—null-homotopic.

If M — L is connected, then by formula (6), M — L must be nonorientable, and:
gu_z=9—2. By induction hypothesis, we lead to a contradiction. So the second
conclusion follows in this case. V

If M — L is disconnected, denote it by M —L=M;|J M, and let g; be the genus
of M, for ¢=1, 2. From the relation

(M) =3 (M—L) =y5(My)+x(Ms,),
we have
@C—g1—1)+(2—ga—1) if both are nonorientable,
2—g=(2—g1—1)+(2—2g,—1) if only one is orientable,
(2—2¢1—1) +(2—2g,—1) if both are orientable.

In the first case, g:+ga=g. It is easy to see that either g4 or g, is edd. Then by
the induction hypothesis, conclusion ii) follows.

In the second case, g=g1-+2¢gs, and g, is odd. So the situation is the same as
above. : ‘

The third case is impossible, because the left hand is odd, whereas the right
bhand is even. : .

Before proving the third conclusion, we introduce a lemma.

Lemma 4. Suppose M is an orientable -closed surface with genus ¢, f is a
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continuous flow on M. Then
n+r<{1 when g=1,** »
. L39—38 when g>1.

This lemma can be proved by induction similarly, if we notice r< 9([8]) and
the property A: the largest number of the non-null-homotopic two-—sided ~L£00’s or
8CO’s which do not intersect and are not homotopioc to each other and not homotopie
to any boundary on a compact surface with one hole (two holes) is larger by one
(two) than that of the same surface without hole.

The proof of the third part of Theorem 4:

Lemma 5. If M is a nonorientable closed surface with genus g where g is even
and s=0, then

1 if g=2,
n+r<{(3g—6) /2 if g>2.

Proof Thisis an immediate consequence of lemma, 4, if we consider the two—fold
covering surface T',_; of M.

We can also give an intuitive proof as follows. Qonsider M as a sphere with ¢
oross—caps Ly, -+, L. Because s=0, by Theorem 2 and Theorem 4 (ii), there must
exist m(<g/2) two-sided PCO’s, SCO’s or ONR’s (i. e., the closures of nontrivial
recurrent orbits) connecting Lj, «+, L, such that their complement M, is a sphere
with 2m (<g) holes (in the case of CNR, we replace ONR by a closed transversal).
Now it is easy to see that there are at most 2m—38 non-null-homotopic two-sided
PCO’s or SCO’s on M, which are not homotopic to (and do not inversect) boundaries
.and each other. Thus the lemma, follows.

Now we consider the case s>0. If s=g, we consider M as a sphere with g cross—
«0aps Ly, +-+, Ly, and each L; is a PCO or SCO. In this case, M — 3L, is a sphere with
.9 holes, it is easy to see that around these holes there may be at most 2g-3 non-
null-homotopic two-sided PCO’s or SCO’s which are not homotopic to (and do
‘not intersect) each other and r=0.

If s<g, let Ly, ++-, L, be these one-sided PCO’s or SO0’s and M;=M— 2L, By
‘the conclusion (ii) we have just proved, g—s must be even.

First suppose M; is orientable. We can regard M as a torus with genus (g—s)/2
:and with s cross—caps Ly, -+, L, In the same manner as above, we can see that
there are at most 2s—1 non-null-homotopic two-sided PCO’s, SCO’s (they are not
homotopic to and do not intersect each other) or ONR’s Oy, e+, Ogs_y around Ly, ---,
L,. Then we consider the surface M, the connected component of M—2C; with
genus (¢—s)/2, and notice the property A.The conclusion (iii) follows from Lemma
4 in this case.

%% Han Mao-an helps me to obtain this correct number and proves it in detail.
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Now suppose M is nonorientable. We can also easily see that there are at most.
2s—1 non—null-homotopic PCO’s, S00’s (not homotopic 0 and intersect each other)
or ONR’s Oy, ++, Ogs_y around Ly, -+, L, Let M, be the compactized surface of My
—30,. Then the conclusion (iii) follows from Lemma 5 if we notice that the genus
of M, is g—s and make use of the proprety A. '

Now we prove the inequality s+2r<g. When »=0, it follows from (i). When
7>0, assume L is a closed transversal through a poiht_ of some nontrivial.
recurrent orbit. Then M —L is a connected and nonorientable surface with genus.
g—2. By using induction, weobtain s+2r<g immediately. ‘

Thus we have completed the proof of Theorem 4.

Let M be a nonorientable surface with genus g, L be a Jordan curve on M,
and L* be a lift of L on the normal two—fold covering space M* of M. The last
general property of nonorientable surfaces we are going to prove is the following
~ theorem. :

Theorem 5. If the number g is even (odd) and L is one-sided (two-sided and
M — L is connected), then M*— L* is connected. “

Proof We regard M as a sphere with g cross—caps. Let M'(L’) be a copy of
M(L). Then M* may be considered as the connected sum of M and M’ through:
gluing their g pair of cross—caps (here regard each cross—cap as a circle), and L
may be considered as the connected sum of L and L'.

‘We prove the first part of the theorem.

Because g is even, by (M —L)=y(M)=2—g and
2—gy_r—1 if M — L is nonorientable,

#(M—L)= { 2—2gy_r—1 if M—L is orientable,

it is easy to see that M — L (M'—L') is a conneoted nonorientable surface with g—1.
cross—caps and a boundary L(L').

By virtue of the orientability of M*— L* and

. M*—L*=(M—-L)U (M -L"), '

it follows that M*—L* is, topologically, the connected sum of M—L and M'—L"
through gluing g—1 pair of cross—caps and connecting L, L into L*.

Obviously, M*— L* is connected.

The second part can be proved in a similar way if we notice that M—L is stilk
nonorientable by the formula

9 g { 2—g;—2 if M— L is nonorientable,
2—2¢,—2 if M — L is orientable.

Remark 2. Theorem 5 is used o prove the existence of PCO of a continuous
flow defined on nonorientable surface in ‘my recent work (see[9]).

By the proof of Theorem 5, we have the following corollary.
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,Corbllary. If M — L is connected and nonorientable, then M*— L* is connected.

(I am sincerely grateful to my advisor professor Yeh Yian—qian, for his idea,

his lectures and his help)
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