THE HOMOTOPY TYPES OF THE DELETED PRODUCTS OF SOME VECTOR BUNDLES

Gu Zhiming (古志鸣)*

Abstract

In this paper it is shown that if W is an m-vector bundle over an n-manifold M with some conditions, then the W^k - ΔW , k-deleted product of W, and $M^k \cup \Delta M \times S^{(k-1)(m+n)-1}$ are homotopy equivalent.

In [1] we have seen that the homotopy groups of the k-deleted products of some manifolds may be expressed by the direct sum of the homotopy groups of M and $M^{k-1}-\tilde{x}$, where M is the manifold in question and \tilde{x} is a point of $M^{k-1}=\underbrace{M\times\cdots\times M}_{k-1}$.

In this paper we will further point out that the homotopy types of the k-deleted products of some vector bundles, as manifolds, have analogous property.

§ 1. Major Theorem and Its Applications

Let k(>1) be an integer and ΔM is the diagondal subspace of the product space $M^k = \underbrace{M \times \cdots \times M}_{k}$ of a manifold M. Let m be an integer, $M(m, k) = \Delta M \times S^{(k-1)(m+n)-1}$. $\bigcup_t M^k$, where $t: \Delta M \times v \to M^k$, t(u, v) = u, $u \in \Delta M$, v is a fixed point in $S^{(k-1)(m+n)-1}$. The major result of this paper is the following theorem.

Theorem 1. Let W be an m-vector bundle over a simply connected compact differentiable n-manifold M, W have a defferentiable structure. Let $k > \frac{n+1}{m} + 1$, m > n > 2. If the normal bundle of ΔW in W^k is trivial, then M(m, k) is a deformation retract of the k-dileted product $W^*_{(k)}$ of W.

The theorem has the following corollaries.

Corollary 1. Let W be an m-vector bundle over S^n with a differentiable structure, $k > \frac{n+1}{m} + 1$, m > n > 2, n = 3, 5, 6, 7 (mod 8). Then $S^n(m, k)$ is a deformation retract of $W_{(k)}^*$.

Proof It is sufficient to prove that the normal bundle ν of ΔW in W^k is trivial.

Manuscript received March 3, 1986. Revised June 28, 1986.

^{*} Shenyang Polytechnical University, Shenyang, Liaoning, China.

Because ΔW and S^n are homotopy equivalent, it follows from Bott periodicity theorem that the classifying map of $\nu:\Delta W\to BO$ is null homotopic, namely, ν is trivial.

Corollary 2. Let W be an m-vector bundle over a simply connected compact differentiable n-manifold M, W have a differentiable structure, and its tangent bundle τ be stable trivial, namely, there is a trivial r-vector bundle ε^r such that $\tau \oplus \varepsilon^r$ is trivial, $k > \frac{n+1}{m} + 1$, $m \ge n \ge 2$. Then M(m, k) is a deformation retract of $W_{(k)}^*$.

Proof The normal bundle ν of ΔW in W^k is isomorphic to $\underbrace{\tau \oplus \cdots \oplus \tau}_{k-1}$. Because $\underbrace{\tau \oplus \varepsilon^r}_{k-1}$ is trivial, $\underbrace{\nu \oplus \varepsilon^r \oplus \cdots \oplus \varepsilon^r}_{k-1}$ is trivial. Because the dimension (k-1)(m+n) of ν is greater than the dimension (m+n) of W, ν is trivial. Thus the corollary is true.

Remark. Theorem 1 and its corollaries are still true if the closed disk bundle takes the place of vector bundle in them because of the Proposition 1.1 in [1].

Now we give an application of Corollary 2. Let E be the 4-vector bundle over S^4 corresponding to the element $S\rho+\sigma$ in $\pi_3(SO_4)=\mathbb{Z}\oplus\mathbb{Z}$, where ρ and σ are explanned by [2], N the colosed disk bundle of E. Because ∂N is homeomorphic to S^7 , we can construct a manifold $X=N\bigcup_{\sigma}D^8$, where $g:\partial N\to\partial D$ is a homeomorphism.

Theorem 2. Let the manifold X have a differentiable structure and the tangent bundle of X is stable trivial, k>2. Then $X_{(k)}^*$ and $S^4(4, k)$ are homotopy equivalent.

Proof From the structure of X we have

 $X_{(k)}^* \cong N^k \cup (D^8)^k \cup C_k^1 N^{k-1} \times (D^8) \cup \cdots \cup C_k^{k-1} N \times (D^8)^{k-1} - \Delta X$, (1) where $C_k^i N^{k-i} \times (D^8)^i$ expresses the union of C_k^i sets $N^{k-i} \times (D^8)^i$. Because the inner points of $(D^8)^k - \Delta X$ can be retracted to its boundary, $(D^8)^k - \Delta X$ and $S^{8k-9} \times D^8$ are hemotopy equivalent. If we retract every subset $x \times (D^8)^i$ in the term with factor D^8 in (1) to one point, $(D^8)^k - \Delta X$ will be deformed to S^{8k-9} . It follows from the below proof of the major theorem that this S^{8k-9} is glued to a "cut" in $\Delta S^4 \times S^{8k-9}$ in $S^4(4, k)$ by a homeomorphism. Thus $X_{(k)}^*$ and $N_{(k)}^*$ are homotopy-equivalent. By Corollary 2, $N_{(k)}^*$ and $S^4(4, k)$ are homotopy* equivalent, the theorem follows.

§ 2. The Proof of Major Theorem

We think of W^k as a km-vector bundle ξ over M^k and consider the bundle $\xi | \Delta M$. Deleting the diagonal in every fibre of $\xi | \Delta M$ we obtain a(k-1)m-1-sphere bundle. Since $k > \frac{n+1}{m} + 1$, it has a cross-section c. If we think of c as a cross-section of $\xi | \Delta M$, we have $c(\Delta M) \subset W^*_{(k)}$. We can extend c to a cross-section on M^k and denote it by c yet. By [1] $W^*_{(k)}$ is simply connected, then there is an embedding $h_1: M^k \to W^*_{(k)}$

which is homotopic to c (see [3], Theorem 7.5).

Since the normal bundle ν of ΔW in W^k is trivial, we can denote the total space of the closed disk bundle $\bar{\nu}$ of ν by $\Delta W \times D^{(k-1)(m+n)}$. Let $\alpha \in \partial D^{(k-1)(m+n)}$. We define $f: \Delta M \times \partial I \to W^*_{(k)}$ as follows

$$f|(\Delta M \times 0) = h_1|\Delta M$$
,
 $f(x, 1)$ is a homeomorphism to $\Delta M \times a$.

Since h_1 is homotopic to a cross-section, it is easy to see that f can be extended to \tilde{f} : $\Delta M \times I \to W^*_{(k)}$ if we choose a suitable radius of the fibers of $\bar{\nu}$. We can suppose that \tilde{f} is an embedding because $k > \frac{n+1}{m} + 1 > \frac{2n+3}{m+n}$ (see [3], Theorem 4.15). When we glue the inclusion: $\Delta M \times \partial D^{(k-1)(m+n)} \to$ the total space of ν and h_1 by \tilde{f} , the embeding map h: $M(m, k) \to W^*_{(k)}$ is obtained. Let h(M(m, k)) = A, i: $A \to W^*_{(k)}$ is the inclusion. Now we need the following lemma.

Lemma. There is a map $s: W^k/A \rightarrow W^k/W^*_{(k)}$ such that the following diagram commutes and \tilde{s}_* is an isomorphism for all q.

$$\begin{array}{ccc} H_q(W^k, W^*_{(k)}) & \xrightarrow{p_*^l} \widetilde{H}_q(W^k/W^*_{(k)}) \\ & & & & & & & \\ \hat{j}_* & & & & & & \\ H_q(W^k, A) & \xrightarrow{p_*^l} \widetilde{H}_q) (W^k/A), \end{array}$$

where j_* is induced by 1: $W^k \rightarrow W^k$, p'_* and p''_* are induced by the identification maps p' and p''.

Proof First observe $A = h(M^k \cup \Delta M \times S^{(k-1)(m+n)-1})$. When we retract every point in W^k/A which belongs to the F-int $(\Delta M \times D^{(k-1)(m+n)})$, where F is the fiber of ξ , to the zero cross section of ξ along F, the space obtained and W^k/A are homotopically equivalent. Second, since $h \mid M^k$ can be homotopic to a cross section when we identify A to a point the cone on the zero cross section is obtained. Thus we can retract $M^k-\Delta M$ to A. Finally, there is an obvious homotopy equivalent map from int $(\Delta M \times D^{(k-1)(m+n)})$ onto $W^k-W^*_{(k)}=\Delta W$. Taking s to the composition of three maps above we have $p' \circ 1 \simeq s \circ p''$.

Look at the homomorphism of the exact sequences

$$\cdots \rightarrow H_{q+1}(W^k) \rightarrow H_{q+1}(W^k, W^*_{(k)}) \rightarrow H_q(W^*_{(k)}) \rightarrow H_q(W^k) \rightarrow H_q(W^k, X^*_{(k)}) \rightarrow \cdots$$

$$1_* \uparrow \qquad j_* \uparrow \qquad i_* \uparrow \qquad 1_* \uparrow \qquad j_* \uparrow \qquad \cdots \rightarrow H_{q+1}(W^k) \rightarrow H_{q+1}(W^k, A) \rightarrow H_q(A) \qquad \rightarrow H_q(W^k) \rightarrow H_q(W^k, A) \rightarrow \cdots$$

It follows from the lemma that j_* is an isomorphism. 1_* is an isomorphism. The 5-lemma tell us that i_* is an isomorphism. Since A and $W^*_{(k)}$ are all simply connected, i is a homotopically equivalence.

References

- [1] Gu Zhiming, Deleted products of manifolds, Advances in Mathematics, 14(1985), 143—146.
 [2] Tamura, I., 8-Manifolds admitting no differentiable structure, J. Math. Soc. Japan, 13(1961), 377—382.
- [3] Tamura, I., Differential Topology, Iwanami Shoten.