A NOTE ON A COVERING LEMMA OF A CORDOBA AND R FEFFERMAN**

Long Ruilin (龙瑞麟)* Shen Zhongwei (申仲伟)*

Abstract

This note simplifies Cordoba–Fefferman's proof on the weak boundedness of strong maximal operator M_s (with respect to $d\mu$) on $L(1+\log^{+(n-1)}L)$. Some two-weighted boundedness results on $L(1+\log^{+\alpha}L)$ of M_s are investigated.

Let M_s denote the strong maximal operator in \mathbb{R}^n . A. Cordoba and R. Fefferman^[1] gave a geometric proof of Jessen-Marcinkiewicz-Zygmund theorem which states

$$|\{M_s(f) > \lambda\}| \leq C \int_{\mathbb{R}^n} \frac{|f|}{\lambda} \left(1 + \log^{+(n-1)} \frac{|f|}{\lambda} \right) dx, \ \forall f, \ \forall \lambda > 0.$$
 (1)

The advantage of this proof is that it can be used in many cases in which the simple iteration method is no longer useful. The key of the proof is a covering lemma. In this note we shall simplify the proof of their covering lemma by extrapolation. A similar idea also appeared in A. Carbery-S. Y. Chang-J. Garnett's paper^[2].

We shall treat more general case in which the Lebesgue measure dx is replaced by $d\mu$, where $d\mu$ is an absolutely continuous measures discussed by R. Fefferman^{t 1}, i. e. $d\mu = w(x)dx$ satisfies

$$w(x', x_n) \in A_{\infty}^{(s)}(\mathbb{R}^{n-1})$$
 uniformly in a. e. x_n , (2)

$$|(R)_d|_{\mu} \leqslant C|R|_{\mu}, \ \forall R, \tag{3}$$

where R is a rectangle with sides parallel to the axes. $(R)_d$ denotes the rectangle with the same center and $x_i(i < n)$ side lengths but 3 times x_n side length of R, and $A_{\infty}^{(s)}$ is the rectangle version of classical A_{∞} condition: we say $\mu \in A_{\infty}^{(s)}$ if $\forall \alpha \in (0, 1)$, $\exists \beta \in (0, 1)$, s. t.

$$\frac{|E|_{\mu}}{|R|_{\mu}} \leqslant \beta \Rightarrow \frac{|E|}{|R|} \leqslant \alpha, \ \forall R, \ \forall \text{ measurable set } E \subset R.$$
 (4)

Observe that (4) is equivalent to the following:

$$\forall \alpha \in (0, 1), \ \exists \beta \in (0, 1) \text{ s. t. } \frac{|E|}{|R|} \leqslant 1 - \alpha \Rightarrow \frac{|E|_{\mu}}{|R|_{\mu}} \leqslant 1 - \beta, \ \forall R, \ \forall E \subset R,$$

Particularly, take $\alpha=1/2,\ \mu\in A_{\infty}^{(s)}$ implies that $\exists\beta\in(0,\ 1)$ s. t.

Manuscript received March 6, 1986.

^{*} Institute of Mathematics, Academia Sinica, Beijing, China.

^{**} Supproted by NSF of China.

$$\frac{|E|}{|R|} \leqslant \frac{1}{2} \Rightarrow \frac{|E|_{\mu}}{|R|_{\mu}} \leqslant \beta, \ \forall R, \ \forall \in \subset R. \tag{4}$$

This implies μ satisfies the doubling condition. We also remark that for $1 \leqslant p \leqslant \infty$, condition $A_p^{(s)}$ are equivalent to A_p condition in each variable separately and uniformly in the other variables. Since we shall use this fact on $A_\infty^{(s)}$, we prove it in the case $p = \infty$. Suppose that $w \in A_\infty$ (uniformly) in each variable. Then there exists $p < \infty$ such that $w \in A_p$ (uniformly) in each variable. So M_s is bounded on $L^p(w)$. This implies $w \in A_p^{(s)}$. Therefore $w \in A_\infty^{(s)}$. Conversely, let $w \in A_\infty^{(s)}$. We want to prove that as a function of arbitrary j variables (say last j variables), $w \in A_\infty^{(s)}(\mathbb{R}^j)$ uniformly in a. e. points in \mathbb{R}^{n-j} . In fact, the Reverse Hölder Inequality for rectangles also holds as in classical case, so there exists $p < \infty$ such that $w \in A_p^{(s)}$. Let J be arbitrary rectangle in \mathbb{R}^j whose center and side lengths are both rational. Let $x' = (x_1, \dots, x_{n-j})$ be a Lebesgue differentiable point of all functions

$$\int_J w^{\varepsilon} dx_{n-j+1} \cdots dx_n, \ \forall \text{ such } J, \ \varepsilon = 1, \ -(p-1)^{-1},$$

and I be a cube in \mathbb{R}^{n-j} containing x'. Then letting $I \rightarrow x'$ in the following inequality

$$\frac{1}{|I \times J|} \int_{I \times J} w \ dx \left(\frac{1}{|I \times J|} \int_{I \times J} w^{-(\mathfrak{p}-1)^{-1}} dx \right)^{\mathfrak{p}-1} \leqslant C,$$

we get

$$\frac{1}{|J|} \int_{J} w \, dx_{n-j+1} \cdots dx_{n} \left(\frac{1}{|J|} \int_{J} w^{-(p-1)^{-1}} \, dx_{n-j+1} \cdots dx_{n} \right)^{p-1} \leqslant C.$$

Obviously, the above inequality holds for all rectangles in a. e. x', i. e. $w \in A_p^{(s)}(\mathbb{R}^j)$ in a. e. x'. Consequently

$$w \in A_{\infty}^{(s)}(\mathbb{R}^{j})$$
 uniformly in a. e. x' .

In section 1 we simplify the proof of Cordoba–Fefferman's covering lemma in general case of $d\mu$. As a consequence we get (1) for $d\mu$, a result which B. Jawerth and A. Torchinsky^[4] have obtained by a different approach. In section 2 we discuss some weighted norm inequalities for M_s . But the results are unsatisfactory.

§ 1. The Weak Type Estimate of the Strong Maximal Operator with Respect to a Measure

Let $\{R_k\}$ be a sequence of rectangles in \mathbb{R}^n . $\{R_k\}$ is said to satisfy property P_1 if

$$|R_k \cap \bigcup_{i < k} R_i| \le |R_k|/2; \tag{5}$$

 $\{R_k\}$ is said to satisfy property P_2 if its side lengths in the x_n direction are decreasing and

$$|R_k \cap \bigcup_i (R_i)_d| \leq |R_k|/2. \tag{6}$$

Observe that if $\{R_k\}$ satisfies property P_2 , then when we slice $\{R_k\}$ by an arbitrary hyperplane perpendicular to the x_n axis, we obtain a sequence of n-1 dimension rectangles which depend on parameter x_n and satisfy property P_1 for all x_n .

As we shall discuss the property of M_s on Zygmund spaces $L(1+\log^{+\frac{1}{\alpha}}L)$, $0 < \alpha$ $<\infty$, we need the following fact about some convex function $\Phi(u)$ and its Young's complementary function $\Psi(v)$ formulated in a lemma, the proof of which is elementary and can be omitted.

Lemma 1. Let $0 < \alpha < \infty$, $\varphi(u) = 1 + \log^{+\frac{1}{\alpha}} u$, $\Phi(u) = \int_{0}^{u} \varphi(t) dt$, $\Psi(v)$ be the Young's complementary function of Φ . Then

$$\frac{u}{2} \left(1 + \log^{+\frac{1}{\alpha}} \frac{u}{2} \right) \leq \Phi(u) \leq u (1 + \log^{+\frac{1}{\alpha}} u), \quad \forall u > 0,$$

$$\Psi(v) \leq c_{\boldsymbol{a},\delta} v^{1-\alpha} (\exp(c_1 v)^{\alpha} - 1), \quad v \leq \delta,$$

$$\Psi(v) \leq c_{\boldsymbol{a},\delta} (\exp(c_1 v)^{\alpha} - 1), \quad v > \delta.$$
(7)

When $\alpha \leq 1$, we have the following unified estimate

$$\Psi(v) \leqslant C(\exp(c_1 v)^{\alpha} - 1), \forall v > 0.$$
 (7)

Let μ be a measure satisfying (2) and (3). Define

$$M_{s,\mu}f(x) = \sup_{R\ni x} |R|_{\mu}^{-1} \int_{R} |f(y)| d\mu(y), \ \forall f, \ \forall x \in \mathbb{R}^{n},$$
 (8)

$$M_{s,\mu'}f(x') = \sup_{R^{n-1} \supset R \in a'} |R|_{\mu}^{-1} \int_{R} |f(y', x_n)| d\mu'(y'), \ \forall f, \ \forall x \in \mathbb{R}_n,$$
 (9)

where

$$d\mu' = w(x', x_n)dx', x' = (x_1, \dots, x_{n-1}).$$

Lemma 2. Let $\{R_k\}$ be a sequence of rectangles in \mathbb{R}^n satisfying property P_2 . Assume that $M_{s,\mu}$ is of weak type (p, p) on $(\mathbb{R}^{n-1}, d\mu')$ with weak type (p, p) coefficient $O((p-1)^{-r}), 1 . Then there exists a constant C independent of$ $\{R_k\}$ such that

$$\left(\int_{\cup R_k} |\Sigma_{\chi_{R_k}}|^{p'} d\mu\right)^{1/p'} \leq C(p')^{r+1} |\cup R_k|_{\mu}^{1/p'}, 1 (10)$$

Proof Let $\{R_k\}$ be a sequence of rectangles in \mathbb{R}^n satisfying property P_2 . After slicing $\{R_k\}$ at x_n , we obtain a sequence of rectangles in \mathbb{R}^{n-1} which depend on x_n and satisfy property P_1 for all x_n , i. e.

$$|S_k^{(x_n)} \cap \bigcup S_i^{(x_n)}| \leq |S_k^{(x_n)}|/2, \ \forall x_n.$$

Since $\mu' \in A^s_{\infty}$ (\mathbb{R}^{n-1}) uniformly in a. e. x_n , by (4)' we have

$$\left|S_k^{(x_n)} \cap \bigcup_{i < k} S_i^{(x_n)} \right|_{\mu'} \leq \beta \left|S_k^{(x_n)} \right|_{\mu'}.$$

We want to prove

$$\left(\int_{US_k^{(x_n)}} |\Sigma_{\chi_{S_k^{(x_n)}}}(x')|^{p'} d\mu'(x')\right)^{1/p'} \leq C(p')^{r+1} |US_k^{(x_n)}|^{1/p'} \tag{11}$$

uniformly in x_n . Once it is proved, we take the p'-th power on both sides of (11) and

integrate in x_n , then we get (10).

Proving (11) is nothing but proving that if $\mu \in A_{\infty}^{(s)}(\mathbb{R}^l)$ and $M_{s,\mu}$ is of weak type (p, p) on (\mathbb{R}^l, μ) with coefficient $O((p-1)^{-r})$, $1 , then for arbitrary sequence of rectangles <math>\{R_k\}$ satisfying property P_1 , we have

$$\left(\int_{UR_{k}} |\Sigma_{\chi_{R_{k}}}(x)|^{p'} d\mu\right)^{1/p'} \leqslant C(p')^{r+1} |UR_{k}|_{\mu}^{1/p'}. \tag{11}$$

This can be proved by direct estimate or by linearization of operator. We make use of the latter. Assume that $\{R_k\}$ satisfies property P_1 and $\mu \in A^{(s)}_{\infty}$. Then

$$|E_k| = |R_k - \bigcup_{k \ge k} R_k| \gg \frac{1}{2} |R_k|, \ |E_k|_{\mu} \gg (1-eta) |R_k|_{\mu}.$$

Define linear operator T by

$$Tf(x) = \sum |R_k|_{\mu}^{-1} \int_{R_k} f \, d\mu \chi_{E_k}(x)$$
.

Notice that its adjoint is given by

$$T^*g(y) = \Sigma |R_k|^{-1} \int_{B_k} g \, d\mu \chi_{R_k}(y)$$
.

Observing

$$|Tf(x) \leq M_{s,\mu}f(x), T^*\chi_{UR_k}(y) \geqslant (1-\beta)\Sigma\chi_{R_k}(y),$$

and letting $g = \chi_{UR_k}$, we have

$$\int T^*g(y)f(y)d\mu = \int Tf(x)g(x)d\mu \leqslant p'\|g\|_{L^{p_{r,1}}(\mu)}\|Tf\|_{L^{p_{r,r}}(\mu)}$$

$$\leqslant p'O\left(\frac{1}{p-1}\right)^r\|g\|_{L^{p_{r,1}}}\|f\|_p = O(p')^{r+1}\|UR_k\|_{\mu}^{1/p'}\|f\|_p,$$

which implies the desired (11)'. This completes the proof of Lemma 2.

Remark. (10) also holds for p>2, since it holds for p'=2, 1, so does for 1 < p' < 2, i. e. for p>2.

Lemma 3. The assumptions are given as in Lemma 2. Then there exist constants c_0 and c such that

$$\int_{\Pi R_k} (\exp((c_0 \Sigma \chi_{R_k})^{1/(r+1)} - 1) d\mu \leq C |UR_k|_{\mu}.$$
 (12)

Proof Let c_0 be determined later and $g = (c_0 \sum_{\chi_{R_k}})^{1/(r+1)}$. It follows from Lemma 2 that

$$\int_{UR_{k}} \left(e^{g} - 1 - \dots - \frac{g^{r}}{r!} \right) d\mu = \int_{UR_{k}} \sum_{j=r+1}^{\infty} \frac{g^{j}}{j!} d\mu \leq \sum_{j=r+1}^{\infty} ((r+1)^{-1} C_{0}^{1/(r+1)} C^{1/(r+1)} e)^{j} |UR_{k}|_{\mu}$$

$$\leq C |UR_{k}|_{\mu} \text{ if } c_{0} \text{ is small enough.}$$

And since $g^{i/r+1} \leq C \sum_{R_k}$, if $j \leq r$, we have proved (12). The proof of the lemma is finished.

A careful examination on the proof of R. Fefferman^[3] make us be able to obtain the following slightly precise result.

Lemma 4. Let μ be a measure satisfying (2) and (3). Then $M_{s,\mu}$ is of weak type (p, p) on $(\mathbb{R}^n, d\mu)$ with coefficient $O(p-1)^{1-n}$, 1 .

Proof The proof is by induction on n. For n=1, μ satisfies the doubling condition, the result is well-known. Suppose that n>1 and the lemma holds for n-1. Let μ be a measure satisfying (2) and (3), then so does $\mu'=w(x', x_n) dx'$ (for index n-1) uniformly in a. e. x_n . By induction, $M_{s,\mu'}$ is of weak type (p, p) with coefficient $O((p-1)^{2-n})$. Let $\{R_k\}$ be arbitrary sequence of rectangles in \mathbb{R}^n satisfying property P_2 . By Lemma 2, we have

$$\left(\int_{UR_{k}} |\Sigma_{\chi_{R_{k}}}|^{p'} d\mu\right)^{1/p'} \leq C(p')^{n-1} |UR_{k}|_{\mu}^{1/p'}, 1
(13)$$

It is routine that (13) implies $M_{s,\mu}$ is of wack type (p, p) with coefficient $O(p')^{n-1}$. For the sake of completeness, we give its proof.

Let $\lambda > 0$ and $\{\widetilde{R}_k\}$ be a cover of $\{M_{s,\mu}f > \lambda\}$ such that $|\widetilde{R}_k|^{-1} \int_{\widetilde{R}_k} |f| d\mu > \lambda$. With no loss of generality, we may assume that $\{\widetilde{R}_k\}$ is a finite sequence and x_n side lengths of \widetilde{R}'_k s are decreasing. Now let $R_1 = \widetilde{R}_1$ and suppose that we have chosen R_2 , ..., R_{k-1} . Then R_k is taken to be the first rectangle in the sequence $\{\widetilde{R}_i\}$ after R_{k-1} with the following property:

$$|\widetilde{R}_i \cap \bigcup_{i \leqslant k-1} (R_i)_d| \leqslant |\widetilde{R}_i|/2.$$

Thus we obtain a sequence of rectangles $\{R_k\}$ satisfying property P_2 . So we have (13). Observe that we also have $|U\widetilde{R}_i|_{\mu} \leq C|UR_k|_{\mu}$. In fact, owing to the choice of $\{R_k\}$ we have

$$|\widetilde{R}_j \cap U'(R_k)_a| > |\widetilde{R}_j|/2, \ \forall j,$$

where U' denotes the union of sets $(R_k)_d$ with R_k being ahead of \widetilde{R}_j in $\{\widetilde{R}_i\}$. Let $\widetilde{S}_{k,\overline{d}}^{(x_n)}$ denote the slices of \widetilde{R}_j and $(R_k)_d$ at x_n respectively. Then

$$|\tilde{S}_{j}^{(x_n)} \cap US_{k,d}^{(x_n)}| > |\tilde{S}_{j}^{(x_n)}|/2.$$

Since $\mu \in A^{(s)}_{\infty}(\mathbb{R}^{n-1})$ uniformly in a. e. x_n , it follows that

$$|\tilde{S}_{j}^{(x_{n})} \cap US_{k,d}^{(x_{n})}|_{\mu'} \geqslant c |\tilde{S}_{j}^{(x_{n})}|_{\mu'},$$

which implies $M_{s,\mu'}(\chi_{\sigma S_{k,a}^{(x_n)}}|_{\sigma S_{j}^{(x_m)}}) \geq c$. By induction, $M_{s,\mu'}$ is of weak type (2.2). Therefore

$$|U\widetilde{S}_{j}^{(x_{n})}|_{\mu'} \leq c |US_{k,d}^{(x_{n})}|_{\mu'},$$

and

$$|U\widetilde{R}_{j}|_{\mu} \leqslant c |U(R_{k})_{d}|_{\mu} \leqslant c \Sigma |R_{k}|_{\mu} \leqslant c |UR_{k}|_{\mu}.$$

Consequently

$$\begin{split} |\{M_{s,\mu}f>\lambda\}|_{\mu} \leqslant &|U\widetilde{R}_{j}|_{\mu} \leqslant c\Sigma |R_{k}|_{\mu} \leqslant c\Sigma \int_{R_{k}} \frac{|f|}{\lambda} d\mu \\ \leqslant &c \Big(\frac{1}{p-1}\Big)^{n-1} |UR_{k}|_{\mu}^{1/p'} \lambda^{-1} ||f||_{p} \leqslant c((p')^{n-1} ||f||_{p}/\lambda)^{p}. \end{split}$$

This completes the proof of the lemma.

Remark. When $d\mu = dx$, the proof of the lemma is very easy. In fact, as the weak type (p, p) and type (p, p) coefficients of Hardy-Littlewood maximal operator

are O(1) and $O((p-1)^{-1})$ respectively, we have

$$\begin{split} |\{M_s f > \lambda\}| &= \int_{\mathbb{R}^{n-1}} |\{M_s f > \lambda\}|_{x_n} dx' \leqslant \int_{\mathbb{R}^{n-1}} |\{M^{(n)}(M^{(n-1)} \cdots M^{(1)} f) > \lambda\}|_{x_n} dx' \\ &\leqslant \frac{c}{\lambda^p} \int_{\mathbb{R}^n} |M^{(n-1)} \cdots M^{(1)} f|^p dx_n dx' \leqslant \frac{c}{\lambda^p} ((p')^{n-1} ||f||_p)^p. \end{split}$$

Now we can obtain the lemma of A. Cordoba and R. Fefferman directly.

Lemma 5. Let μ be a measure satisfying (2) and (3) and $\{\widetilde{R}_j\}$ be a sequence of rectangles. Then there exists subsequence $\{R_k\}$ such that

$$|U\widetilde{R}_j|_{\mu} \leqslant c|UR_k|_{\mu},\tag{14}$$

$$\int_{\Pi R_{\bullet}} (\exp((c_0 \sum \chi_{R_k})^{1/(n-1)} - 1) d\mu \leq c |UR_k|_{\mu_{\bullet}}$$
(15)

Proof Assume that $\{\widetilde{R}_i\}$ has been ordered so that its lengths in the x_n direction are decreasing. We choose a subsequence $\{R_k\}$ satisfying property P_2 by the choice process described in the proof of Lemma 4. Recall that we have proved (14). Since $\mu' = w(x', x_n)dx'$ satisfies the assumption of Lemma 4 uniformly in x_n , $M_{s,\mu'}$ is of weak type (p, p) with uniform coefficient $O(p-1)^{2-n}$. So (15) follows from Lemma 2 and Lemma 3. This completes the proof of the lemma.

Now we establish (1).

Theorem 1. Let μ be a measure satisfying (2) and (3). Then

$$|\{M_{s,\mu}f>\lambda\}|_{\mu} \leqslant \int_{\mathbb{R}^n} \frac{c|f|}{\lambda} \left(1 + \log^{+(n-1)} \frac{c|f|}{\lambda}\right) d\mu, \ \forall f, \ \forall \lambda > 0.$$

Proof Let $\lambda > 0$ and $\{\widetilde{R}_j\}$ be a cover of $\{M_{s,\mu}f > \lambda\}$ such that $|\widetilde{R}_j|_{\mu}^{-1} \int_{\widetilde{R}_j} |f| d\mu > \lambda$. By Lemma 5, we have subsequence $\{R_k\}$ satisfying (14) and (15). Let $\Phi(u) = u(1 + \log^{+(n-1)}u)$ and $\Psi(v)$ be its complementary function. Then

$$|\{M_s, \mu f > \lambda\}|_{\mu} \leqslant c \Sigma |R_k|_{\mu},$$

and

$$\Sigma |R_k|_{\mu} \leqslant \int \Sigma_{\chi_{R_k}} \frac{|f|}{\lambda} d\mu \leqslant \int \Phi\left(\frac{|f|}{\varepsilon \lambda}\right) d\mu + \int \Psi(\varepsilon \Sigma_{\chi_{R_k}}) d\mu.$$

By Lemma 1, we see that

$$\Psi(\varepsilon \Sigma \chi_{R_k}) \leq c(\exp((c_1 \varepsilon \Sigma_{R_k})^{(n-1)-1})-1).$$

Notice that if $s \le 1$, $e^{su} - 1 \le s(e^u - 1)$. Therefore if we choose s enough small, we obtain

$$\int \Psi(\varepsilon \Sigma_{\chi_{R_k}}) d\mu \leqslant c \left(\frac{c_1 \varepsilon}{c_0}\right)^{1/(n-1)} \int (\exp((c_0 \Sigma_{\chi_{R_k}})^{1/(n-1)}) - 1) d\mu \leqslant c_s |UR_k|_{\mu} \leqslant \frac{1}{2} |UR_s|_{\mu}.$$

Altogether we then get (1)'. We have finished the proof of the theorem.

Remark. Noting that only the proof of Lemma 4, which becomes trivial when $d\mu = dx$, is a bit complicated, but the proof of Lemmas 2 and 3 is merely simple extrapolation, we indeed simplify the proof of C-F covering Lemma.

§ 2. Weighted Estimate of Strong Maximal Operator on Zygmund Spaces

Let $d\mu = w(x)dx$ be a nonnegative Borel measure on \mathbb{R}^n and U, V be weights such that $U d\mu$ is bounded locally. Let $M_s = M_{s,\mu}$ be strong maximal operator with respect to measure μ , and $0 < \alpha < \infty$. We want to discuss for which U, V we have

$$|\{M_s f > \lambda\}|_{Ud\mu} \leq \int \frac{c_2 f}{\lambda} \left(1 + \log^{+\alpha} \frac{c|f|}{\lambda}\right) V d\mu, \ \forall f, \ \forall \lambda > 0, \tag{16}$$

$$\int_{\mathbb{R}} M_s f U \, d\mu \leqslant c \left(\int |f| \left(1 + \log^{+\alpha} |f| \right) V \, d\mu + |R|_{U} \right), \, \forall f. \tag{17}$$

Theorem 2. (a) Suppose (16) holds. Then $\exists s>0$, such that for arbitrary sequence of rectangles $\{R_i\}$ and sequence of disjoint sets $\{E_i\}$ where $E_i \subset R_i$, for arbitrary set E and constant $\delta>0$, we have

$$\int_{UR_{j}\cap\{g>\delta\}} (\exp((\varepsilon g^{1/(\alpha+1)})-1)V \, d\mu \leqslant c |UR_{j}\cap E|_{Ud\mu}, \tag{18}$$

with constant C only depending on U, V, S, s, where

$$g = \sum_{1}^{\infty} \frac{\left| E_{j} \cap E \right|_{U}}{V(x) \left| R_{j} \right|_{\mu}} \chi_{R_{j}}(x). \tag{19}$$

(b) Suppose that (18) holds for some ε , δ and arbitrary sequence of rectangles satisfying property P_2 , $E_j = R_j - \bigcup_{i < j} (R_i)_d$, and $E = \mathbb{R}^n$. and $Ud\mu \in A^{(s)}_{\infty}$. Then (16) holds for index $\alpha + 1(0 < \alpha + 1 < \infty)$.

Proof (a) we need the following elementary inequality

$$u(1+\log^{+\alpha}u) \leq c_{\eta,\alpha}(p-1)^{-\alpha}u^p, u \in [\eta, \infty), 1$$

Suppose (16) holds. Then for 1 , we have

$$|\{M_{s}f>\lambda\}|_{Ud\mu} \leq \int_{\{|f|>\frac{\lambda}{2}\}} \frac{c|f|}{\lambda} \left(1 + \log^{+\alpha} \frac{c|f|}{\lambda}\right) V d\mu$$

$$\leq c(p-1)^{-\alpha} \lambda^{-p} \int |f|^{p} V d\mu, \ \forall f, \ \forall \lambda > 0.$$
(20)

From (20) and the method used in section 1, we see that for arbitrary $\{R_i\}$, $\{E_i\}$,

 $E \text{ and } g = \sum \frac{|E_j \cap E|_U}{|V(x)|R_i|_u} \chi_{R_j}(x), \text{ we have}$

$$\left(\int_{URt} |g|^{p'} V d\mu\right)^{1/p'} \leq c(p-1)^{-\alpha-1} |UR_j \cap E|_{Ud\mu}^{1/p'}, 1$$

And for $\delta > 0$ and ε enough small, then we have

$$\int_{UR_{g} \cap \{g > \delta\}} \left(\exp((eg)^{1/(\alpha+1)}) - 1 \right) V \, d\mu = \sum_{j=1}^{2[a+1]} + \sum_{[\alpha+1]+1}^{2[\alpha+1]+1} + \sum_{2[\alpha+1]+2}^{\infty} \\ \leqslant I_{1} + I_{2} + e \left| UR_{j} \cap E \right|_{Ud\mu}.$$

To estimate I_1 and I_2 , we only have to notice that

$$\int_{UR_{j}} gV \ d\mu = \int_{UR_{j}} \sum \frac{|E_{j} \cap E|_{Ud\mu}}{|R_{j}|_{\mu} \chi_{R_{j}}} d\mu \leqslant |UR_{j} \cap E|_{Ud\mu}.$$

(3.1)

Thus we have proved (a).

(b). Suppose (18) holds for some ε , δ and $E=R^n$, and $\{R_j\}$ satisfying property P_2 and $E_j=R_j-\bigcup_{i< j}(R_i)_d$. And assume $Ud\mu\in A_\infty^{(s)}$. Let $\lambda>0$ and $\{\widetilde{R}_j\}$ be a cover of $\{M_sf>\lambda\}$ such that $|\widetilde{R}_j|_{\mu}^{-1}\int_{\widetilde{R}_j}|f|\,d\mu>\lambda$. We choose a subsequence $\{R_j\}$ satisfying property P_2 . let $E_j=R_j-\bigcup_i(R_i)_d$. Then

$$|E_j| \geqslant \frac{1}{2} |R_j|, |E_j|_{v} \geqslant \beta |R_j|_{v},$$
 $|\widetilde{R}_j \cap U(R_i)_d| > \frac{1}{2} |\widetilde{R}_j|, |\widetilde{R}_j \cap U(R_i)_d|_{v} \geqslant \beta |\widetilde{R}_j|_{v}, \forall j,$

which implies $M_{s,Ud\mu}(\chi_{U(R_i)_d})|_{U\widetilde{R}_j} \geqslant \beta$. Since $M_{s,Ud\mu}$ is bounded on $L^2(Ud\mu)$, we get $|U\widetilde{R}_j|_U \leqslant c |U(R_j)_d|_U \leqslant c \Sigma |E_j|_U$. Let $\Phi(u) = u(1 + \log^{+(\alpha+1)}u)$ and $\Psi(v)$ be its Young complementary function. Then with $g = \Sigma \frac{|E_j|_U}{|V(x)|R_j|_u} \chi_{R_j}$, we get

$$\begin{split} \Sigma |E_{j}|_{v} \leqslant & \int g \frac{|f|}{\lambda} V d\mu = \int_{\langle g < \delta \rangle} + \int_{\langle g > \delta \rangle} \\ \leqslant & \int \Phi \left(\frac{c|f|}{\lambda} \right) V d\mu + c \int_{\partial R_{j} \cap \langle g > \delta \rangle} (\exp((c_{1} \epsilon g)^{1/(\alpha + 1)}) - 1) V d\mu \\ \leqslant & \int \frac{c|f|}{\lambda} \left(1 + \log^{+(\alpha + 1)} \frac{c|f|}{\lambda} \right) V d\mu + \frac{1}{2} \Sigma |E_{j}|_{v} \end{split}$$

for ε enough small.

So we obtain (b). This completes the proof of the theorem.

Now we discuss (17) as in [2]. We have the following analogous result. Its proof may be borrowed from [2], and omitted.

Theorem 4. Let μ be a measure as in Theorem 2, $M_s = M_{s,\mu}$. Then the following conditions are equivalent:

- (a) There exists constant $C = C_{U,V}$ (independent of f and R) such that (17) holds.
- (b) $\exists s>0$, $\delta_s>0$ and $G_{s,v,v}$ such that for any positive linear operator T satisfying $|Tf| \leq M_s f$, we have

$$\int_{\langle T^*(U\chi_R > \delta \varepsilon V)} \left(\exp\left(\varepsilon (T^*(U\chi_R)V^{-1})^{\frac{1}{\alpha}}\right) - 1\right) V d\mu \leqslant c_{\varepsilon, U, V} |R|_{Ud\mu}, \tag{24}$$

where T^* is the adjoint of T in following sense

$$\int gTf \ d\mu = \int fT^*g \ d\mu.$$

(c) $\exists s > 0$, $\delta_s > 0$ and $C_{s,U,V}$ such that for any sequence of rectangles $\{R_i\}$ and sequence of disjoint sets $\{E_j\}$, $E_j \subset R_j$, $g = \sum \frac{|E_j \cap R|_{Ud_\mu}}{V|R_j|_\mu} \chi_{R_j}$, we have

$$\int_{\{g>\delta_{c}\}} (\exp(sg^{1/\alpha}-1)V d\mu \leqslant O_{s,U,V}|R|_{Ud\mu}. \tag{25}$$

Finally, we remark that when we consider (17) only for those f whose

supports are contained in R, we may replace the domains of the integrals in (24) and (25) by $\{x \in R: T^*(U_{\chi_R}) \geqslant \delta_{\epsilon}V\}$ and $\{x \in R: g \geqslant \delta_{\epsilon}\}$ respectively. In addition, when U = V, the domains of the integrals in (24) and (25) may be taken as whole R, owing to the fact that integrals over $\{x \in R: T^*(V_{\chi_R}) \leqslant \delta_{\epsilon}V\}$ or $\{x \in R: g \leqslant \delta_{\epsilon}\}$ are $O(|R|_{Vd_{\mu}})$ obviously.

References

- [1] Cordoba, A. and Fefferman, R., A geometaic proof of the strong maximal theorem, Ann, Math., 102 (1975), 95-100.
- [2] Carbery, A., Chang, S-Y. A. and Carnett, J., Weights and LLogL, Pacific Jour. of Math. 120, (1985), 33-45.
- [3] Fefferman, R., Strong differentiation with respect to measures, Amer. J. of Math., 103 (1981),33-40.

parte april 1860 m. apasan mandang **m**alagasa milad

je koje viliĝio de 19. ligito de 19. litera 19. kaj 19. ĝija bilitera troba ligi**liano jaroja** konsportat. Para tropija al ligitoj koje ligitoj kija kaj kontroli koje litera 1980. Na ligitara di vari 19. de 19.

en un ex Hamalik (AN e.C. HTLD afterior floors in terrorr

, water a militar that the interest and the broken out

v etito vento vento vento pot sociali. La lagranti privina discipi la dimenia e

was the grant after the first specific to stage to the con-

and the second Westing O. 1.7 Fish

eye gill ngw re<mark>gay sall s</mark>ic (10

[4] Jawerth, B. and Torchinsky, A., The strong maximal function with respect to measures (preprint).