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PERIODIC ORBITS AND P STABLE ORBIT
CLOSURES OF CONTINUOUS
FLOWS ON SURFACES .
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Abstract

In this paper the author determines the maximum number of simple closed curves with
certain propertiees on any manifold M of dimension 2, and obtains some general properties
of M. Then applying the properties to continuous flows defined on M, the author obtains
the maximum number of distinet P stable orbit closures and non—zero—homotop1c periodic
orbits which are niot homotopic to each other. ‘

A% the beginning of the ihvesﬁga.tion, ‘we introduce some definitions. Let M
be a connected 2-manifold (orientable or nonorientable). We also call M a surface.
We say that M is a closed (or compact) surface if it is a compact 2—manifold without
boundary Let  f be a continuous flow defined on M with, the ,boundary. of
components Ly, +-+, L, Then, we define 4,,. -a, (M) as the compactification of M ‘by
means of 7 points at infinity (namely, gluing a disk to M along each I;). Moreover,
we can continue the definition of f to A.,,. .,(M) in such a way that the number of
perlodlc and P stable orbits keeps constant. So, without loss of generahty, we offen
suppose the surface M has no boundary, i.e., M is clogsed.

Let L, Ly be two simple closed curves on M. We write Ly~ L (resp. Lyr¢Lg)
if Iy is (is not) homotopic t0 Ly on M. In this mark it is clear that Ly~0 and Ly
0. We say that a group of simple closed curves Ly, -, I, on M satisfy property 4 if
Li»0, Lir¢L; and Ly Lj= & for all 4+#j, 4, j=1, -, n.

§ 1. Flows on Orientable Surfaces |

Asa prelimihary, we first investigate some general properties of surfaces,

Lemma 1. Lei M; be an orientable surface of genus g; with the boundary of k;
components, 4=1, 2. Let M be the surface obtained by gluing My and My along r
componenis of each boundary, r<min{ks, ka}. Then M has the genus g=gy+ga+r—1.
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Proof FEuler characteristic of M, is. x(M;) =2—2¢i—k, =1, 2. Notice that
2 (M) =2—29— (by+hka—2r). It follows that g= g1+gg+a° -1 from the relation
2 (M) + 5 (M) =5 (). :

Corollary 1.  Let M be an orientable swface withows boundwy and let L& M be
a non—zero—homotopic simple closed curve such that M —L= =M UM, M ﬁéM a. Then
g=91-+ga, where g, g1, ga denote the genus of M, My, M, respectwely

If M=T2 (the torus), it is easy to know that any two non-zero—homotopio
gimple closed curves on T must be homotopic as long as both curves have no points
in common, For general surfaces we have the following theorem. o

Theorem 1. Let M be a closed orientable surface of genus g, 9=>2. Then there
exist at most 89 —8 simple closed curves which satisfy the property A. Morreowfr, this
number is always achieved.

" Proof To prove the theorem we use induction. :

1. First consider the case g=2. Suppose there exist 4 simple closed curves
satisfying the property A. Denote them by L, i=1, 2, 8, 4. Let M—L,=M;U M,.
There are two cases to consider according as ‘M4= M, or not.

Case A. My=M, Because the boundary of My has 2' components, it hag
compactification Mi=A,,(My). If one of I, i=1, 2, 3, say Ly, is homotopic to zero
on M?, then there is a disk D on Mj such that Ly=8D .and o, y€D (the latter is
. because Ly Ly and L0 on M). It follows that Ly0, Ls»0 and Lys¢I on Mj.
‘On the other hand, M} is-homeomorphic to T, which gives a contradiction. If none
of the curves is homotopic to zero on M}, then Ly~ILa~Ls; on' M7 since Mi=T?
(“~” means homeomorphls.m) We may suppose the curves are of type (1, 0)
(otherwise, cuttmg M7 along Ly we get a cylinder containing Ly, Ls (see Fig. la).
Then we glue the cylinder with iiself along its boundary to geta surface
homeomorphic to T? (see Fig. 1b), on which Ly, La, Ls are of type 1, 0)).

;:L, )

(2) : ©®)
F1g 1

Tt is clear that we can ﬁnd out two curves, say, La, Ls as shown in Fig. 1b,
‘guch that the cylinder bounded by Ls and Lz containg no points ab infinity. This
‘means La~Lz on M, a contradiction.

Case B. My M,. Obviously, M and M, are all of genus 1 from Corollary 1,
_and there exist al least two curves on one of both, e.g., Ly, L Mi. Notice that the
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boundary of M, hag only one component. It ig easy t6 understand that L0, Lyx0
on its compactification 4,(My). On the other hand, A, (My)=~T?, which glves a
contradiction similarly. Thus, we finished the proof for 9=2. : '
2, Now suppose the theorem has been proved for surfades with genus <g—1.
Let M be a closed surface with genus g. Suppose there exist 8g—8+41 simple closed
ourves Ly, -+, Lg,_5 which satisfy the property A. Let M— L3g a=M,U M,. Then
there are two cases to consider as follows. :
Case A. M;=M,. It is obvious that 1ts compactlﬁcatlon M= Ay (M. 1) is of
genus g—1., : . o
Al. If one of the curves I, =1, +--, 8¢—8, say Ls3,_s, i$ homotopic to zero on
1, then there is a disk D on M} such that ng_g_aD and @, y€D. It implies that
L;30 and L;<L; on M; for all 9%j, 4, j=1, ---, 8g—4. On the other hand, 3g 4>
8(9—1) —8, which is contrary to the inductive assumption. = v A
A2, If L;»0 on M; for all 4 =1, ", 39—8, we want to prove that among them
there are at most two curves which are homotoplo o other two ones. Suppose there
are two pairs of curves with the property- above, say, Ly~L, and Ly~L} on M.
‘Then L; and L, bound & cylinder H, L; and L} bound an H', and they both
contain: at least one point at infinity, say o€ H. If-y¢ H' then #€ H’, and the
‘nonempty inteirsection H N H’ is & submanifold of M* 1, and so it -is also a cylinder
since there is no hole on both H and H’ (see Fig, 2b). Oonsequently, one of Ly, I,
and one of Ls, L} must bound a oylinder'without points at infinity. Therefore, ‘both
of them are homotoplc on M, a ¢ontradiction, Henoe, yeH' (see F1g 2b).

Fig. 2

Notice that if LzaéLz we can let Li=TL,. Tt follovvs that there are 8g—5 curves
Ly, L, Ly, -, Lgy_s (when Ly L}) or Li, Ly, Ls, +-+, Ly, 3 (when Ly=1L}) Wh_wh
satisfy the property A on M%* On the other hand, 89— 5>3(g —-1)— 3 which ig -
contrary o the inductive assumption.

Qase B. M+ M, We have the compaehﬁca.tlons Ay(M;) and Ay(M 2), and
from Corollary 1 g=g4+g, g,,>1 ©=1, 2. Let L, -, L, cM,, Lj, - L,MCM,;,
ny+ny=38g—38. It is easy to check that there is at least one n;. Such that n;>8¢g;,—
We may suppose n;>8¢; —2. Then L0 on A,(M;) for all k=1, -, ‘g, and _there
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exist at most two of them which are homotopic to each other. Thus, we obtain ny—1
gimple closed curves which satisfy the property A

on A,(M;). However, ny—1>8¢; —2=8(g1—1)+1,

which is contrary to the inductive assumption gw
when ¢;>2. For g;=1, we have n;>2 and 4,(My) , '

.=~T?, which gives a contradiction, too. ‘ Fig. 3 (9=%)

Thus, we finished the proof by the induction. Moreover, Fig. 8 above gives an
example which showes that.there are 2(g- g 2) + g+1 8g—38 simple closed curves
satisfying the property A on T';. : .

‘Corollary 2. Let M be an orientable swface of genus g with the boundarrfy of r
components and let R denote the numb@r of s'bmpl@ closed curves fwh'wh satisfy the

Toperty A on M. Then ‘
8g—38+2r for g=>2, r=0;
R<{ g+2r—1 for g=1, r=>1;
v 2r—3 for g=0, r=2,

Proof Suppose there exist R simple closed curves satisfying the property A on
M. Fix g=>2 (similarly for g=1 or 0), and prove by the induetion on ¢. Let r=1.
Then there is at most one curve which becomes-homotopic to zero; and at most one
which becomes homotopic to another on the compactification 4,(M) of M. Hence,
there are at least R— 2 curves which satisfy the property 4 on A,(M). Thus, B—2
<8g—8 or R<8g—8+2 from Theorem 1. Now let us suppose that Lhe proposition
has been proved for surfaces with the boundary of r—1 components and let M be a
surface with the boundary of r components: Let M ; be the surface with the
boundary of r—1 components, obtained by -compactifying one component. We can
" prove, as before, thab there are at least B—2 curves satisfying the property A on
- My Then R—2<8g—38+2(r—1) by the induetive assumption, and the proof is
completed. :

From Theorem 1 we have the following theorem.

Theorem 2. Let M be a closed orientablesurface of genus g, §=>2, and Tet fbea
continmous flow on M. Then f:has at ‘most 8g—8 mon—zero—homotopic periodic orbits
which are not homotopic fo each other. Moreover, this number is always achieved by a
Jlow.

Proof We need only to construct an example which satisfies our requirment.
Take a continuous flow on sphere 82 which has three centers and one saddle, and
all of its regular orbits are closed, except separatrices (see Fig. 4a). Removing out
the three centers we get a cylinder tree as shown in Fig. 4b. Using 2m copies of
this flow we construct in the obvious way a continuous flow with 3m periodic orbits
on an orientable surface of genus m-+1 ag in Fig. b,
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PFig. 4

From Corollary 2 we have the following corollary. v :

Corollary 8. Let M be an orientable surface of genus g with the boundary of r
components, and let f be a continuous flow on M. Then f has at most 89—8+2r for g=>
2 and r=0; g+2r—1 for g=1 and r>1; 2r—8 for g=0 and r=>2 non—gero—homotopic
periodic orbits which are not homotopic to each other.

It is easy to know that the non-zero—homotopic periodic orbits and P stable
orbits of a flow on T? are not compatible. For general surfaces we have the
following theorem,

Theorem 3. Let M te a closed surface of gemus g, g=2, and let f be a
emibinuous flow on M. Denote by ri, ra the numbers of distinet P stable orbit_closurés,
non-zero—homotopic periodic orbits which are not homotopic to each other respectively.
Then ‘ -

D) r1+1r:<89-—38;

(2) there is a flow f with ri—g —1, r9=2g9—2,

Proof From Theorem 2 and g=>2 the conclusion is true when r;=0. Now
suppose r1>0. By means of the method used in the proof of Lemma 5™ we may
construct a new flow f' on M with the following properties:

(D f' has ry periodic orbits by, -+, I,, coming from the ry closules

(ii) the periodie orbits L, .-, L,, of f are also orbits of f'.

It is easy to prove from the construction of f’ and I, t=1, <, 4, that the
ourves i, Ly, 4=1, -+, r4, j=1, +++, 1y, satisfy the property A. Henoce, r1+r,<8¢9—8
by applying Theorem 2 to f”. ,

In the rest of the proof we construct a flow with ry= g—1, ra=29—2. We use a
continuous flow on the torus with a nowhere dense recurrent orbit closure. Modify

YN

d
® ) (g=5)
Fig. 5

S
Q‘o
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the flow so that there is'a closed disk in the complement of the closure in which
there is a periodio orbit 7. For example, we can change it in the disk in such a way
that its structure of orbits is as in Fig. Ba. Throwing away the open disk with the
boundary  and gluing a cylinder tree like that in Fig. 4b along I, we get a surface
of genus 1 and a flow on it. Using g—1 copies of the flow we may construet a flow
on a surface of genus g ag in Fig. Bb. This flow meets our requirment.

§2 Flows on Nonorlentable Surfaces

", In this chapter we consider ﬂows on a nononenta,ble surface. We begin with
,certa,m topological preliminaries. e i s

Lemma 2, (1) There are at most two sq,mple closed curves which satisfy the
property A on Moebius band B, of which at most one is one—sided, ai most one is two—
sided. ' , )

“(2) There is at most one simple closed curve, which satfbsf@es the property A on
the projective plane P2, and if it ewists it must be one-sided. \

- Proof (1) -The fundmental group of B? is Z; and there are two smaple closed
curves L, L, which represent the elements *1 and =2 respectively. Obviously,
L, is one-gided and Ly two—sﬂed Algo, we can prove easﬂy that any other curve,
which represents 4(#0, +1, +2), must intersect itself.

(2) It is clear that there is at most one one-sided olosed ourve on P2,
Noticing that the fundmental group of P? is a oyclic group of order 2 we see that
the conclusion is evident, PR :

Lemma 3. Let M be a nonorientable swface of genus g(>2) with the boundary
of finite components and let L be a simple closed curve on M such that M—L=M; is
connected. By g1 denote the genus of M. SRS :

@ I f Lis two-sided, then g1=g/2—1 when My is omentable, otherwise, gi=¢
-2 ‘ , _

(2) If Lis one—srz',ded, then g1= (g—l) /2 when M4 is orieniable, othefrqu}se, g1=
g—1. S : , , Gt :
~ Proof It is easy to prove by using the relation y (M) =x(M).

Lemma 4. Let M be a closed nonorientable surface of. genus g and let L be &
non—zero—homotopic simple closed two-sided curve such that M —L=M;U My Mi+M,.
Let g: denote the genus of M, 4=1, 2. Then

(1) g=2¢1-+2ga if both My and My are orientable;

(2) g=2g1+ga if M; is orientable and My is nonorientable;

(8) g=g1+9ga if both My and My are nonorientable.

Proof It can be proved by use of the relation y(My) + x(M 2) = x(M )
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- Lemma &.  There are aimost 3 simple closed cwrves which satisfy the property A
on Klein boitle K2, of which at most one is $wo-sided, at most two are one-sided.

Proof From Lemma 3 we know that there are at most two one-sided curves
which have no points in common. Now let Ly, Ly be two two—sided eurves such that
L0, Ly»¢0 and Ly Ly= . If K2—L; is connected, it is a oylinder from Lemma
8. Thus, Li~Lson K2, If K?—Ly=M;UM,, My+M, it is easy to know M, and
M are both Moebius band with the boundary L; from y(K?) =0. Thus, Ly~Ly on
K? from Lemm 2a no matter whieh L, belongs to.

Now we can i)rove the following theorem.

Theorem 4. Lot M be a closéd nonorieniable surface of genus g and let ry (rs)
denote the number of simple closed one (two)—s'oded curves fwhwh satisfy. the prope'rty A
on M. Then o :

D) ri<g, ra<29-8; :

(2) ihe case that r1=g and ra=29—3 ean occur on M. :

Proof It is clear that ri<g from Lemma 8. Now we prove r,<29—8 by
induction. The proposition is true for g=1, 0 by Lemmas 2 and 5. Suppose it hag
been proved for surfaces of genus <g—1. Let M be a surface of genus g and let ug
suppose tha¥ there are 2g—38+1 simple closed two-sided curves I, 4=1, --., 29—2,
which satisfy the property A. Let M — Lz,,_2~M 1U M,. Then there are severa,l cases
to consider below.

Case A, My=M,. : ‘

Al. Assume M, is orientable. Then g;=¢g/2—1 from Lemma 8. If one of L,
4=1, -+, 29—38, say Ly, is homotopic to zero on the compactification A,,(M4), there
must be a disk D in A,,(M;) such that L;=8D and », y€D. It follows that the
other 2g—4 curves satisfy the property 4 on 4,,(M;). On the other hand, we have
2g~'4>3g1—3, which is contrary to Theorem 1. If none of the curves is homotopio
Yo zero on A,,(My), in a way similar to the proof of Theorem 1 (see . Fig. 2), we
know there are at least 29—b5 curves satisfying the property A on A,W (My). Then
the inequality 29 —5>8g;—8 gives a contradiction as before.

A2. Assume M, is nonorientable. Then g1=g—2 from Lemma 8. Similarly; we
may prove that there are at least 29 —b curves satisfying the property A. However,
2g—5>2¢1—8, which is contrary to the inductive agssumption.

- Case B. M5 M. ‘

Bi1. Suppose both My and M, are orientable. Then g=2g;+2¢, from ‘Lemma 4.
If ny (resp. na=29—8—ny) of the curves L, 5=1, -+, 29—8, lie on My (resp. My),
then the case that n;<8¢;—8+1, ny<8gy—8-+1 cannot ocour at the game time. Thig
contradicts Corollary 2.

B2. Suppose that one of My and M, say My, is orientable, the other (M) ig
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nonorientable. Then g=2g:+ ga. I>ét ny and ny be as above. The cage that n;<<3g:—3
+1 and n2<2gz 3+1 does not occur. Similarly, the case my>8¢g;—38+1 leads to a
contradiction w11;h Gorollary 2, and the case. n2>2g2—3—l-1 Wlth the mductlve
assumptlon B

BS. Assume both M, and M, are nonorientable. Then g=gs+g.. Thus; we have
either ny>2g;—8+1 or ny>2gs—8+1,: contradicting: the inductive assumption.
Hence, we have proved the inequality ra :
<2¢—38 by the induction.

The conclusion (2) of the theorem is

clearfrom the night picture. : Fig. 6 (g= 5)
~ Corollary 4. Let M bea nonomenmble swface of genus g with the bounda/ry of
T components g+r=2. There ewist at most 3g—38+2r sq,mple closed curves-which satisfy
the property A, of which at most g are one-sided, at most 2g 8+2r are twosided.

Theorem 5. Let M be a nonorientable surface of genus g (>2) with the
boundary of r components and let ry (ra=ry-+rs) denote the number of simple closed

one (two)-sided curves which satisfy the property A on M, where r; denotes the numbefr

v of such curves that all of them do nat divide M, ri=rq—rs. Then '

(1) rit2r:<g;

(i) ret+re<<l if gr 2 and r=0, r3 +2r2<2g 3+2fr ’bf g+r>3 Hence 'r2<
[(g—r1)/2], ri+ri+4re<89—8-+2r for g—l—fr>3

Proof Let Ly, -+, Ly; be the two-sided curves such that M, o=M— L1 R
is still connected. If M, is nonorientable, then ifg genus is go=9— 27 from Lemma
8, and so by Corollary 4 r1<<go, ¢2+2T2<2go 3+2(fr—|—2frz) , which give (i) and (i)
for g+r=>38. If M, is orientable, we write rh=4¢+7, 'o>0 and supposa without logs
of generality thab M y=M—TL;—+--— L, is nonorientable, whereas My=M;— L,y is
orientable. Therefore, M= M 2—L¢+2—---—L;+,- is orienfa,ble (in this case 7y must
e zero and g even). Then from Lemma 8 the genus of My, for k=1, 2, 3, is the
following: g1=g—24, ga=g1/2—1, " gs =>g2— (3—1) =gi/2¥j=g/2+r;. Thus from .
Corollary 2, 0< gs, and ' ' v

' 893 —8-+2(r+2rp) if g5=>2;
rh4+-2rh<d gs+2(r+2rh) —1 if g5=1;
2(r+2ry) —8 if g3=0, r>0.

Now it i easy to show the oonclusmns @ and (11) in all the cases. Thus the proof
is completed. . , ‘

In the rest we apply the theorems above to contmuous ﬂows FlI'S'li by Theorem
4 we have the followmg theorem.

Theorem 8. Lot M be a closed nonorientable surface of genus g (=>2) and let f
be a continuous flow on M. Then f has at most 8g—3 periodic orbits satisfying the
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property A on M, of whq}éh at mosi g are one—sided, at most 29—8 are two—sided.
Moreover, these numbers are always ackwa)ecl by a flow. ,
- Proof.- We need only to construct a flow ag required. Let L be the equator on
SPhere 82 A,€L, i=1, - g. Let D; be a disk with center at point A4; such that
DN\ Dj= for i#j, 4, j=1, -+, g. Let §?—L= S1USs. We define a ﬁow on §?—~

U D; whose structure of orbits is indicated in the following Fig. 7,

Fig 7

On conS1der1ng of P, Stable orblts and applylng Theorem 5 we obtain the
following theorem. ' }

Theorem 9. Let M be a nonorientable surface of genus g (>1) with the
boundary of r components and let f te a. contmuous flow on M Let ro (resp. r1, 7).
denote the number of distinct P stable orbit closures (resp one, tfwo—sfl,ded periodic
orbits which satisfy the property A). Then _

2ro+11<g, 2ro+ra<29—38+2u for g=1, fr>0

Hence dro+rait 7989 —8+2r for g+r=>2.

Proof The conclusion i true from Lemma 2 and Oorollary 4 for g= 1 and 2
since now 70=0. For g>3 we can construct a new flow f with ry two-sided penodm
orbits all of which do not divide M by means of the method of the proof of Theorem
4", Moreover, the r1+1T3 perlodm orbits of f are still those of f'. Now the conclusmn
is clear from Theorem 5.

I am deeply grateful to my advisor professor. Ye Yan—qian for his gmde a,nd
help.
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