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ALMOST QUASICONFORMAL MAPPINGS
WITH GIVEN BOUNDARY VALUES AND
A COMPLEX DILATATION BOUND

Lax WANCAI (ﬁﬁz‘ 7]-)*
Abstract
In the extremal problems of quasiconformal mappmgs with gwen bounda.ry values
and a complex dilatation bound which are discussed by Reich, the extremal mapping is
required to have no conformal point set of positive measure on the defining set T' of the
complex dilatation bound b(w). Under the additional assumptions that T\T has measure
zero and b(w) is continuous a. e. Chen Jixiu proved that the extremal mapping may be
relaxed to have a conformal positive measure set and a finite number of singularity points
on T'. In this paper, the author proves that when the additional assumptions are given up,

the same relaxations still hold and the extremal mapping is also allowed to have a countable
number of singularity pointson T'.

§ 1. Introduction

Suppose that ¢=F(w) is a sense—preserving self gho’meomorphism of the unit
dise U, u(w) a‘complex measurable function in U, E={w,EU |ess (snp |u(w)| =1
w€ 0(wo)

for evéry ‘neighborhood O(wo) of wo} a set of measure zero, ‘and that ess sup| p(w) |
: C weU\Q

<1 always holds and F (w) is a quasiconformal mapping with the complex dilatation

w(w) in U\Q for every open set QDH. Such F and E will be called an almost

quasiconformal self mapping of U and the singularity point set of F respeoﬁvely
Let F be an almost quasmonforma,l self mapping of U, T(TcU) a measurable

set and b(w), 0<b(w) <1, a measurable function on T'. Set kr=ess g1\1Tp gw
we

By cdontinuation, F induces a homeomorphism of the boundary oU onto itself.
Denote by A(F, T, b) (or simply A) the family of all almost guasiconformal self
mappings of U satisfying the following conditions:

i) G(e*) =F ("), for 0<O<2m,

<1

Gw
) ‘—G—'w-‘ <b(w), a.e. on T,
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And further, we assume that # itself belongs to A(F, T, b) and that A(F T b)

contains another quasiconformal mapping?, if F is not a quasiconformal mapping.
If Gy€ A with :

| b= int kq, @

GeEA

where kg=ess sup
weU\T

mal) mapping within 4, From now on we write K o=

——l we shall say that G is an extremal (almost quasiconfor-

1+Ioa
T
For the sake of convenience: we always regard b(w) as kr on U\T and assume:

1) B;= {'woGU[ess sup b(w) = 1 for every neighborhood O(we) of we} is a
countable set on 7'.2

2) For every Wo €E1 and a.rbltrary 'rz>a"1>0 if {Ifw—'wo|<r,}CU then the
mtegra.l -

_ ra 1 . d/r . (N
I(ry, Tz) _.[n 1 (2= 1+b(wo+fre“’) 9 _,F'>0 o (2)
275’ o 1— b('wo+re“’)

holds, but lim I (ry, 73) — co. |
- With the above conditions, we can prove like [1] that the subclass 4, =
{GEA

inverse of any uniform convergence sequence also converges un1form1y to the

inverse of the limit function. Now that 4, is a normal fam.'lly, from 1nf ke -—Gmf kq
€Ay

) <AL, a. e, for wE U\T} of Ais a normal family®, and that the

-we know that there exists an extremal mapping within A(F T, b),

leen A(F, T, b), since H; is a closed countable set and a continuous fanction
maps a closed set onto a closed one, it is clear that # (H,) is also a olosed countable
set. Therefore, f=F1, x(z) =fz/f. may be defined and we know fp= ess g&p] %x(2)]|.

&€ )
If k>0, we set To={w€T|b(w) =0} and - |
o, 2€F(Ty),
()= { %(2)
LGOS
Denote by Q(U) the Banach space of all analytic L* funohons in U. When

PEZ(U), QCT, write Jplo- [[lo@ 1402y, 191 =101

@)

1) In [1] Chen Jixiu had not made this assumption, but it was used.
2) It is easy to see that K, is a closed set.
8) In [1, p. 4671, |uo(w) |<{ bw), wer, follows from the convergence theorem of ‘quasiconformal
o<1, weU\T
mappings since b(w) is continuous ae., Now, b(w) is only measurable, in its proof we need to apply the
theorem in [2] .



No. 2 Lai, W.C. ALMOST QUASICONFORMAL MAPPINGS ' 241

In this paper we shall prove the following theorem.

Theorem 1. Any single one of the following two conditions (I) and (II) is both
necessary and, sufficient for F to be an ewtremal mappmy within A(F, T, b)

Condition (I): E@thefr kEr=0 or

kr>0 and Sup

Bq’llmnz-n)~1

Oondition (II): Hither there ewists a function po € Z(U) such that

[[reo@asay| ~1. | @

#(&) = b(f(z))ﬂg% forzeu, . ®
or there ewists a sequence € B U), |palvwas=1, n=1, 2, 8, +++, such that

lim g, (z) — Olocally uniformly in U;and lim | [[x@o@aa| -k  ©
U .

A sequence {p,} satisfying (6) is called a degenerating Hamilton sequence.
Our theorem has a course of its development as follows: First, E. Reich in [3]
proved the case that F(w) is quasiconformal (i.e., by=ess sup b(w)<1) and F(w)
- we

has no conformal point.set of positive measure on 7' (i. e., bo=ess inf b (w) >0).
) we .

second, under the additional assumptions that T' is an open set 9 T\T has measure
zero and b(w) is continuous a.e., Chen J. ixiu proved the case that F(w) is allowed
0 have a conformal positive measure set and a finite number of singularity points
on T. Now, under the condition that the Chen’s additional assumptions are given
up, we prove the case that F'(w) is allowed to have a conformal positive measure
sot and a countable number of singularity points on T’ |

§2. Some Lemmas

‘Wo need the following lemmas. ,
Lemmal IfGEA(F, T,b), F(w), Gw) and f(2) =F"1(2) has its comples

dilatation #(w), % (w) and x(z)respectively, then it holds for all p€ZU), lelowey
=1 that '

, 1+,”1(f(z)) @ (l1—np/ (p)
1< ” |p| L1=2e/lol 1 |~ #(f@) [l \1—=p/|p],

n\riTe 1=l I PACION - dady
| [1=sp/lpl[* 1o |m(F )]
<v\j<j;'.>l Pl T @) P ()

Proof The proof in [4, p. 380] is suitable for the lemma. We can obtain

4) In [1], the assumptidn that T is-open is nonessential,
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@ (1—xp/|p|\|?
, g/ lp 2 [T z
o1 <[ 101 L2t @l?}@ﬁv 2o o,
ll—%sv/lsvll’3 1+Im(f(%))| .
<L ol ‘ |2 l”i(f(z))ld %,

where p=1,. Observmg again 21: = —% and 21 (f@)=w(z)=0 for z€F To)

and removing| g| s, from the right to the left, we obtain (7) at once.

Lemma 2.  Under the mapping Fo€A(F, T, b), the image area is an absolutely
continuous set function.

Proof The conclusien is clear.

Lemma 3. Suppose that either {F,} and. Fo are quasiconformal mappings in the
domain DT or they belong to A(F, T, b). I f {F.} comverges uni formly onU to Fy,
then the equality

lim mes F,(¢) = mes F, (¢)

holds fba* any measurable set e U . _
Proof In the first case, the conclusion is known, while in the second case, for
any given >0, since Fo(Hy) is a closed countable set, there exists a finite number

of open disks 4;(¢=1, 2, +--, m) such that the sum U 4; covers Fo(H,) and meg
v {U 4; }< 5 holds. Since a topological mappmg maps open sots onto open sets, there
exists an open set Q( UA)) such that EicQ and mes FO(Q) <—— hold
Furtherfore, since {F,} converges uniformly %o Fo and Hy is a closed countable set;,
there exist an open set Q; and no such that Elc.QlC.Q mes Fy(24) <—— and for n
=ng, F, maps Q; into UA,, mes F, (.Qi)<—— Besndes 'by the symmetry principle

there exists a domain DU such that the conclusion in the first casecan be applied
on D\Q;,-Then there exists n; such that

| mes F, (¢\Q2;) —mes F, (e\2y) | <%, for n>=ny.
Therefore, if n=>max{n,, n1}, we have
| mes F', () —mes Fy (o) | = | (mes 7, (6\ Q1) +mes F, (eNQy) B
— (mes Fo(6\Qy) +mes 7, (eNQy)) | <|mesF,(e\2;)— mes Fo(e\Qy) |
+ | mes F, (¢ Q1) —mes Fy (o NQy) |
<-§— +max{mes 7, (.QD , ﬁaesto Q)}<s,

which 6oﬁapletes the proof.,
Lemma 4. Under the hypotheses of Lemma 3, the oqualities
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- (lim mes{Fo(e) \Fu(0)} =0,
{ ®

lim mes{F, (0)\Fo(6)} =0

hold for any meas'wrable set eCU.

Proof By the symmetry principle, there exists a domain DU such that {F,}
and F, are quasiconformal mappings in D. Let 4(i=1, 2, 3, ---) be open disks in
D such that 4=\ 4; covers e. We have

mes {Fo(6) \Fo(e) } <mes {Fo(d)\F,(e)}
<mes {Fo(4) \F,(4)}+mes F,(4\e)

<33 mes {Fo(4)\Fo(4)}+mes Fy (4 \Q 4)+mes F,(4\e)

<3 mes {Fo(4)\F.(4)} +mes Fo (4 \Q 4)+mes Fu(d\o).  (9)

According to [5, Theorem II. 2], Lemma 2 and Lemma 3, we take 4, no such
that -

mes Fo(4\0) <=8 a (10)
and
| mes F,(4\e) —mes Fo(4\e) | <—- 8, n=>nq. (11)
Applying Lemma 2, we take m so that : '
mes Fo (A\U 4 <— 12)
Since 4; is an open disk and {F,} converges umformly Yo Fo, we take n; such that
mes {Fo(4) \Fo(4)} <~ &, §=1, 2, -, m, n>na, (18)

Combining (9), (18), (12), (11) and (10), we have
‘ mes {Fo(e)\F.(e) } <&, n=>max {ng, ni}.
Sinoe ¢ is arbitrary, the first equality in (8) is obtained, while the proof of the
second equality is similar. Lemma 4 is proved. '

§3. The Proof of Theorem 1

The proof of Theorem 1 will proceed as follows: (I)=>(II)=>F is an extremal
mapping=>(I).

Proof of (I)=(II). If k=0, we have
‘ , %(z) =0, a.e. for z€U\F (T').
‘Choosing

+2 ,
¢"(z)=a,. n27,,— E2) n=1, 2, 3,

we take a, such that |@,|o\rry=1 and find that (6) holds.
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If (4) bolds, it follows that either there exists g€ Z(U) with |@o]pwremy=1
and : "

”q,-(é)'q,o(;)dmdya,_ )
thus from i<ﬂlﬂ@f) l léoo(z) l dw@ﬁ and fu(z)'%o, 2EF(To), we obtain [2(2) | -1,

a. e. for U\Fo(T') and then we substitute 7(6) =6*® into (14), it induces 0(z)=—
argpo(2), a.e. for z €U\ F (T,), so the equality (5) holds, or there exists a sequence
e €ZU), |@ulorway=1 such that V

lim g, (2) =0 locally uniformly in T, and- lim‘”z-(z)qp,,(z) dody| =1,
n—oco . . n-roco U
which is equivalent to (6). ’

Proof of (II)=>F is an extremal mapping. If (6) holds, we may assume | Pol v\rerey
=1. In Lemma 1 we seb @=go and substitute (5) into (N. If @ is an extrema.l

mappmg, then |x:(f(2)) | <|2(f (z)) | =b(f()) holds It follows that
1+b(f(z)) %1(f(z))

o 1200 @) 27@)
KU\LL)'?"'lH(f())_ =[G %

1-8(f(2)) 1+ |x(f(2))]
<U\LL.)'¢°' 1+6(f(z)) 1— m(f(:))l dndy<1.

Therefore the equalities

1-b(F@) 14 (£ i
) Tlm@ T @®

and’

1-5(f(2)) '””(f(”)”(f(z))

B =216 0) R e PACI I
hold a. e. for z EU\F(T,). -
Solving (15), we have |ay(f(2))|=5( f()), and then we substitute the lash

into the denominator of (16), it induces ‘1+b( g (z))%l(;i((:)_))l] —14+5(#(2)). This is
only the case x( f(z))—n( f(z)), i. e, G=F. Thus F is a unique extremal
mapping, . v . i~

If (6) holds, we can prove Kry=H, where H denotes the dilatation of the
boundary homeomorphism F (6), i. e., the infimum of maximum dilatations for
quasiconformal extensions of F (¢“) from @U into all its inner neighburhoods. In
fact, for any given >0, there exists a circular ring D,= {0<r<|w|<1}cU\T and
a quasiconformal extension % of F (¢*) from oU into D, with a maximal dilatation
<H+é¢. Let A* be a quasiconformal extension of j from D, to the whole disk

(16)
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U199, Denote by K (¥) and K (4*) maximal dilatations of F and h* in U respec-
tively. Applying Lemma 1 in the case of T'=(J, F, G=h", p=0,, |@.|=1, we have
- 2 ‘
1<@+o) [ lo| 272010 wag+ k(K@ [ Iplsdy. @D
F(by * , O\RDy
Because we may assume that ¢, has been modified by multiplicative constant

s0 that the second half of (6) reads
”mp,. dw dy—kr,
thus (6) implies - _
II %@, 45 dy—>Fp.

FFD,-)
From it we can deduce
14 [#|2 14-k3
” T_T%%JIT | pa| d dy—>T2E

1—k2
o) F

” T o W 12@‘;'

F(Dy)

and

Therefore

|1—xp./ |l |2 1+k 2k _ 1
” L R e Y E e g vy s R oy S -

F(Dy»

Setting n->c0 in (17), we have Kp<H+e. Since & is arbitrary and Ky>H, it
follows that K y=H. Hence F is an extremal mapping.

Proof of F is an extremal mé,pping=> @. "

o) In the case of >0, by<<1. The proof has been completed in [3].

8) In the caso of bo=0, by<1. Take N, such that %<7@, for n=>No. Set

1 ,,._1
7{, b(’w><';'{.

(b(w), B>,
ba(w) = {
And leb F, be an extremal mapping within A(F T, b,), if ils complex dilatation
on U\T has the essential supremum £g,. Then %, is increasing and kr,<FKr.
If ng is fixed, then F,EA(F, T, b,,) holds for n>no. Let #,(w) be the complex
dilatation of 7, then "
R b (w), weT,
@) <{, o, |
Since A(F; T, b,) is a normal family, we can assume without loss of generality
that {F,} converges uniformly on U to a quasiconformal mapping Fo € A(F,T,b,,).
Because the last holds for every no, it follows that Fo€ A(F, T, b) and kpo<£i£ kr,
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<kr. We have kp,=Fkr or Ky,=Kj. .

In what follows we discuss two possible situations: .

i) If Ky=H, then we shall prove that x(z) admits a degenerating Hamilton
sequence satisfying (4). ' , ‘ ’ :

In fact, we define D, and K (F) as above. Setting T™={|w| <r}, b*(w) = k*>F,
K (F)—1
K@) +1'
b*). Since K y=H, F is an extremal nia,pping within A(F, T b*). According to
the case &) the mapping F must satisfy the condition (II), if it is extremal within
A(F, T* b*). Because of [2(2) | <k<F*'=0"(f(2)) on T* there éxjsts' a sequence
€L U), |pa]uv=1 such that

lim @, (z) =0 locally uniformly in U, and lim l IJ %@, do dy’ =kp.
n—o0 } n—oo (3

where *<1, b= we consider the extremal problem within A(F, T’;

Since {g,} is a degenerating sequence‘. |l @nllo\wry—>1 and @» can be replaced by
D= @/ | @allv\rsy With @, € B(U), | D, v\pary=1 and o

gfimq,-(z’)@"(z)czwdy[ ~1.

ii) If K»>H, then there exists np such that Ky >H holds for n>n,, since
lim Ky, =K 5. Set f,=F;2, It has been said in § 1 that f, converges uniformly on

n—00 :

U to fo=F3*. Let x, (2) be the complex dilatation of JSa. According to the case &) the

mapping F, must satisfy the condition (ID), if it is extremal within A(F, T, b,).
Since, for all such m, s, (zj does not admit s degenerating Hamilton sequence
(otherwise, it can be proved as above that K r,=H), we see that for every n=>ny,
there exists o€ X (U) such that

w0 (2) = B, (£ (2)) l;;”((:))l , a. 6. for €T

(where we have regarded b, (w) as kp, on U\T), Because we may assume | @, [y\rerey
=1, {p.} is locally uniformly bounded. Without loss of generality we suppose
that {p,} converges locally uniformly to @y, o cannot vanish identically (otherwise,
we have K = H). Therefore we may define '

#0(2) =b(f () |ZZ§§2 r for €T, (18)

For any given positive numbers o and 8, it is valid that
2€U||m(2) —%0(2) | >0} {2 EFo(T) N F,(T) | |#a(2) — 20 (2) | >0}
ULz € Fo(T\FW(T)} U {2 € Fu(T)\Fo(T)} U{e|r< |2| <1} |
U{z€ (U\Fo(T)) N (U\F.(T)) | |2] <r, |%0(2) —0(2) |>c}. (19)
By Lemma 4, since 7, converges uniformly on U to F,, there exists ng such that

mes{z € Fo(T)\F,(T)}+mes{z € F,(T) \Fo(T)}<%, for n=>n,. (20)
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Take r, 0<r<1 so that , ‘
mes{z|r<|z| <1}<—Z—. ' 21)

And for almost every z€ Fo(T) N F.(T) it holds that

_ @ _ 2ol
PX0) KN TR~ B 1T
(Do(z) ‘Po(z)

D) Too] T Taua)]

Pu(2) __@o(2) _ 1
I%(z)l [90(2) | ‘+|b(f"(‘”‘)) _ b(fo(z))l +

—_— (P,.(Z) _ (,Do(Z) _ .
<n+‘ [@a(2) | I‘Po(z)l‘—l_lb(f"(z)) bo(fa(2)) |

| + | o (Fa(2)) = b6(Fo(2)) | +be(Fo(2)) —b(fo(2)) |
where Z_)c_(fw) is a continuous function of w. :

If we take my such that —};<-§-, for n=>ny, then

' {ZEFo(T)ﬂFn(T)l|%n(z)—'%o(z)|>0}
2.(2) __@o(2)
cleemm@mnr.@) |[125, - |> }
U2 € Fo(T) N Fn(T) |B(fa(2)) #bs( (@)}

U € R NED | 15(F6) ~ 8ol fo) | >}

U{zEFo(T) NFu(T) |b(fo(2)) #bo(fo(2))} o (22
Take again ny so thab ) e ‘
mes {zEFo(T) n F,.(T){ Igzgg | Igzgg I ‘/ } L forn>m.  (29)

‘We note that under a quasiconformal mapping the image area is an absolutely
continuous set function. Take b,(w) by the Lusin’s theorem such that mes Fo(M)

<-2—Z holds for M= {w €T |b(w) + b,(w)}. Hence
mes{z € Fo(T) N F.(T)|6(fo(2)) b, (fo(z))}<meSFo(M)<_‘2_2;, (24)

Applying Lemma 3 and mes Fo(M )< o Ve take ng such that mes F.(M)<

—1-€ for n=>ns. Therefore

. mes {2 € Fo(T) N Fo(T) |b(f2(2)) #b:(fal®))}<mes F, (M) <= (25)

And we take n, so that |
mes {2 EFo(T) NFu(T) | 106(fa(2)) — bv(fo(z)) =% }<—iT3_’ n=>ny. (26)
On the other hand, for almost every z€ (U\Fo(T)) N (U\ Fu(T)), it holds that



248 CHIN. ANN. OF MATH. : Vol. 9 Ser. B

)12 -0.50) 2D
) 128 -5(7u(e) 129 |
IZZ:_EZ%r e | bl
If we take n; such that |kr,—ks| <3 holds for n>n, then
(€ (U\Fo(TD) N (O\Fo(D)) | 2] <1, [3(2) ~0(2) | >}

el 2u(2) __ @o(2) :
SEE@RENNOLMD) el <r, |25 23 |5} e

Take again ng so that
mes {zew\mw))n O\F(T)) | |¢] <r, |22 __@o(e) >2}

la(2) | [@o(2) |

<, for n>ng | (28)

Combining (19) o (28) we get
mes{z€U | In"(z)—uo(z) | >0} <e, for n>max{ng, 1, na, n3, n4, n5, ng}.

We have proved that {x,(2)} converges in measure in U 10 xo(2). Hence there
exists a subsequence {x,(2)} converging almost everywhere in U to %0(2). Since
{f(2)} converges uniformly on U t0 f4(z), by a theorem of Bers [:r-197 y fo(2) is a
quasmonforma,l mapping in U with the complex dilatation xo(z) And for ue(z)
which possesses the representative (18), it has been shown as above that F, is a
_ unique exiremal mapping within A(F, T,b). Hence F=F, x(z)=ux,(z) and 7(2)
has the representative (3). Therefore, if we set p— q)o/ llgpollg\m-.), then o€ Z(U)
and | @[ p\rry=1, it holds that

Hw(z)q,(z)dw dy=1.
. U
Thus, for the case of >0, b;<1, Theorem 1 is proved.

7) In the case of b,=>0, b;=1. We take N, such that 1—-—1—>max{lop, k} for n

=>N,, where % denotes the essential supremum of the complex dlla,ta.tlon for certain
quasiconformal mapping (its existence 'ig guaranteed by the hypothesis) within
A(F, T, b). Set

b(w), for b(w) <1—%’

1

bo(w) =
1——1—, for b(w)>1——,
n n

Thus A(F, T, b,) is nonempty for n>>N,. Let F, be an extremal ina’pping within
A(F, T, b,)( CA(F, T, b)), kr, the essential supremum on U\T of its complex
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dilatation. Then kg, is decreasing and kr,=>Fkxr. If we set lim kp,=ko, then ke=Fkr.

n—eco

Since, for n=N,, it holds that F,€ Ak, and the last is a normal family, we may
assume without loss of generality that {F,} converges uniformly on U to Fo. It is
obvious that F, € A(F, T, b) and kp,<ko.

In what follows we still disouss two possible situations:

i) For K = H, provided we substitute a quasiconformal extension F* of F' from
D, to the whole disk U for F, we will be able to prove as B8) that there exists a.
sequence @,EZ(U), |Dulv\ray=1 such that '

lim H'v(z)@,.(z)dwdy -1 o (20)

n—oc0
U

ii) For Kz>H, provided in the representative (18) we substitute the constant
%o for kp on U\T, we will be able o prove as 8) that fo=FG5'is an almost quasicon-
formal mapping in U with the complex dilatation #,(z) (from a quasiconformal
mapping in B) 10 an almost quasieonfofmal mapping, when we apply the fact that
the image area is an absolutely continuous set function, we only need to substitute
Lemma 2 for it, and when we apply the Bers’ theorem, we only need to apply it in
U\, where Q is any open set containing Hj, and then set mes Q—0), and that Fe
is a unique extremal mapping within A(F, T, b). Hence F=F,, x(2) =x0(z) and
#(z) has the representative (3). Therefore, for p=go/|golv\ran € ZU), el o\reroy
=1, it is valid that

ﬁw(z)qn(z)dwdy=1. (30)

Theorem 1 is completely proved.
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