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 SECTIONAL CURVATURE OF KAEHLER
'~ SUBMANIFOLDS OF A COMPLEX
" PROJCETIVE SPACE

Liso Ruijia (#f)*

‘Abstraet
Let M5(n>2) be a complex Kaehler submanifold immersed in the complex projective. -
space CP™(1). Let K be the sectional curvature of M=, Then K>1/8 if and only if M»is
an imbedding submanifold congruent to the standard imbedding CP» (1) or C’P"(%).

§ 1. Introduction

Let M™ be a complete Kaehler submanifold of complex dimension n, immersed
in the complex projective space OP™ (1) endowed with the Fubini-Study metric of
constant holomorphio sectional curvature 1. Let K be the sectional curvature of
M. K. Ogiue™ conjectured the following facts: (1) If n>>2 and K >1/8, then M" is
totally geodesic in OP™(1); (2) If m—n<n(n+1)/2 and K >0, then M~ is totally
geodesic in OP™(1). Recently, A. Ros and L. Verstraelen™ resolved the conjecture
(D). In this paper, we will prove the following

Theorem. Let M" (n>2) be a complete Kaehler submanifold immersed in the
complex projective space OP™(1) . Let K be the sectional curvature of M. Then K=
1/8 if and only if M" is an imbedding submanifold congruent to the standard
imbedding OP*(1) or OP*(1/2).

§ 2. Preliminaries

Let M be an n-dimensional Kaehler submanifold immersed in OP™(1). The
Fubini-Study metric of constant holomorphic sectional curvature 1 on OP™(1)
and the induced metric on M" will both be denoted by g. The complex structure of
OP™(1) and the induced complex structure on M* will both be denoted by J. Let ¥
and V be respectively the Riemannian connections of OP™(1) and M» and let o be
the second fundamental form of the immersion. 4 and V: are the ‘Weingarten
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endomorphism and the normal cennection. The second covariant derivative of the
normal valued tensor ¢ is given by R
(V”a')(X Y, Z, W) =V4((Vo) (¥, Z, W))— (Vo) V=Y, Z, W) _
: - =o)X, VzZ, W)— (Vo) (¥, Z, VW) - (2.1)
for any Vector fields X, Y, Z and Wtangent to M". Let: R, R and ‘R* denote the
eurvature tensors of the connectlons ¥, V and \7JL Then we have -

B(X, )2 =——{g(Y X —g(X, Z)Y+g(JY Z)JX

—g(JX, Z)IT +29(X, JV)I L}, S @2
B(X, V) Z=R(X, Y) 2+ Ao, X — Aoiz,nsY, (2.8)
g(RH(X, )& n)=g(B(X, Y)E, n)+g([4E, An]X, Y 2.4)

for all vector fields X, Y, Z tangent to OP"(1), X, Y, Z tangent to M" and &, 7
normal to M* in OP™(1). Moreover o and Vo are symmetrio and for VZO' we have
(V”a) (X,Y,Z2,W)—(Vo)(¥, X, Z, W)
=RY(X, Y)o(Z, W)~o(B(X, Y)Z, W)—0o(Z, B(X, w). (2.5)
‘We also congidier the relations . » _
c(JX,Y)=0(X, J¥) = Jo-(X Y), . (2.6)

Ayp=J Ay = — AT, .7
ViJE=JV%E, (2.8)

(Vo) (JX, ¥, Z) = (Vo) (X, JY, )= (Vo)(X, ¥, T2) =T (Vo) (X, ¥, 2).

§3. Two Lemmas

Let M* be an n—dimensional oompaot Kaehler submanifold - 1mmersed in
OP™(1). Let w: UM—>M and UMj} be the unit tangent bundle of M~ and its fiber
over pC M, respectively. Then we consider the function f:UM—>R defined by

F @) =lo(, w|? |
for uEUM n Since M" is compact, UM is compact, therefore the function f attaing
its maximum at some vector v € UM} for some p € M*, Then from [2] we have

Agoov=lo(, ). o 3.1
Since n=>2, we can always choose a Vector w € UM}, such that -~
Av(v:v)“ g(o‘(«v, ), o (U, w))Us o (3.2)

Let 8= {(u, w) |u, wEUM, g(y, w) = g(u, Jw) =0}. From [4] we have

Lemma 1. Let M" be a compact Kaehler submani fold smmersed 4n OP™(1). If
f attains its mazimum ab some vector vEUM? and some pE M, then for any wector
uE€UM?, such that (v, w) €8y and Agw, o= g(o (v, v), o(y, ) )u, we have

No (v, 9) [2A—8lo (u, v)[2) —4g(c (v, v), o (v, w)*+4]| (Vo) (u, v, ) H”<0

Now we consider the function h: S—>R defined by
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S R (uy, w)=Jo(u, w)|? : . -«
for (u, w) €8. Since M" is compact, S is compact, therefore the above funotlon 7",
attains its maximum at some vector (u, v) €8, for some pE M*. Lot v (%) be a curve
in UM, such that y(0) =u, 7'(0) =u, ]fy (t)] =1, As the functlon ho(y, 7') attaing
its maximum at ¢=0, we have . ' :

d(ho(% 7)) ¢ (0) = 29(0'(’21, ru), o (u, fu)) =29 (o (4, u), a(u fv)) =0, "(3.'3)"

2
Lh‘;g{,v—”l@ =2 (o, ) [+ 210w, u)[o— Slot e
 —49(0@ ), o(v, 1)) <0. G
NOW we suppose that the function f also attams its maxmmm at v€UMj. Fixed v,
for any vector waUM (u w) €8, g, w) 0, we can choose a curve Oy, (%) in
Sy, such thad_; Ow (O) (u, v), Olywy(0)=(u, w). As the function hoc abtains its

maximum at =0, we have

400 0y =29(o (s, o, ot ©)) =0, . (3.5)
From (3.1), (3.8) and (3 5), it follows $hat ' '
‘ Au(u,,,)u—ﬂo(u V) ]I” . T (3.6)
Similarly _ "
s Asu,mv =0 (u, v) ll"u- v 3.7

Let 7, be the geodesic in M* determined. by the initial conditions. 1,(0) =p,
1.,(0) =u. Parallel translations of » and o along 1,(#) yield vector fields U,(¢) and
Vu(2). Let hy=ho(U,, V). By direct computations, we obtajn

f 7= (1) =29 (Vo) (1, Uu, V,,), o (U V) (t) (3.8)
(glt};“ (0) =29 ((V30) (u, u, u, 'v), o (u, 'v))+9u(Vo-)(u u, ) l|2 ‘; (3.9),

From (3.9), we derive that ,
dhyy © =29((V6) (Ju, Ju, u, v), o, 9))+2| (Vo) (u, % o)|%  (3.10)

a2
By similar arguments as in [3] we obtain
g((V25) (Ju, Ju, u, ), o(x, fu))
=9((V30) (Ju, u, Ju, v), o(u, v)) ,
=9((V?0) (u, Ju, Ju, v), o(y, v)) +g(R*(Ju, u)o(Ju, v), o(u, v))

—9(R Ty, w)Ju, Aew,uv) —g(R(Jy, ), A,(,,,,,)Ju) (8.11)
By the Ricei equation ) ‘
9B (Ju, w)o(Ju, v), o(y, 'v)) = ——Ild(u 'v)ll —2[ Aoy, ]

=—Flow Ol -2lot v @.12)

By the Guass equation
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g(R(Ju, w) U, Aow,n?) = lo(u, fv) 12g(R (Ju, u)Ju, u) o
= — oy, v)|2+2lo(s, »)[2le I3,  (3.13)
(R(J% “) 9, a(u,mJU)——‘-HG(u ) [29(R(Ju, w)v, Jv)

A——-—lla(u, v)[*+2]o 5] AR C B T
From (3.9)— (3 14), it follows that
“5;“<0>+dd’;;" (©) =2l 9 PA—tlota, v>||2 zna<u u)ll”) o
o T G 1) U 1)

Now we have proved
Lemma 2. Let M be a compact Kaehler submanifold §mmersed in opP~(1). If
b attaims ots mawimum at some (u, v) €S, for some pEM* and f also attains its
mazimum at v €U M}, then we have
2o (g, 0)[2A—4]o(w, v)[2—2]o(y, ©)|D +4] (Vo) (v, u ) |*<0. (3.16)
Remark. Obviously, under the same conditions as in Lemma 2, we also have
2w, v) [2A—4lo(y, v)|2—2]o(v, 0)|D +4] (Vo) (v, ¥, 0)|*<0. (3.17)

§ 4. Proof of _Theorem

First we note thaf, by a result of Myers, M" is compact. Let' f attain its
maximum ab some vector u € UM% for some p & M". By the theorem in [8], we can
suppose| o (v, v) [>1/4. The assumption K>1/8 implies that

1-8|o(y, 0)]*>8|g9(c(, w), o (v, v))| 4.1
for any (u, v) €Sp. Thus, from [g(o (v, w), o(v, ) |<1/8 and lo (v, v)|2=>1/4, we
derive that » :

lo (o, 'v)|l”(1 —8]o(y, v)|2)=>16g(c(y, u), o(v, v))* (4.2)

By Lemma 1 for any u€UMj, such that (u, v) €Sy and Ao, %= =g(o(w,u), o(v, v))

u, we have _

g(o (u, u), o(v, v))=0and [o(y, ») |2=1/8. (4.8)

According to the assumption, we know that & attains its maximum at (u, ) €8,.
By Lemma 2, we also have '

lo (v, v)|?>1/4 and o (y, ) |*>1/4. (4.4)

From (3.4), (4.8) and (4.4), it follows that lo(u, w)|2=lo(v, v)|*=1/4

Therefore the holomorphic sectional curvature H =—:;—. Then by a theorem of A.

Ros [5] and Theorem 5.8 in [1], our theorem is proved.
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