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THE ROTATION NUMBER AND DIRECTION
OF A CONTINUOUS FLOW ON THE TORUS

Hax MaoaN (3% 5)*

Abstract

In this paper fhe rotation direction 7; and rotation number p; for any continuous flow
on the torus are defined by applying Weil’s theorem proved by Markley. The following
results are obtained:

(i) 2,=0 iff all orbits of f are proper and each limit set of f is homotopic to zero on
T3 .
(i) if r,+0, then p, is irrational iff f has at léast one non-trivial P stable orbit, p; is
rational iff f has at least one non—zero~homotopic closed or singular closed orbit.

Then a method of computing the rotation number of certain flows is given.

§ 1. The Rotation Number of Flows

Lot T2 be the torus, R? a real plane, and (R? p) a covermg space of T. We -
will use the following results.

Weil’s theorem™, Let a: [0, 00)—>T2 be a simple curve on the torus. Let a:
[0, 00)—>R? be any lift of a to R2. If |a(E) |—>oo as t—>co, then ltlﬂ a(t)/|a(t)| ewists,

where a(t) = (a1(t), @a(t)), [@(®)|=((as(?))*+ (az(£)))* 2
. Corollary™, Leta, B: [0, 00)—>T" be simple curves which do not intersect. Let
a, B: [0, 00)—>R? b lifis of & and B respectively. If |a(t)|—>c0 and |B(t)|—>co as
}‘,—>90, then ‘

| 1im &(6)/ |38 | = £ 1m B/ [B®)|.

Now let f be a continuous flow on T2. From Lemma 1% there is a unique
continuous flow 7 (called the lift of f) with the property that pof=fop. Let F(g, 8).
be a lift of an orbit f(g, ¢) of f. It is an orbit of F. If there is a point ¢ €T such
that | (g, t) | >0 as t—>+oo, then by Weil's theorem ]Jm f(g, O/1F (g, &)|=rs

exas’us
Q*={g€T?|F(g, t)| >0 as t—>+oo},
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For any gy, 2 € Q*, ri,= *r}, from the corollary above. If there is a point g€ T?
such that |F(g, ¢)|—> as t—>— oo, h.m}‘(g, 8)/|F(g, ¢)|=r7 exists by the same

theorem,
Put
Q@ ={geT™ If(q, %) | >0 as t—>—°°}
Then 7= %1y, for any g1, ¢a€Q™.

It Q" UQ + J, then rji=+r;, for any ¢4, ¢ €Q* U Q™ by the same corollary.

From the facts above we can introduce the following definition.

Definition. Let Q=Q*UQ". If @+, we have a pair of numbers ri= (p1, pa)
with p1=>0 umquely determined by f, called the rrotatwn direction of f. In this case
ps=pa/p1 is called the roiation number of f. »

If @=J, we define the rotation: direction of f as zero, i. e., 4= (0, 0). In this
case the rotation number of f is not defined. :

‘Remark 1. The 51gn of p; does not depend on the sngn of ifrf, and it may be
positive, negatlve or infinite. »

It is easy to see that | (g, %) ]—>oo as t—>+oo or —oo if ¢ is strictly P* or P~
stable. The same is true for non-zero-homotopic periodic orbits.

Lemma 1. Let f be a continuous flow on T2. ;S’uppose that gET2 is @ P*(P7)
 stable point such that im Fa(q, t) /fi(g, t)=p ewists as t——>+oo(—oo), where f(q, t)
= (Fi(q, t) Falg, ) is a Uift of f(qg, £) to R2. Then there is a constant O>0 such that
|F2(g, ©) —pFa(g, ©) | <0
Sfor all t=0(<0). '

Proof Put

(p(®), $(&))=(Falg, 1), Falg, 1)).
Without loss of generahty, we can suppose ¢ is P* stable, and ¢(0)=1(0)=0, gD(tN)
=N, where {y—>-+oco ag N—>oco. And from Lemma 2% (which is still valid here
from its proof) we have the following estimates for every positive 1n1;eger N>1:
(i) /N —p| <2/, |p(t)~N|<1,
NP Gx) —pN| <2, [$(&) = (tx) l <M, for tzv<t<tw+1;
where M4>0 is a constant. .

Thus, @(8) =N+06, $(&) = (tx) +§, 16]<1, |£] <M1 Notloe that ¥ (8) — p;v(t)
=¢(ty) —pN+E—pf. We obtain I:,b(t) —pp(%) | <8+p+M;, and the proof is
completed. :

Theorem 1. Let f be a continuous ﬂow on T“ Let f (q, t) be a Vift of the orbit
f(q, t) through point g€ T2,

@ If |f(q, t)|—>c0 as t——>+oo(~oo) then lim fz(g, 8)/F1(g, 1) emists as t—>+
o (—00), and the limit value is the rotation number p; of f.:
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(2) py is an irrational (rational) number if f(g, t) is striotly P* or P~ stable
‘(periodic), :

Proof We deal with the case where ¢—>-oo. Similarly for i—>—oco. From
Weil’s theorem, tl_J:ixif(g, t) /|7 (g, )| exists. It follows thattliﬂ Filg, ©)/1F(q, D]

=p, exists for ¢=1, 2. Thus
' lim f1(g, £)/F1(g, ¥) =ps/pr=p-

Suppose f(g, t) is strictly P* or P~ stable. Then by [4] we can suppose it is
strictly P stable since p is independent of ¢. Thus we have from Lemma 1

|Falq, &) — pfi(q, t) | <O for all real ¢ .
for some constant 0>0. Namely, the curve f (g, t) lies between the parallel lines
y=pw+0. Hence, p is an irrational number from Theorem 3. 3,

Finally, it is evident that p is a rational number if f (g, t) is a non-zero—
ﬁomotoPid periodie orbit.

Theorem 2. Let f be a continuous flow on T,

(1) The rotation direction rs is zero 4ff all wrbq,ts of f are proper and the limit set
P f every orbit is homotopic tozero on T2

2 Suppose ry%0. Then the rotation number py is irrational iff f has strictly P
stable orbits; ps is rational iff f has at least one non—zero—homotopic closed or (usual)
bsmgularr closed orbit on T2, '

Proof (1) We first prove the neeessﬂ;y Because fr,——O f has no strietly P* or
P~ stable orbits, i.e., its all orbits are proper. From Theorem 281 for any g€T?
Q(q) and A(g) have one of the following properties:

(i) a single singular point:g

(u) a perlodlc orbit;

(m) an invariant curve which consists of singular points and proper orbits
connecting them.
. By Theorem 1 we need only to prove 2(g) and A(g) are homotopic to zero for
case (iii). If not, say Q(g) is not homotopio to zero, it is clear that Q(g) =L must be
a smgular olosed orbit. Thus, without loss of generality, we can suppose L is simply
closed. Then we have that T>-Q(g) is a cylinder with two boundary circles L and
L. There must be an I;(é=1 or 2) such that Q(¢)=L; on the cylinder from the
Poincare-Bendixson theory. Now suppose L is of type (n, m). Let L be a universal
1ift of L. It is easy o know that there is a lift F(g, £) of f(g, ¢) such that for any
peighbourhood U of 7 in R? there is a T>0 such that (g, ) €U for all ¢=T.
Thus, lim d(F(g, ), L) =0, where d denotes the usual distance on E*. We also note

that Q(q) = L. It follows that |f(g. %) |->co a8 i—>+o0, a.nd lim fa(g, t) /F1(q, t)==
m/n, a contradiction.
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Oonversely, let f' (g, ¢) be a proper orbit of f and Q(q), A(g) are homot0p10 to
' zero. Then there exist two disks Dy, Dy on T% and a positive T such that f(g, ¢) €
Dy1(Dy) for all =T (<~—T). Thus any lift of f(g, ¢) is bounded in R2.

(2) Let r;+0. Firstly, if f hag strictly P stable orbits, p; is irrational from
Theorem 1. If py is irrational, but f has no sirictly P stable orbits, it follows from
Theorem 2%7 that for any ¢€7? the limit set 2(g) is a single singular pomt a
permdlc orbit, or an invariant curve.The same is true for A(g). By r;#0 and the
conclusion above, there must exists a ¢ € T* such that 2(g) or A(g) is a non—zero—-
homotopie invariant closed curve. For the sake of definition we can suppose Q(g) is
such a closed curve. If it contains no singular points, then it is periodic, and p; is
rational by Theorem 1, a contradiction. If it contains at least one singular point,
then in the same way as in (1) we can prove ps is also rational. Thus, we have
just proved that f must have strictly P stable orbits if p; is an irrational number,

Secondly, if Jf has a closed or singular closed orbit L which is not homotoplo
to Zero, then T?—L is a cylinder: Thus, f has no strictly P stable orbits, and p; is

‘rational from the argument ahove. Conversely, if p; is
rational, then all orbits of f are proper. It follows that
there exists a ¢ €T such that one of the limit sets Q(g)
and A(q) is a non-zero-homotopic clogsed or singular

J olosed orbit of J. The proof is complete.
Remark 2. From Theorem 2 and its proof, geome-
Fig. 1. trically that r;=0 means that any lift of every non—

N
?

singular orbit of f is a bounded simple curve of R2,

Ezample 1. Consider the flow f on T obtained by an identification of the
opposite sides of the following square with given orbit structure (Flg 1), By
Theorem 2, r;=0-and ps 18 not defined.

In fact, f has two singular closed orbits which are of types (1, 0) and (0, 1)
respectvely, all other singular closed orblts are of type (1, 1). In this case 117 is
natural that ps is not definite.

If f is a continuous flow defined on the Klein bottle K2, and F is its lift to the
torus 1, then by section 4.2 of [6] the rotation number of F is either 0 or oo ag
long as it is well defined. In this case the flow F (therefore f) has at least one non—

' zero-homotopic closed: or smgular closed orbit.

§ 2. Computation of the Rotation Numbér.

- In this part we calculate the rotation number for certain flows on. T”’by, using
the first 1ntegra1 and linear transformation.
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- Consider the following torus equations

98 _ % (0, 4), W=¥ (s, 9) @
with the GOD.dl"JlOD. as follows.

" Hy: X, Y are functions of class ot and are penodm of period one in both
variables. T?=R?/Z?.

For the sake of simplity, denote by (1)” the lift system of the system (1). Now
we suppose that (1)’ (not (1)) possesses a first integral H (s, y) €O* Then from
Lemma 1 and the proof of Theorem 2 we have the following theorem.

Theorem 3. Suppose the equation H(w, y)=c for some ¢ has an unbounded
branch L on which there are no singular points of the system (1)'. Then

(i) there are constants Oy, Oa and p such that L lies between the lines y=pw+0; '
and y=px+0y (or s=04 and =0,), '

(ii) the p (or oo) is the rotation number of the sysiem (1).

In paper [8] the author.considered the system (1) withan integral invariant,
i. e., it satisfies the following conditions, besides H: :

H: the system (1) possesses an integral invariant U (s, y) of olass O' defined
on T2: | '

Hg: the singular points of (1) are isolated.

‘Under the conditions above the system (1)’ has a ﬁrst integral of the form
H (@, y) =aw+by+h(s, y),
where '

. 1 1 ’ ) B

| a=—{ U@ 0)X (s, 0)ds, b= T, YT (. 1)dy,

and k€ O is periodic of period 1 in & and y. R
Now we congider the following slightly more general system

B o )X (@) L=0@ )Y@, O

where X, Y satisfy the conditions Hy, Hy Hj and OC€O is periodic of period 1
in # and y (maybe vanishes at some points). Obviously, the global orbit structures
of (1) and (2) are equivalent up to movable singular points. Thus, from Theorems
2 and 8, and the results of [8] we have immediately the following theorem.

Theorem 4. Suppose the system (2) has only isolated singular points.

@A) If (a, b)#(0, 0), then the system (2) has a nontrivial P stable orbit which s
dense in an open set of T? iff p=—a/b is irrational; 4t has a group of non—zero—
homotopic periodic orbits, and its all orbits, excep: smgulaq' points and separatrices
connecting them, are closed iff p is rational.

(ii) If the system (2) has no nonirivial P stable orbits and all periodic orbits are
homotopic to zero, then the rotation direction of (2) is zero, and a=b=0,
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However, the following example shows that the system (2) may have non-

zero—homotopic periodic orbits when a=b=0.
| Ezample 2. Consider the following system
4 Z;’ =giny, Zg =bsing., ®

Then

(1) p=0(o0) if 0<|b|<1(|b|>1), in this case the system (3) has a group of
periodic orbits of type (1, 0) ((0, 1));

(ii) the rotation direction of (3) is zero if |6] =1, in thls case all penodJo
orbits are homotopio to zero.

In fact, we have H (a, y) = bcosa; —cosy. If [b] #1 there is no singular point of
(3) satisfying H (e, y)=0. And for [b]|>1 the equation H(w, y)=0 has two
branches: . :
y=Arocos(bcosz) for 0<zs<mw and for w<o< 2w respectively,
whose projections to T are closed curves of type (o, 1). '

Ezample 3. Consider

‘é:—Bcosw+w+cosy+smy, ';t =Bsina, : 4)
We have '

@) If |B|>1+|a|, then p=oo, 1n th:s case the system (4) ha,s exaotly two
periodic orbits of type (0, 1)

@) If |a|>1+|B|, or lal+|Bl<1 then p=0, and (4) has a group of
perioide orbits of type (1. 0).

(iii) If =0, |B| =1, then =0, in this case the orbit structure of the system

(4) is as shown in the sketch below. E : _ A

@ PEC

a=0,6=1

Fig. 2
In fact, the Tift (4)’ of (4) has an integral factor ¢, and a first 1ntegra,1 of the
form .
H (2, y)=e'(a+siny-+ Bcosa). :
If | B|>1+|a|, then the equation H (#, y)=0 has -exactly two branehes
y=Aresin(—a—Bcosa) for 0<o<m, and w<o<2m respectively.
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Thus p—oco. Notice that (s, 0) is a periodio point iff H (s, 0)=H (2, 2w), which
gives coswo= —a/B. This shows that the system (4) has exactly two limit oycles

The other cages are easy to discuss.

The example above shows that the system (1) may have limit cycles (1 e.,
isolated closed orbits) although its lift system has a first integral. '

Remark 3, More generally $han above, it is easy to see that the following

systems ‘
%_{_Fi(y)cosw-l-Fz(y), =Fy(y)sine
and : '
_‘%= —Fl(y)smm+F;,(y), = =Fo(y)cos @, -

where F, € O is periodic of period 1 in g, 4=1, 2, 3, both have an integral factor of
the form F5* exp G Fy/Fy dy). Hence, we can calculate their rotation numbers by'

using their first integrals.
In the Test we offer another method to caloulate the rotation number for some

systems,
Let T be a linear transformtion of the form
u=ax+b . .
YT i —bo| %0
v=co+dy,

which carries the system (1) to the following ,
Xl('ur IU)? —Y]_('ll/, ’D) ' . (5)

such that the functions X7, Y1 are per10d1c of perlod 1 in both variables. Thus (5)
is also a forus.system. Now suppose the rotation number p of (1) is well defined.
Then there is a point g€T2 such that the orbit F(g, ¢) of (1)’ (which is a lift of
the orbit f(g, #) of (1)) is unbounded. Let ¢ be the lift of g to RB? with q=F(g, 0),
and qi—Tq Let 71(q, t) =Tf (g, t). Then F1(g, ¢) is the orbit of the system (5)
through g1, and is unbounded since T' i non—smgular This means that the
rotation number p; of (5) is also well defined. From the form of T' we have the
following relation ’
' ‘ _o+dp
a+bp”
We summarize the above as follows.
. Theorem 5. Let the torus system (1) be changed into the torus system (5)

through a non—singular linear transform

©

T: u=aw+by, v=co-+dy.
Then the rotation number of (1) is well defined iff that of (5) is well deﬁned in this
case they are related by formula (6).
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Corollary 1. If T is such that (X, Y)==+(Xy, ¥1)O, where O (@, y) >0, then

- (1) p=co or p=c/(a—d) if b=0; ) : ‘ '
(ii) p satisfies the quadratic equation bp®+ (a—d)p—e=0 if b+0.
Corollary 2. Let the rotation number pof (1) be well defined.

(i) If the syste'ni (1) is invariant under the variable change x—>y, y—w, t—> =+,
then p=1, in this case it has at least ome non—zero—homotopic closed or singular
closed orbit of type (1, 1). »

(i) If (1) is énvariant under T, Y>—y, t—>+k8, or o—>—w, y—>y, t—>+1i, then.
p=0 or oo, in this case it has at least one closed or singular closed orbit of type (1, 0)
or (0, 1). ,

Ezample 4. From Oorollary 2, the following system
%?=P(sin’ta;, siny, cos, cosy),

d . s g . .
ﬁ-=g(mnw)Q(szw, siny, cosz, cosy),

where P, @, g€ 0" and g is 0dd, has the rotation number p=0or co as long as it is
well defined. In particular, p=0 if P>0. From Example 8 the system above may
have limit cycles. v

Ezample 5. Consider the system

S ~sin(y+no) +b, Wmg, 40, n>1,
It is changed into

M= i ﬂ:
vy a+nb+.nsmu, s

under the variable change u=y+na, v=y. Obviously, for |g+nb |<n, py=0c0, and
SO0 p=—m,.
For |a-+nb|>n, the new system has the following first integral
H (u, v)=Au+h(u) —w,

1 .y . _ a(a+mnb) . . -
where &€ O is periodic of period 2a:,h A [aFnb] ((atnb) —mdy e in this case p

nd/(1—A4). Thus for any integer n=>1, the stated system hag always exaotly two
periodio orbits of type (1, m) if |@+nb|<n, and has a unique semi-stable limit
oycle if |a+nb|=n. And its all orbits are periodic iff nd/(1—A4) is ratienal if
|a+nb| >n.

I am sincerely grateful to my adviser professor Yeh Yian—qian for his guide.
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