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'UNIFORM ASYMPTOTIC STABILITY OF
FUNCTIONAL DIF FERENTIAL EQUATIONS

- Wu JIANHONG (*;g; )*

.Abstract

" With the help of a Liapunov funetmnal with semi-negative definite denvatwe,
Barbashin-Krasovskii’s theorem is extended to nonautonomous fanctional differential "
equations, a reducing dimension approach is presented for the uniform asymptotic: stability:.
of high dimension systems, and some sufficient conditions of uniform asymptotlc stablhty
are obtained. - e

For € R, r>0, |2| denotes the Euclidean norm of #, Ri={zC R |#| < H}
for H >0, O,.denotes the space of continuous functions mapping [—r, 0] into R»
with the super-norm ||+|, OF={p€0,; |p|<H}. If x(u) is a continuous n-vector
function defined on —r<u<A4 (4>0), then for ¢ €. [0, A4), , denotes the restriction
of o to the interval [t—r, ¢] so that @, is an element of 0, defined by #;(s) =z (t-s).
for —r<s<0.

Consider the gystem ' ' L
o () = X (t. @) ' @
where X: 'B*x Of—R" i§ continuous with X (f, 0) =0. We denote by (%, @) a
solution of (1) with initial condition ¢ €0}, where a,(tp, ) =@ and by z(t; 4, ®)
the value of & (%, q)) at £, For simplicity, we assume that for any (%, @) €R*xOE,
@ (to, @) exists uniquely. For a continuous funectional V': R* X OZ—R, the derivative-
of ¥ along the solutions of (1) is defined as ,

o R 1 .
Vi (G, @) =Hmsup - {V (t-+h, 2ualt, @)=V ¢, )}
A Wedge W is a stnctly increasing continuous function defined on R* with
W (0) =0. Throughout this paper, an integrally posﬂuve funetlon A is a nonnegative
measura,ble funotlon defined on R* such thatj A@)dt= +oo for every J= U [@m,

] Wlth An<bp <wm+1 and b,,—a@,=0 for all m=1, 2, -.- and for a constant §>0.
The followmg lemma is proved in [5]. ' .
Lemma 1. If a measurable function A: R*—>R* is integrally positive, then for
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every >0 and 8>0 there ewists @ positive integer K (&, &) such that Jor ewery - sot
’ K
J = | [an, bp] 0ith 0<ap<an-+d<bn<dn for 1<m<K —1, ue have LA(t)dt?a.
m= . .
Theorem 1. * Suppose that there emist éontinuous functionals V, P: R* x OZ—>R*
and fwedgas Wi(i=1, 2, 8) such that

@ W:(|e©@ <V ¢ p)<Wallel),
(i) for any o>0 there ewisis w(c) >0 such that for any (¢, ) ER* X OF with
P(t, p)=>0, we have
Vel @) <—AEPE @) —u(o) |[Ws(PE, 0))wl,
(m) for any §>0 there ewist 81(3) 82(3) and T'1(8) >0. such that for any t=>0

and any solutwn w(t) of [€)) deﬁned on [to T, to+T1(s)] with |o]|<H, PG, »)<

81(8) for tE [to,” to+T1(s)] and‘[ . "(‘)?\.(s)P(s, :vs)ds<62(s), there ewists v € [fo, o+

Ti(s)] w@thllm1||<s (o'r V(fr, %;)<8)..

Then the zero solution of (1) is uni formly asymptotically stable.

.. Proof.- For any:s>0, choose d(g)>0 so that W2(3(s)) <Wi(e). It is easy to
prove that [£=>0, @] <d(e)] implies |z (% o, ¢)|<s for all ¢>t,. So the zero
solution of (1) is wniformly sfable. '

. Let 8,=3(H). and |p| <<, a() =x(; o, @), V(@) =V (%, o). By (iii) there

. T1(s
exigh 31(8)*,‘-32(8)“3.11(1 T(8)>0 such- that for any t=>t,, if ji ” AE)P(s, x)ds<

d2(&) and if P(3, w;) <d1(e) for ¢ € [t, t+T41(e)], then there exists v € [¢, t+T41(s)]
with ||@, | <8(e). :

Let K=K <—2W§—<?>L1- 1) Then we can assert that there exists #,€ [t t4-
1

K] such that P (i, ) <; 61(8). Othe:wise, if for all ¢€ [¢, t+K] we have P(t,
a@?% d1(s), then
V(t><—x(t)P<t, 2) <=3 B:()AH)
and thus gl |
1 1 FHE :
VE+E)<V (E)— j —é-Bl(s)h(t)dt<W2(H)———2—81(6)“; A(8)ds<0.
This is contrary to ¥ =0. '
I j:’”'“’mt)P(t, 2)dt<32(e) and P(f, &) <81(s) for ¢€ [ts, s+T(s)], then

there exists w<ta+Ti(e) <t+K +T4(s) with |o.|<d(s) and thus |«(¢)|<s for
=7, o , . . : ,
If there exists 3 € [ty ta-+T1(s)] with P(ts, @) =>8:(s), then there exist f3<ty
<ty<<ts such that P(é, o) =81(e) /2, P(fs, @) =81 (e) and .é_ 8.(8) <P(f, @) <d:(s)
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for + € (s, t5), and therefore

Viy<-p (% z‘a(s)) |Weo(PG, 2))| for +€ [ta, t].
This implies

V() <V @)~ (3040 [Wa(@u(e)) s (S 8.09) .

VG Tu(e) + K<V @<V O —p (2 8.0))[Wa6:) ~ s (L2:9)].
1t j"”’”x(t)P(t 0 dt=>84(s), then R .

V(t+K+T1(s))<V(t2+T1(s))<V(t2) j Fe x(zj?(t, o) dt |

<V — 62(8)
Let t =to+k[T1(e) +K]. We have either e
(A) |=()]|<e for =i+ (b+1) [K+T1(s)], or
B) V(@o+ G+ (K +T1(S)))<V(to+k(K+T1(3)))

—mm{ﬁz(s), w (2 61(8)) Ws(51(3)) W3 <—'61(é)) }

Choose a pos:duve 1nteger N with

No— . . Wa(H ) ;
min [5a(a), 1 (%-84() )| Wo(d(e))— 7 (— X0 )]}

Since V=0, (B) holds at most for a finite number of =0, 1, ---, N, and therefore
|w() | <& for £+ N[K +To(z)]. This completes the proof. o

Corollary 1. Suppose that (i) and (m) of Theorrem 1 hold and

(a') V(i)(tv ¢)< —P (t gD), l ’

"(b) there ewists a constant L=>0 and a wedge W such that

|[Ws(P (@, ¢))w| <L for (¢ ¢) ER*XOF.
Then the zero solution of . (1) is uniformly asymj)totq',cally stable.

Proof For any o~>0 and (%, q)) € R* x O with P (, (p)>0‘, we have

Vs ¢)< PG, ¢)<——P(t q’) —P(t, ¢) lWa(P(t ¢))<1>I/L

g-———P(t, tp) I IWs(P(t 2wl

Then by Theorem 1 we can complete. the proof.
Remark 1. If P(t, ) =W (|@(0)|) for a wedge W then (iii) of Theorem 1
" holds naturally, and thus Theorem 1 and: Oorollary 1 reduce 1o Theorem 8.3.8 and’
Theorem 8.8.2 of [2], respectively, -
. . Bwample1.. Consider-now the system = ...« .
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AOE wz(t), SRS
{wzw = =, 21— 0, - ‘-’“) mai—r) @
obtained from the equation

_ mz(t) +b(t)z(t) +g(t)z(t r)+kz() =0, ®)
where m and ¥ are positive: Gonstants, 130} and q(t) are posﬂuve botnded continu-

()’

ous functlons and inf {b (t) __E® = 0}>O
Let V(t zvit, wzt) =5 lom1 (t) + ma: (t) += I: b(s)@%(s)ds. Then

V(t iz, wﬂt)

w————b(t)wz(t) g(t)wz(t)mg(t fr)——b(t PRG—1)

=5 b= e r)+b(qt() ) [ —3[60 - b(t(” ] (t)
Apo-ghe.

Lot P(¢, @ a;zt)——\a;z(t) For'; any e>0 choose 81(8) <mm{' ke. _8 } and

Ve 167" hr+m
T(e)> 4m \/6_1_(8) -+, where ~2>0 is an upper bound of 5(¢) and ¢(¢). For a solution

(a:i(t), wz(t)) of (2> on [to—"r. to+T1(8)] with Iwi(t)|+lw2(t)]<1 and a:z(t)<
81(8) for 1€ [to, to+T1(8)], we have

w1 < ik = (%) +—\/61(6) for tE [to+fr, to+T1(s)]

If |o4(2) |>4/—§— for all tE [to+1, io+T1((s)], without loss of genera.lity We assume

&1 (t) = ]0 ’ then
a;z(t) \/k\/ + \/6;(8)'<—\/k\/s.'
This implies @ (t0+T1(s))<a;2(to+r) -——\/ 8 [Ti(s) fr], w]nch is contrary

to ]mg(t) [<\/61(e) for ¢ € [to, fo+T:(e)].
Therefore there exists 7 € [+, to+T1(é)] with lwl('zr) |< ~/ £ and thug

V(Tv $17, wl’l;’) <"‘ &t — 61(8) + h61(8) ’r<8.

By. Oorollary 2,the zero solutlon of (2) is unlformly asymptotloally stable.
Remark 2. By the extension of Barbashin-Krasovskii’s theorem (Theorem
D of [6]), Krasovskii discussed the case where b and ¢ are constants. But his result
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~ was available for autonomous systems only. : S
Remark 8, From the proof of Theorem 1, we know that if the zero solution
of (1) is uniformly sta.ble, then the posfmre deﬁmte oondﬂnon W1(|p(0) |)<V(t gv)
is not required.
Rémark 8 motivates the following generalmahon of Theorem 1.
Corollary 2. Suppose that there ewist continuous funciionals V, P: R*x OH—>R“‘
-wedges W1, Wa, Wa.and a constant u>0 such that - :
@ V&, ) <Wa(lol), PG o) <Wallel),
(i) Wi(leOD<V (& o) +P, p), ,
(i) Vol o) <—p|Ws(P(, ))w|—PGE #),
(iv) (iii) of Theorem 1 holds. ,
‘Then the zero solution o f (1) is uniformly asymptotwally stable , :
_ Proof Noticing Remark 38, it suffices to prove the uniform sta,bﬂlty of the
zero solution of (1). Let w(t) be a solution of (1) defined for ¢=>¢,—r. Then by (i)
and (iii), we getb
V(. wt) <V (to, @1.) <W2("“’to“)
and
V (¢, =) <V (to, a:t,) u|W3(P(t a;t)) W3(P(to, a;t,,)) |
Therefore

WA(BC ) <Ta(P o, 3) +2 17 (o, 2) = Cy a)]

<TuPto 3) +2 Walawl).
‘Thus from (i), we'get’ -~ = A '
Wi(la@) )<V (¢, @) +P(, @)
<Wa(l#l) +W§1(Wa~(Wa(llmtoIl))+%- Wa(l2a[)).
For any s>0 choose 3(s) >0 such that

Wa(3(e)) W3 (W) +-L Wa(3(e))) <W(c).

‘Then ||a;,| <8(s) implies |#(%) | <& for =%, This completes the proof. .

In the results above, V4 (%, @) is only required to be seml—nega,tlve deﬁmte
‘Thig makes it easy %o construet Liapunov functionals in many practical problems.
For convenience of practical use, we give a series of criteria to ensure (iii) -of
Theoerm 1. . . :

Lemma 2. Suppose that thére ewist a continuous functional W: R* X Of—E and
wedges Wi(i=1, 2, 8) such that C Uyt : '
=<W(E ) <Wi(leD), .
Wa(t, @) <—WalV (5, 9) +Wa(P\4, 9)).
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Then (iii) of Theorem 1 holds. , :
Proof For any >0 choose 81(e) and T4 (¢) >0 such that W3(81 (&))<= Wz(s)

~ and Ti(e) >2W,(H) /Wz(s) Let w(t) be a solution of @ deﬁned on [to—r, to+
T,(e)] with ]]mt|l<H P, a;,)<81(s) If for all € [to, to+T1(s)] we have V (3, o)
>s, then

. W(t, ﬁt)<—W;(V(t, w;))+Wa(P(t, Kﬂt))<—%W2(8) .
and thus ‘
W (to+T1(e), a;t.+T1(s))<W(to,¢t.)——1- Wa(e)T1(s) <0.

This is contrary to W=o0. Therefore there exists 76 [to to+T1 (&)1 with V(q;', a:.,.) <
&. This completes the proof.

Lemma 8. Suppose that there ewisis a continuous functwml w: R*xOH—aR*
‘and wedges Wi(i=1, +-+, 4) such that ' - '
@) o<W (2, ¢)<Wz(l!¢1l),
i) Wi(le©) D<W (¢p)+P(, ¢), - -
(il)) Wey(t, @) <—Ws(W (4, ¢))+W4(P (t ?).
Then (iii) of Theorem 1 holds. [

Proof For any £>0 choose &;(s) and Ti(s) >0 such that 61(3)<— W1(s),
Wa(81(8)) <+ W3(4 Wi(s)) and Tl(s) >2,W(H)/W3 (— W1(s))+r Let () be

a solution of (1) defined on [{o—r, #o-+T4(e)] with lo:| <H and P(t, ;) <d:(¢) for
T € [, t0+T1(s)] and let W) =W (3, @,). If for all ¢€ [, to+T1(s) —r], we have

W (&) >- Wi(s), then
- WS <=W(W®E))+W(P@, )
<—Wa(F Wa(e))+Wa(s(e))
< '—'—;— Ws (% W‘;(‘.’s))ﬁ‘ |
ThJs unphes ‘
“ W (to-+ T (e) — <T@ — 1 W, (——Wi(s)>[T1(s) ~rl<o,
Which is contrary to W=0, So there exists t1€ [to, to+T1(e)—1r] with
If there exists tze [, to+T1(s)] wﬂ:h W(tz) >— Wi(s) then there exist 1<
t3<t,<iy suoh that W(ts) —-——W;(s) W(t4) =3 Wi(s) a,nd

\
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Lo W;(s)<W(t) <——W1(s)
for £ € (3, 1) . So, for €13, %], We have i
W @) <—Ws(W ))+W:(PG, wt))<——-W3< : W1(3)><0
“"This implies W(h) <W (ts), Whlch is contra,ry %o the choice of #; and #,. S0
N W(t)< “W1(e)
for ¢ € [y, to+T1(8)], :and thus o ‘ o _
Wi(|() |)<W(t)+P(# wt)< W1(8)+31(8) <Wi(s)

for $E€ [#1, fo-+T1(e)]. This implies ||Gse.r e | <e. The proof.is completed. -

Lemma 4. Suppose that there edist a continuous function W: Rt X Ry—>R* and
-wedges W (i=1, - 4) such that :

® Wi(l‘]’(o) D<W G, 90))+P, ) for (2, 90) ER*XOF,

@@ WG, @) <Wa(|a|) for. (4 @) € B* X By,

(iii) for any a>B>0 there ewists v>0 such that

WG e@)<—W:(W (& ¢0)))+Wo) PG 9)

-whenever (3, ) ER* X OZ, B<W (5, q)(O)) <o and W (4-+s, p(s)) <W(t1<p(cr)) +7y forr
s€[—mr, 0].

Then (iii) of Theo'rem 1 holds. .

Proof TFor any ¢>0 choose d1(&) >0 so that 81(s)< Wa(e) and W.(8:(s))
<<-§ Ws (—2— Wl(s)). By (iii), there exists v () <d:(e) such that
- Wl p(0) <—Ws(W (G, 9(00)) +Wu(P( ?))

~whenever (f, g) ER*xOF, = L w.(e)<w(, #(0) <Ws(H) and W (s p(©)<

"W (¢, ¢(0))+y for s€[—r, 0]. For this given 7(3) >0 choose a posifive integer

N(s) >0 with -]; Wa(e) +N(8)y(8) >Wa(H). Give To(e) >0 such that To(e) >lr-1_:;

QW (H) /W (——Wi(s)> Define T'; (8) = r+N (&) To(e).

Let #(z) be a solution of (1) defined on [to—r, fo+T1(e)] with ||a;,l|<H and
P4, @)<d1(8) for $E€ [to, fo+T1(e)], and let W (&) =W (4 z()).

© Obviously, W& <Wa(la@)|)<W2(H) <—%—' Wi(e)+N(e)y(s) for t€ [fo, ot
"T4(e)] - , '

Suppose that W () <—12‘— W1(e) + [N (e) —k]ly(s) for a nonnegative integer &<N

-and for all ¢€ [fo+#Ts(8), fo+T1(s)]. Then we can assert that there exisis € [fo
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+&To(&) +1r, fo+ (h+1)To ()] with W (4;) <l Wi(e) +[N(s) — (5+1)1y(e).

If i% is not true, then for all #€ [f+AkTo(s) +r, #5+ (Ia-l—l)To(s)] and for
sE[—r, 0], we have

| _521_ Wi(e) <W (5) <W(H)
and . _
W (t+5) <5 Wa(e)+ [N (&) — 17 (e)

<% Wae) + [ (e) = (b+1)T7 () +7(e)

C<W @) +y(e).
So, by the choice of y(s), we get
W) <-— Wa(W(t)) +Wi (P, ;)

<—Wa (5 Wa() )+ W (3u(e))
<—% W, <—%—W1(s)>..
This implies ' ‘
W (tot (b+1)To()) < (to+-BTo() +1) =5 Ws (& Wa(e) ) [To(e) — 11 <0,
which is contrary to W=0. ‘
If thor exists the firsk >4 with W () == W(e) + [N (e) — (b+1)17 (),
then by the same argument as above, we get
W (t) \———W3< Wa(e))<0,

which is contrary to the deﬁmtlon of 5. So for all tE_[to+ (FB+1)To(s), to+T1(e)];
-we have

W (®)<g Wa(e)+ N (e) — (k+1)17(e).

Then by induction principle we get W (f) <—:2l— Wi(e) for € [to+T1.(s)—-r, to+-
T,(s)] and therefore from . .
Wa(la(®) |) <W (8) + P, @) <W () +31(s)<W(#)+—:2[— W1(e)
we get || ;.1 | <. This completes the proof.
Corollary 8. Suppose that there ewist a continuous Sfunction W: R*x Ry—>R,
wedges Wi(i=1, --- 4) and a continuous funciion f: R*—>R* with f(s)>s for §>0
sat@sfg/zng (i) and (n) of Lemma 4, and

Wy (&, 9(0)) K =Ws(W (1, 9(0))) +Wa(P(; 9))
whenever (i, ) ER* X O and W (i+s, 9(s))<f (W (%, (0))) for s€[—1, 0].. Then.
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(iii) of Theorem 1 holds.

Proof For any a>pB>0, let y= mf{f(s) —s: B<s<a}. Then y>0 and for any
(t, p) € R* X OF with B<W (%, (p(O)) <a and W (¢+s, p(s)) <W (@, @(0)) +y for s€
[—r, 0], we have

W (t+s,p(8)) <W (@, ¢(0))+1nf{f(8) —s; B<s<a}<f(W (% ¢(0)))
and thus
W@, p(0))< Ws(W(f' q’(O))) +W4(P(t ?).
This completes the proof by Lemma 4.

Corollary 4. Suppose that there ewist a continuous fumction W: R*x Rz—>R*
and wedges W; (i=1, -+, B) satisfying (1) and (i) of Lemma 4, and suppose that for
any constant N=0 and (¢, p) € R* < OF with W (t+s, p(s))<N for s€[—r, 0], we
have v '
WG, p(0)<F(t, W p(0)), N)+Ws(PG, 9)),
where - '

(a) F@, W, W)S—W(W) for =0 and W=0,

d) |F@, W, W) —F @& W, Wa) | <Ws(|W1—Wa)|) for &, W, W1, Wa=0.

Then (iii) of Theorem 1 holds.

"Proof For a=>B>0 choose y=W;! (% W4(B)>. If (¢, p) ER*XOE, B<W (4,

9(0)) <a and W (¢-+s, p(s)) <W (¢, (0)) -+ for s€ [—r, 0], then
Wy @ 9(0) <FW (& 9(0)), W, 9(0))+7)
| <F@ W ¢(0), W, p(0)))
+|F @& WG, 9(0)), W, ¢(0))+7)
—F@, W@, 90)), WG, 9(0))) |
<—W.(W (&, 9(0))) +Ws(y) +Ws(PG, ¢))

<___ W (W (3, ¢(O)))+W3(P(t ¢))

T]us completes the proof by Lemma 4. :
As an application of previous results, let us study the umform asymptotio
satblht'y of the zero solution of the following high dimension system
{f”(t) =F(, @, 1), @
y(&) =G, @, y1),
where s€R", yER™ :F: R*xOEXCE—R", Q: R*xXOFXO7—>R" are continuous,
F($, 0,0)=0and (¢, 0, 0)=0. By Theorem 1 and using the same argument as
those of Lemma 2, Lemma 8 and Lemma 4, we get the following theorem.
Theorem 2. Suppose that there are a continuous functional V: R* X OFf X OR—>R*,
wedges W; (=1, 2, 8) and an integrally positive function A such that
o Aa) Wa(e) [+[4 @ D<V G, o, $) <Wa(lol+1¥D: TRt
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(b) for any o>0 there ewists (o) >0 such thai Sfor any (%, @, ) ER* xXOZx 02
with | (0) | >0 we have.
VoG, o $)<—u(0) |GG, o, §) | —AEWa(|(0) D;
(0) for any >0 there ewists 31(e), 8a(e) and T'1(e) >0 such that, for any =0
and any solution (x(8), y(2)) of (4) defined on [#,— 7y to+T1(e)] with

J: - ABWs(|y (@) |)dt<ds(s)

and oo + ly:d<H, |y@) | <81(s) Jor t € [to, bo+T1(e) ], there emists b1 € [to, to+T4(8)]
‘with |z, <e (or V (4, Bey Yu)<6).

Then the zero solution of @) is umformly asymptotically stacle. If there ewists
@ constant L>0 ’IIJ’bﬂb GG @, ¥ | <L for (¢, @, ) ER*. .CZXOE, thon (b) can be
replaced by

@) V@ o $)<=Ws(J4(0)]).

Finally, any one of the following condztfwws ensures (c)

(e) there ewisis a continuous fumetional W: B*XOFxXOR—>R and wedges W.

(=4, B, 6) with .
: O<W G, o, $)<W.(lol+el),

W, o, ) <=Ws(lol) +We(|¥]);
() there ewists a continuous functional W: R* X O x OZ—>R and 'wed_qes W, (i=17
10) such that
Wa(le@) D<W (@ o, ) <Ws(lo|+[4]),

W@, 0, )D<—Wo(W @ ¢, §)) +Wao(l¢]);
(g) there ewisis a continuous function W: Rt x R% X RE—>R* and wedges Wi(i=11,

eee 14) with
Wu(l‘”l)<W(tr T, y)<Wm<|wl+lyl)r

and for any a=>R>0 there exists y>0 such that
W, 9(0), $(0)) <—Ws(W (3, 9(0), P(0))) +Waa(l])
provided that B<W (¢, 9(0), $(0)) <a and W (-+s, ¢(s))<W(t (0), $(0))+y Sor
all s&€[—r, 0].
Generally, the Liapunov functional (function) W in (e), (f) and (g) are con-
structed from the lower order system
a(t)=F (% o 0) ()
For example we have the following corollary.
Corollary 8. If there ewists a continuous fumctional W: R*x OH—->R a constani
L>0 and wedges W; (i=1, 2, 8) with
O<W(, p)<Wi(lo)),
Wt @) <—Wa(lo]),
|E( @, ) —F G, @, 0)| <Ws(|4]), (6)
WG, @)W &)|<Llp—F| for 0, g, $COF and $EOE, then (o) of
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Theorem 2 holds. .

This is an immeadiate consequence of {(e), if we notice that

W@, 9) <We ) +LIFG @, $)—F@, 9, 0)],
By converse theorem (of. [1]), if
- |FG, 9, 0)—F(, ¢, 0)|<Nlp—2o| )]

for =0, g,  €OZ and for a constant N >0, then the uniform asymptotic stability
of the zero solution of (5) implies the existence of W. This induces a reducing
dimension approach for the uniform asymptotio stability of the zero solution of high
dimension system (4), which is formulated as the following theorem,

Theoem 3. If (a), (b) of Theorem 2 and (6), (7) hold, then the zero solutwn
of (4) is uniformly asymplotically stable provided that the zero solution of lower
dimension subsystem (B) is uniformly asymptotically siable, '

Ezample 2 Consider now the system

{ o (t) = Ay () + Ay (%) +Byu()a(6—r) +Bu@y@E—1r),
9(8) = Azw(8) + Ay (8) + Bay ()@ (4 — 1) + Baa (8 y G —1),
Ay As

Ay As

B(t)= (

®

where s ER", y€ R™, A=< > is an n+m order stable matrix,

By (t) Bia(?) )
Bo1(#) Baa(?)
is bounded oohtinuous.

A is stable, so there exists a positive definite matrix D"=D with ATD+DA=
— I, Construet now a Liapunov functional

VG2 0= @D, @)D (0 )+, a0 006 +8@I @y @1,
where | |
_ By (), E1s(t)
DB@® = ( s () Ealz(t))’
a(t) == IE11(t+'I') I -+ IEm(t"i’T) l,
B®) = | Bua(t+7) | + | Bua6+1) |
Then we gel

Vol o y)=—[1—|Bu(®) | — | Bu(®) | —a®)]]o|*

—[1— | B (@) | = | B2a(®) | —B®T |y () |?

+[|Bu@®) |+ || Ea(®) | —a@—r)]|a(—r)|?

+[|Bp@®) |+ | Ba@®) | —BE—)]|yE—r) |2
By Theorem 8, the zero solution of (8) is uniformly asymptotically stable, if the
following conditions hold:

(i) the zero solution of z($) = Aua(t) + Buw(t—r) is uniformly asymptotically

stable, '
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(D) [Bu(®) | [Bw@® |+ | Bu@+r) |+ | BaG+r) | < -

(iii) |Eax(t) |+ [E2a(t) |+ | Bu(E+r) |+ | Ba(-+r) | <8<1 d is a constant,.
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