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SOME THEOREMS ON CONVEX HYPERSURFACES |
| ~IN AN AFFINE SPACE ) |
Yang Wenmao (# s %)*
Abstract

Let M and M* be hypgrsurfaces in an afﬁn_e space A"*Il‘ of dimension n+1. The main
"- results of this paper are the following: ‘

(1) Two types of integral formulas for M and M*."

.(2) Some conditions for an affine convex hypersurface to be an‘affine sphere.

(8) Some conditions for M and M* to be different only by an affine transformation or -
& translation.

~ § 1. Preliminary

' Let A" be a unimodular affine space of dimension n-+1, = (2%) be the
coordinates of a point with respect to a unimodular affine frame we;:++€,41, 1. 0., With
respect 10 n+1 vectors ¢a Whosé dete.fminanﬁ satisfies the condition ‘

o (es, 03, =+, €asa) =1. (1.1
Under the unimodular affine group, points in A"* are changed according to the
equations o : . h N

3= a;”+A“ , ey
det(4%) =1, 1<aq, ,8<n+1
and vectors V= (v%, +--, ") are changed by the equations
' = AP, il @3
Asa oonsequence of (1.8) the determinant of n+1 Vectors V1, ***y Unga
(fvl, “e) Vng1) de’ﬁ('vﬁ)
is an invariant. For a frame xe;:++6,.14 We can write

e do = w%e;, ded=wiea. 1.4)
leferentlatmg (1.1) and using (1.4) we get ) Yo : ;
2 W= (1.5)

a.nd the Maurer—Oa,rtan equations :
' do®=wf \wf, da)g-—w.,/\a)y. , 1.6)
Let M be a hypersurface in A", i, e.; let @: M—>A" De a hypersurface We
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choose a frame #6,-++¢,,4, such that ey, --- » 0x aTe tangent to M, Then w"**=0 on M,
and by dw"*=0 and the first equation of (1. 6), we have
B ‘ot =hyw!, hy=hy. BTN
Consnder the transformatlon of the frames 61"+ Ons1 and a:31 *6h41, Where ef, - ¢
_ are also tangent to M
- e;=ale;, A=det(al) +0, (1.8)'
: 3:+1 = A—13n+1 + G:H-ie{-
‘Then we have
. “J ", P N
‘ n+1 A—-ibi *n+1 (b ) (at) -, o ’ - (1.9)

coco”“ A lwmwm+1 . . §

If H =det(hy;) 0, then M is called a nondegerate hypersurface It 1s ea.sy to see

H*=HA"2, Let (H*¥) =(hy;)*. Then we have : v : :
ol =HYe!* HY—FH, T (.10)

We eall »
II=|H l—i/(n+2)w6 ntl | Hl—i/(nu)h w'eo! (1.11)
the second fundamental form of M, Wthh is an affine 1nvar1ant Thus the volume
: lHli/(%+2)w1/\v Ao L (1 12)
is also an affine invariant. If II is a posmve definite form, then' M 18 said 10 be
locally convex.

We can cho0se e, such that : ‘
(n+2)ot+dlog| H | = (1.18)

The line through » in the dlrectlon of Ons1’ I8 called the affine normal at ». The
vector i : - ‘
V== I H' I 1/(ﬂ+2)0n+‘1' A reeomn ' : (1 .14)
is called the affine normal vector of M, and its differential ig
- = | H| Yo} g, B .14

‘Taking the exterior d1ﬂ’erent1a1 of (1.18), we get

+1 i —
wn+1 = w;b = 67’,

o’ ‘o=l 0)" @ Gikh;,,, (1.15)
‘where det(e}) 0. Let (L ) = (¢}) 7% Then we have
~ o' =Tio],, (1.15)’
and we can define the third fundamental form oIy = '
I = —w} 107t = — "hyh, w’w’ (1.16)

III is invariant under the change.(1.8) of frames.
Since II and III are invariant, the roots and ooefficients of the equatlon in A
det (hy-+A|H |¥* elhy,) =0 .
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are also invariant. The left—hand side of above equation can be written as-
B dot(3}+| Hli/(”“’e‘) - 2 LN, (1.17)
We call L, the rth aﬁine mean curvature of N. In pa.rtlcvla.r we have | '
Lo=1, Ly ég | B |06}, L= | H|"***ot(e}). (1.18)

Let S,(r=0, -, n) be the rth elementary symmetric function of the
elgenvalues A; of the martix (e,) Then
— l H | —r/(n+2)S

=T (9
Moreover, we introduce the forms
Q.= it N\ s Nolg Ao N+ /\co‘"—nIIHP/(""'”);S' av, (1.20)
' | H e e ) LAV L (1.21)

Suppose that II is positive definite. Then we can define it as a positive
riemannian metric on M, and shall compute its riemannian curvature tensor.
Choose a frame éy+++6,,1, such that e, is the direction along the affine normal, and
¢; satisfy e C
o =0y (1.22)
S0 , that deti(hy;) = H 1. By (1. 14), V =6u41, i. €., @n41 is the affine normal vector.
From (1.7)we have ‘ o

ntl__ 8 .
o e (1.23)
doitt=w] \ ”“—w’/\w,—dw, _ ,
and therefore ) } . )
do' =’ /\qS‘- : (1.24)
§=— g1 =5 (wi—oD. ” (1.25)
So ¢f is the oonnechon form of II Denotmg the symmetno part of co, by P, we
have . .
@} =¢§+¢3
(1.26)
1= 3 (w,—l—w ) =K',
Tt is easy 1o see that K} are symmetric in ¢, j, 1. That is,
Ky=Ki=Ky. ‘ oen

Since the curvature form of II is v
=dep; —Pf /\¢k"— (w,+w ) /\ (wk"l‘w’f) + (w?+4Awn+1—wc+ Ahi1),

@.27)
the curvature of II is e

Rl KR by K Kb = = (1800 =15+ V00— 1780, (1.28)
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Since w} =0, from (1.26) we get : : :
Ky=0. (1 29)
The Ricoi curvature tensor and the scalar curvature can be derived by (1 28) as
follows:

Ry=K ?}'Kaz—%Efoaizét(n—z) ¥, (1..30)
R"=<c‘f2‘~‘n<n—1>'81, :
= 3 (K)?, 8u=1/n. S @8

Here we have used (1.27) to get (1. 31)

§2. Integral Formulas

(1) First type. Let M, M be two closed convex orientable hypersurfaces in
A"t 'We choose affien frames @e;-+-¢,ys and zes---6,,1, Tespectively, such that Onst
and €.41 are in the directions of the respectlve affine normals of M, M, and for a
‘map f: M—>M, we have ‘

(-?g =f*6;; . | (2 . 1)

80 that _ o
(ot'=w¢, ‘a)j=w}. (2 -2)

Tt follows from (1.5) that \ » .
Wit =il ’ o - (2.8)

When f is a unimodular affine transformation, by the last equation of (1.10),
the two hypersurfaces M, M have equal H, i. e.,
H=H. : @2.49)
‘Consider the formg R
Qrs=03", oA+ /\con+1/\w"’*1/\ ‘Ao Aa* o N\ o Ao,
By (1.15) and the eorrespondmg forms on M, we can got the followmg, which is
slmilar to (1.21):

H @tstl)/(nt2) Qrs =mn] Lrs dV,

L= H(r-i-s)/(n-i-i)s (2.5)
R I R .6
Ly, L,, L,O—L
Gonsuler the variation
M;: X,— A+)X, te(— g, s), XGM .7
Suppose for the frame @464, *++0ny1 OF M, We have ' o
| day = () @y, deg—f(t)ez, | (2.8)
where . . S R
o'(t) = A+H) o, 2.9)

wf(8) =wh, H(8)=(1+t)~"H.
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)

Put :
e Qrs(8) = @,,0)“1/\ - Naa Aok A -Noigg Ao A Aot (2.10)
Then

A=[H (t>:|(r+t+i)/(n+2)g (t)
is an affine invariant. A direct computation gives

oA n(fr+s+1)

] H(r+s+1)/(n+2)grs. (2 .11)

=0
‘Now we use a.nother method to compute 24 |t 0" By e @), Sz‘(t): we denote

the corresponding forms on MX (—1, %). Then
d=dM-+dt-9/o4,

2.12
&' (3) = w(t) +a'dt, &"1(2) —-w"“dt ( )

Writing
0,.(1) =3 1 o A A Aok A Aok Ao A Ao, (2.18)

taking the exterior differential of (2.18), and HS1ng(1.6), (1.18), (2.2), (2.8), we
got ‘ -

dQ,s(t) ('r+s+ Dt A B (@) + (n—r—s)ar+t A Brrosa(D).
Hence we have - A

da( Fererv/orng Y = — n (”' +s+1) H(r+s+1)/(n+2)dt AD...

n-+2
+(n—r—s) HerstD/eingeia N Q. o (2.14)
Noticing (2.12) we have also _
Q=0 (B) + N brsy (2.15)
where ¢, does not include d¢. Taking the exterior differential of (2.15), we get
A8, =00y (£) — &t A\ Dby, ; | (2.16)

Substituting (2 15) in both sides of (2.14), we have

d( Forstn/ ot >_ H(r+s+1)/(n+2) di /\[ '"f(’f ':_S;‘D Oyt (n—r— s) e 'Qr,s+1:]

d(H(r+s+1)/(ﬂ+2)Q ) —_ d (H(r+8+1)/(n+2)Q )

8+1)/(n
Cdin [ d(HC+ +;)t D0 ) e d ( H(r+s+1>/<»+z>¢ 2 ]

Oomparing the terms including d# in the last two equations, we geb

o4 — (rtst+1)/(at2)
B oo O (HITT )

n+2
A comparlson of (2.11), (2.17) gives

d (H(r+s+1)/(n+2)¢ ) (‘l’b fr_S)H(r'l-s-l'l)/(wl'ﬂ)(lQ '—{1} Qns-i-l)
" If M is compact, then integrating the above equatlon and U.Slng (2 5), we get

' JrL"s av = J DLy, o31 dV o e _(2.18)

4 H D/ @h2) [_"’ﬁg_”li'f_"_'_l_) 0, s+ (n—r— s)w Qr,s-{-i] ' (2.17)
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where :
p=H-YeFdgmet . B (2.19)
ig an affine supporting function on M. . '
If M coincides Wlth M, then (2. 18) becomesm

jL,czV=j pL,HdV,;.v - | (2.20)

(2) Second type. Let f: M—M be a map such that the ta,ngent spaces of M, M
at the correspondmg points are parallel Choose their affine frames wes-- ‘enp1 and
Zeqee “€n;1 such that e =¢;, and e,.+1 and e,,4 are normal vectors of M and M

respectively. In general, the normal dlrectlon of M need not be that of M. Consider
the following forms: ’ '

A= (@, v, o, -+, do, dw, o, dw, dm, -, dz),
n—l —r—s r‘ s
Bys= (=, z, dv, ---, olfv, dw, -+, da, dz, ---, di), (2.21)
it ARG Mt /et S Ml S B .
vy n—l—j‘—s r o s )
D= (v, ‘df,,y'."'..' dv, da, -, dw, dz, -+, dz).
- , . ~ 4 N\ ———
n— T 8 7' s

Takmg the exterlor dlfferentla,l of (2. 21), from (1.4) and (1 14) we have
. ‘ d-Ars—_'pDrs Dr+1,sy ’
dB,,= pDr,s-;-i PDr+:l,s
Intergratlng the above we get _ _ o
J (pDys— —Dyp1,5) = 0, I (PDrs Dr,s+1) =0, J (PDr,s+1"PDr+1,s) 0. (2-22)

Usmg(l 4), (1.14), (1 14)’, (1. 25)' we can derive

Dy =QudWV, d¥V = H O/t 0oy A Aot @99)
Q=== ppprie 1T Ty (2.24)
Q =st Qr0=Qn

where Q,, @, are the rth elementary symmetric functions of the eigenvalues A4
of (L), (L), and dW is the volume element of M with respect 1o its third
fundamental form III. It should be remarked that Q, is taken with respect to the
affine normal vector v of M, while @, for M is taken with respect also to the affine
normal vector v of M, but not to the affine normal vector v of 74 1tself Since (L?)
=5 (ef. (1.15)), its eigenvalune A, 1s the affine curvature ‘diameter of M.
Oomparmp (2. 6)w11;h (2.24), one sees that Ss, and Q,, have similar forms. '

. Substituting (2.28) in (2.22); we hg.ve anether kind of integral formulag
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S| v, -
I Qrs dl;V‘ j PQr,s—l dW. R P (2.25)

‘ I PQr.s+1 dW'=[ PQra-Ls dW-
When M =, (2.25) becomes™ :

.{MQ'“‘W%,‘,PQ}#&W., L (2.28)

~ §38.Some Theorems

Using the mtegra.l formulas in the last section, we can obtam some propertles
of hypetsurfaces in A e, g, condltlons for a hypersurface t0 be an affine sphere,
and for-two affine hypersurfaces to be different only by an affine transformation in
An+1 !

Let M be a closed convex hypersurface if it is necessary, we oan take €,1=
. =@y, instead of Cngl such that (h;) is negative definite. In fact by taking A=—1
in (1.9), it follows from the last formula of (1.10) that (hy) = — (hsg). .

Now we let (h;) be negative definite. Denoting 4= (I%), B= (I"), 0= (h,,) by
IY=I%h,; we get A=BO. Since U is negative definite, there is a nonsmgular
matrix T such that O=—T"T. Therefore det(I —AAd) =det(I +7\.BT’T) det(I+

ATBT’). It is clear that the elgenva,lues of (I%) are real, since the matrices A B
are symmetric, and TBT" is also.

Lemma 1. ZLet M be a closed conves hypefrsw'face in. A***, Then. the following
statements are equivalent:

(1) Hither A=(I;) is rpos'otwe deﬁmte efue'rywherre, or III ds negative definite
~everywhere. '

(2) The nth affine mean curvature L >0 holds efuefrg/'whefre

Proof It is clear that (1) implies (2) by (1.17). To show the converse we
consider the affine distance function from the origin O to a point sEM: "

. f(@) = H D (g, gy, ‘. On). . ‘ (8.1)
f(@) is a continuous function on a compact manifold so that- 11; reaches the
maximum value at some points, e. g., at some . Taking. the dlﬁ'erentlal of (3.1),
and using (1.5), (1.18), we have L e

df =f o' = HH®+D =, oy e, O n)F oot (@, 61, ++) On-1y oy en1)],

' L (3.2)
HYDF = (5, hilny1, €3, *% ) Foor+ (@) 01, oo Ony Poni€nit) - (8.8)
1. We choose an affine frame @ey++en,1 such that the matrix (hi;) is a diagonal
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matrix (A; 8y;) at w,. Then
HYSDG =015 (0, €nya, O, o+, e,.)+- A0 (3, 61, *+*, On_y, 6nz1)e
Since df =0 at @, we have .
M(®, €ny1, €3y -+, e,,)=0,:
M (o, 61, €ny1, o+, €) =0,

R @4
A, (m 1, 63, **+, €ny1) =0,
The solutions of the above system of equations are = 6en1 With 0>0, Since A;%0
and the origin O is ingide M, e,,1 points outward and 1 the same ag it ab point .
2. Choose an affine frame e -6,,1 such that the matrix () is a diagonal
matrix (wdy) at @o. Now we show that at the point @, ui>0, i=1, -+, m, e. g., 1
>0, by (3.8) we have

f-1= H_II/(”-M) [hl_i(wr : Ony1, Gy, °°°, 6,.) =+ - +h’n1(a’v 31’ 0t On-i, 6,;+1>], ‘
(Zf,1= —H_l/("fz) (;_:::—2 d 10g H+a),.+1> [7&11(0), €nyly €g) °'e, 6,,) teee

+hui(®, 6100y €ny1, €0_1)]+H VD[, (wle;, €ny1, €, **, 6p)

+hua(8, k161, €, v, €) t o hus (@0 61, -5, Gh_y, Gnp1)

+hai (@, €1, *++, €, 1, wﬁ;le,.)]. " ' (8.5)
Noticing (8.4) and o=0g,,1, We can get ‘ ‘ :

Vi -11¥H YD his (64, Onsa, €a +, €n) +7011M1<w7 61, °* 9»)]
= H Vot ku+apz1h11)
~ Since f reaches the maximum value ab @o, f,11<<0. By the above equatlon we thus
have ‘ ‘
—h1(1—auq) <0,

The condition h11<0 gives R
au>1, ,u,1>1/a>0 s o
Hence the eigenvalues of (1) at , are all positive, '

3. The eigenvalues of (I*) at any point s €M are positive; otherwise there -
ex1sts some pomb such that u;=0, so that it will lead to L =0 which contradiots
L,>0. N : : :

Theorem 1. Let M be a closeol convew hypersurface of A® with affine Gauss
curvature 83>0 (or Ly>0). Thén the volume V' of M with respect to III is boundead
above by 4w, i. e., V <dw, where the equality holds if and only if M is an ellipsoid.

Proof Choose a frame @e;-++e,,; such that h,,—'o}j, Ih= 7\,1+M Then it follows
from (1. 81) that

R= aﬂ+x1+xz>x1+x2>2\/xm.‘
Integra,tmg the above mequahty we have

j dV>zj i dv, @e
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where do—=w!Aw? is the volume element of II, and, LP/ fka 4V is the volume ¥
of M with respeet to III. By Gauss-Bonnet formula,
j RdV=2j KV =4y (M),
Ju™ u 2 2

where K is the G‘ausé curvature of II, and y is Euler—characteristic of M. Since M
ig olosed and convex, it is homeomorphm to the sphere, so that y(M)=2, and

‘therefore J R dV =8w. Thus if follows from (3. 6) thau

V<4, (8.7
‘where the equality holds. if and only if Ag=As. In the case where M is an affine
sphere, M is an ellipsoid, since a two-dimensional affine sphere is an ellipsoid.
Theorem 2. Let M be a closed conves hypersurface in Artt, Then the scalar
curvatwre R of M with respect to 11 satisfies o e
_ BR=>(n—1)84, P . (3.8)
'wkeq"e the equalzty holds ¢f and only-if M is an affine spheq"e
Proof It follows immediately from (1.81) that when the equa,llty holds in
, (3.8) we have ¢?=0, i. e., Kj;=0, so that
wf+oj=0.
D1ﬁ’erent1a’smg the above equation we get
ol Ao, +w7""1/\a>,,.,_1+w,/\wk+ "'1/\0),,.,_1—0
i. e., o .
Ot Awhat+ o)t Al =0,
) Smw —0 ulk’. = Sulw - amw.
By contraction for j,‘ k, we have |
7 o 1% =23y, =§ ",
Thus Ay=++ —?»,., and M is an affine sphere.
Theorem 8. Let a hypersurface MG A" be closed convew with constant first
affine mean curvaiure Ly. Then the hypersurface M is an affine sphere.
Proof Suppose the the origin O of A™** o be inside M, such that the affine

supporting fanction preserves the sign. Since Iy ig constant, from (2.20) for r=
0, 1 we have ' '

Lp(Lg—Lz)dV=o.
But

H (Li—La) = ( ) n(fn 1)

1’ 2
n?(n—1) ;gj (M—2y)*=0,
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where the equa,hty holds only if Ay =+-»=A,=A, so that
b1 =AH Y ""“”co 7\.=const
It follows from (1.14)’ that

WV =Ao'ei=A do, V—Ao=a= const.,
I} is easy to see that M is an affine sPhere .

Let MG A" be a closed convex hypersurface, the origin O of A"“ be chosen
inside M, and ¢,,s be along the affine normal d1reot10n and point outward.
Then the affine supporting function >0, and (hs;) is nega.tlve definite. By the same

method we can obtain the following Theorems 4 and 5.

Theorem 4. Lot M be o closed conven kyperswface in A”“, and L, be always
pos'btwe If there 'z,s an r such that the rth aﬁine meun curvaiure L, is constans, then M
is an’ affine sphefre o ’ '

Theorem 5. Lot M be a closed conves kypea"sur face in A™* 1, and L, be pos@twe
efuefryfwhere If there are two indices'w, r fw'z,th 1<rv<r<n suck that the ratio of the
two aﬁne mean curvatures Ly, tmd L, 1,3 constamt 4. ., ,/L =a 'wlwfre a is constcmt
then M is an affine sphere. ,

Theorem 6. Let M be a closed conves hypersurface in A" and L, be positive
everywhere. If there is an r, 1<r<n; such that k ‘ B

L1 L= const. a+,3>0 a>0 ,8>O o (8.9)
then M is an affine sphefre ‘ .
Proof Let L§_y=ILf=0* D% Then we have |
| L—Omevigirgoes, | (3.10)
By L}/{™P =1}/, we get "
L' 1>L('r—1)/f O(r—i)[a(l—i/r)/B'FiJL—-a(1-1/9')/5

or L, ;<O It follows from-(3.10) that L,<O. Moreover L1>0 holds (see

Lemma 8.8 in [4]). As a consequence of the last two 1nequal1tles and mtegral
formulas, we have the followmg 1nequa111;y '

j O'p dV = Jor- pLy dV = jor-izo v

| <[ Lrmav=|, PL V<, Opav.
So

j o(Ly—0)aV =0
gives I;=0. Then by TheOrem 1 we see that M ig an affine sphere

Slmlla,rly We can also getb the followmg theorem.

Theorem 7. Let M be closed conve hypeq'swrface in A a,nd L, be positive
everywhere. If there is an r such that
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Ly_s/Ly 1<O<ULy_s/L, (3.11)
. O =const., 1<r<n, :
then N is an aﬁ‘ine sphere, ' ' ’

Using integral formulas, we can also discuss when two hypersurfaces are the
game under an affine transformation. This is a problem gimilar to Cohn—Vossen s'\
theorem, which determines when two hyperssurfaces in a Euclidean space B are
the same under a rigid motion. . .

Let A, B be two matrices whose elgenvalues are all positive, If there exists o
nonsmgular matrix T such that T-*AT and T-*BT are symmetnc then we call A
B an S—pair. :

- Lemma 2. Let the eq,genwhws of A and B be positive. Then the followmg
conditions are eqmwlent

(1) 4, B form an S-pair. :

(2) There emists a positive deﬁmte matriz O such, that AO wnd BO are symmetrio
‘matrices.

Proof To show that (1) implies (2) suppose there is a nonsmgula,r matnx T
such tha,t

Ay =TAT, Bi-—T‘lBT
are symmetrlc ma,trlces Then
” A=TAT* B= TBIT‘1
‘and therefore we have two symmetric matrices
AO=TAT", BO= TB.T",
where O=T1T".
" To show that (2) imples (1), we assume that there is a positive deﬁmte matrix

O such that
A0 =4y BO= By

aTe symmetrio matrices. Putting 0= T, we then get two symmetrie ma’snces
TAT =T"*AT (T’T 1Y =P-LA(TT)TY =T 4,77,
T-1RT =T-1BT (T'T-*) =T-*B(TT")T™* T‘lBi‘T'1

For matrices A and B, we Wl‘i‘lie

‘ n' r,.,8
| det(MA+pB+D) = 3 =T (3.12)
Lemma 8.  If the matrices A and B form an S-pair, then the Py, determined by

| (8.12) satisfy

P¢-1.1>P"1”P%4‘ . (3.18)

Proof By assumption, there i$ a nonsingular matrix T' such that T~AT and
T-1BT are positive symmetrio matrices. Since e o

det(AA+puB~+I) =det(WI AT +uT BT +1 ), (8.14)

the P, for the symmetrio matrices T-*AT, T-*BT and those for 4, B are the same.
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Hence the Girding’s inequality gives (3.18) immediately,
© Theorem 8. Suppose that M and M’ are closed conves hypersur faces in A" and
that f+ M—>M' is a diffeomorphism if under the mapping f the two hypersur faces have
the same affine normal vector at each pair of the corresponding poinis, 4 e.,
: Viey=Ve for € M.
Then M and M’ are different only by a t/rcmslatq,on ,
- Proof By the assumption and (1.14)’, we have
) H’i/(n'l‘ﬂ)w’i @ _Hl/("rl-ﬂ)w 13"
so that M and M’ have parallel tangent space at each pair of the eorrespondmg
points. Take a Euclidean metric on A" such that 1, ***, &, is a set of orthogonal
umt,veoto;js in the tangent space of M, and e,,; is the affine- ‘normal. direction of
M. Then ey, --:, e, are also tangent to M, and e,,, is the affine normal direction of
M. Slnce V'=V, from .
; LV, =H" Mot o V= Hi/(n-l-z\e "
we have H ! H I5 is easy to see that with respect to this frame, H and H "are the
Gauss curvature of M and M’ respectively. Hence by Minkowski’s theorem M’ and
M are different only by a tranglation.

Theorem 9. Suppose that M and M! are two closed convew hypersurfaces in
A" and their respective nth affine mean curvatures L,, L, are positive everywhere. If
f: M —>M’ is an affine map, A=(L}) and A'=(L}*) form an S-pair, and there is an r
such that L.=L,, then M and M’ are d@ﬁ’efrent only by an_affine transformation on
An+1 PU E .

Proof Choose the affine frames of M and M’ such that

. off=wb o (3.15)
holds By 1ntegra1 formulas (2 18) we have

jMLO’ e dV = JMZ)LO,,-dV" J"ML,._:L,Q av =JprL,_1,1 (ZV,
and therefore :- TN » : ‘ o
| I (Lo,s—1—Li_1,0)dV = J (Lo, r— r-1,1)dV ’ (3.16)

It follows from (3. 13) and L,=1I/, i. e., Ly, = Lg,., that
. Lr-—l 1>I](7‘—1)/1‘_L1/1 __Loh |

where the equality holds if and only if 4 and A’ are in proportlon Ohoose the
direction of vector e,.s such that p<0. By (3.16) we have

[ Lors d7=[ Tosoar.
M M
Interchanging the roles of M and M’ in the above process, we have

[, Tora V<[ Losoar.
M o M i
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Thusg ‘ , - _ L -
J Lo,r-i dV ]’ r-1,0 cZV i (8.17)
and A and A’ are in proportlon By L,= L we have A=A4’, i. e. " :
i wn+1 a)n+1) | (3 . 18)'

which together Wlth (3. 15) implies
WA 0 =l N Goly,
i e, '
hmlj huzj = kl] hnzlo ) : '

Tt is easy t0 get hy=hl;, by choosing the frames of M. and ‘M’ such that U, = wdt-
Thus with respect to these frames, ' '

=gty -
and therefore w*=w® f=wlA. Henee f is an affine ’rransformatlon of Art1
restricted on M. -

- If we substitute a Buclidean space E** for the affine space - ‘A" and use the
same method, we can get a theorem on conyvex hypersurfaces, which is stronger
than the Oohn—Vossen s theorem. ‘

Theorem 10. Let M and M’ be tfwo closed com:e'u hg/pefrswr faces in E"+1 If f
M—>M’ is am affine map; A=(I}) and B= (I4%) form an S—pair, and there exists an T
such that the Tth mean curvatures Sy, ;. of M, M’ are egudl, then M dnd M " are the
same except & T494d Motion B, B - e V

Theorem 11. Suppose that M and M’ are two closed conves hyperrswr aces in
A L,>0, and F: M—>M' is a di freomorphism such that M and M’ have parallel
tangent spaces at each pair of the corresponding points. Let II1 and IIT be the third
fundamental forms of M and M " with respect to the affine normal vector v of M, and Q4
and Q) be the ith elementary symmebric functions of III and III' respecticly (see
(2.24)). If IIT i3 positive definite and there exists an T, 2<r<mn, such that

Qr-1<Q-1, @=>@r, (8.19)
then M and M’ are different only by a translation. |

This theorem is a generalization to an affine space A™** of the theorem on a.
Euclidean space E" given in [8], and the method of proof here is essentially the
same as that in [8].

Proof From the integral formula (2.25), we have

[ Q0@ =[ pQusod?,
IMQiu‘—i av =L¢ D Qo,r-18V .’

By the Garding’s inequality

Q=@ @5V =>Qr  (Qor=Cro),

(3.20)
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we have IQI, i dV> j QrodV. On the other hand, @,_y,0>Qp._s, p>0. Thus
. Q:l., r-i—QrOy Qr—i.o _Qo,r-iy‘

and M and M’ are different by a translation.

Example. In A2 ellipsoids have constant affine prlnclple curvature or principle
ocurvature diameter, If we take two different ellipsoids, for example, one is a
sphere M, and the other is an. ellipsoid M’ different from the sphere, such that M
and M’ have equal affine principle curvature diameters, then the elementary
symmetrio functions of these diameters are equal, i, e., @,=Q., and M’ cannot be
obtained from M by a translation, However, these facts do not contradiot Theorem
II, since the @, in the theorem is taken with respect to the affine normal vector ¥V
of M, but not to that V' of M’.
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