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'OSCILLATION AND ASYMPTOTIC BEHAVIOR
OF HIGHER ORDER NEUTRAL EQUATIONS
' WITH VARIABLE COEFFICIENTS

M. K Grammatlkopoulos *'** G Ladas*
' A, Méimaridou®***

Abstra,ct

The authors establish sufficient conditions for the osclllatlou of all soluhon of neutral
delay dli‘I"erentlal equatlons of even- and odd order of the form
L [y +p@yG- D 1HADYG-0) =0, 1>,
4 Where P, Q€ C[[4s; o), B, %, o' B* and n>1. ' '>

§ 1. Introduction

A neutral delay differential equatlon (NDDE) is a differential ‘equation in
Whlch the thhest order derlvatlve of the unknown function a,ppears both Wlth and
without delays - ‘ R o Ll

In general, the study of NDDES presents comphcatlons which are unfamiliar
to.nonneutral differential equations with deviating arguments. For example, it has
been shown by Snow?s! (see also [14]), that even thotigh the characteristio Toots of
a NDDE may all have negative real parts, it is still possible for the equation to have
unbounded solutions. Such hehavior is impossible for nonneutral equations.

The study of the asymptotic and oscillatory behavior of the solutions of NDDEs,
besides its theoretical interest, has some interest in applications. NDDEs appear,
for example, in problems dealing with networks containing lossless transmission
lines. Such network's arise in high speed computers where the lossless transmission
lines are used to interconnect switching circuits' %, Neutral equations of order two
appear in the study of vibrating masses attached to an elastic bar and also (as the
Euler equation) in some variational problems™.

Recently, Ladas and Sficast® ™) Grammatikopoulos, Grove and Ladas™®,
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Grammatikopoulos, Ladas and Sficag™, and Grammatikopoulos, Ladas and Meimari-
“dou™ gtudied the asymp’ootlc behavior of the solutions of the followmg NDDZEs:

[y(t)+py(t —]+gy(i—0o)= =0, i>to»_‘ ,
'-d;[y@)+P<t>y<t—m->.1+Q<t>y<t—cr>=o >4
dtﬁ E W@+ POUG-I QDU =0, ke

dtﬂ LTy () +py(t—o)] +ay(i— a) 0, >t

where n=>1, P, Q€ ([, =), R) and p, ¢, 7, and o are real numbers.
For some results on nonlinear second order NDDEgH®, .

. In this paper we deal with the asymptotle and oselllatory behavwr of the
NDDE of order n>1, '

dtn[y(t)JrP(t)y(# 7)]+Q(t)y(t 0) =0, #=>to, .(1)

where P, Q€ O([t, 00), R) and the delays 7. and o are, nonnegatlve consta,nts

In Section 2 we study the asymptotic behavior of the nonoscillatory solutions
of Equation (1), in Section 8 we study the oscillation of NDDEs of odd order and
_in Section 4 we examine the oscillation of even order NDDEs.

Let ¢ €0([to—p, to], R), Wwhere p=max{z, o}, be a given function and let 2,
k=0, 1, ---, n—1 be given constants. Using the method - of steps it follows that
vKuatlon (1) has a unique solution y € 0([to—p, ©°), R) in the sense that

?J(t) 95(77) for ¢€ [to—p, %ol,

tk[y@)"‘P(t)(ﬁ(t T)Jt—-t.'—e”vk, k=0, 1, ST e

YO +P@ByE—7) is n—times con’smuously dlﬂ'erentlable on [, o), and y (@)
satisfies Equation (1) for all i>1,. For further questlons concerning existence and
uniqueness of solutions of NDDEs see Driver®# Bellman and Cooke™?, and Hale™,
 As usual, a solution of Eq uation (1) ig ea,lled oscillatory if it has arbitrarily

1 large zeros and nonoscillatory if it i eventually positive or eventually negative.
B In the sequel, for convenience, we will assume that 1nequa,11tles about values of
( funchons are satlsﬁed eventually for all large t. '

82 Asymptotic Behavidr of N onoscillei'tOry Solutiohs'

, . In this section we study the asymptotlc behawor of the nonoscillatory solutions
of the NDDE

dt,. [y(t)+P(t)y(f—'ﬂ°)] +QH)y(—0) =0, >t @



824 - CHIN. ANN. OF MATH. . - Vol 9 Ser. B

~where n=>1, P, Q€ 0(lfy, o), R), and the delays v and o are nonnegative constants.
. Throughout this paper, unless otherwise specified, we assume that the following
hypotheses are satisfied:
(Hl) There exist consl:a,nts Py and Pz sach tha,t
P<P($) <Ps.
(H,) There exlsts a positive constant ¢ such that
- Q(t)=¢>0.
Let y(%) be a solution of Equation (1). Set
2() =y(®) +P@)y(—=).
The followmg lemma deseribes some asymptotic properties of the function #(t) when
(%) is a nonoscillatory solution of Equation (1).
Lemma 1. “Assume thai the hypotheses (H1) and (H,) are satisfied. Let g/v(t) be
an eventually positive solusion of Hquation (1). Set
. - 2O =y@+P @)y (7). 2
Then the follorwmg statements are true: '
(i) For each =0, 1, ++, n—1 the Sunction 29 (¢) is strictly monotonic and either
“lm gD (3) = — oo ‘ 3)

{~>00

o z(‘)(t) 0 and 2% (2)2%t0 () <0 ' : ()]

(i) For n even the function 2(t) is negative. : o

(iii) Assume that p2< 1 and that n 4s odd. Then (3) holds.

(iv) Assume that py=>—1 and ﬂmt n is odd or even. Then (4) holds, and in parts-
cular, 2(t) 4s bounded.

Proof (i) From Equation (1) we find

. 2P(8) = —Q(My(E—0o)<— qy(f' 0)<0 ()

which implies that 2°7D(9) is a strictly decreasing function of £, while 2® ), =0,

T

1, -, n—2 are strictly monotonm funotlons of t Therefore either .
]Jm z"“i’(t) = —o0, v 6)
or '
lim z®=D(¢) =} ig finite, ()]
t=oc0

Assume that (6) is satisfied. Then it is easily seen that (3) holds.
Assume now that (7) holds. Then integrating both sides of (5) from # %o i,
with #; sufficiently large, and letting t~>co, we find

|” we-oras<eoni) -1

which implies that y € L*[#, co). Thus, in view of (Hy), 2€ L [#4, o). Sinoe z(f) is
monotonic, it follows that
 limg() =0 | @®)
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and 0 also I =0. Finally, from (8) we conclude that consecutive derivarives of z(%)
alternate sign, that is, for each ¢=0, 1, «--, n—1

2@ ()24t () <O0.
(ii) Clearly for n even, either (3) or (4) implies that
' 2(3) <0.
(iii) If (3) were falge, then (4) would hold and so
Therefore *0)>0- @
y(® >—P()y(t—v)=>—Py(t—v)
and by iteration '
A y(t+707)>(—p2) *y(§)—>o0 ag >0,
Hence .

llmy(t) =00

. t—>00
and (5) implies that »
: © lim 2™ (3) = —o0.

t—oo

‘Thus :
lim 2(2) = — oo,

t—rco

which contradicts (9) and proves (3).
(iv) If (4) were false, then, from (3),

lima(t)=—co (10)

and so .
2 (t) <0.
Hence
y@O<-PHyGE— ) <—puy(6—7) <y@—7),
which implies that y(¢) is a bounded function. This contradicts (10). The proof of
$the lemma ig complete.

Using the asymptotic properties of the function z(t), we , obtain the following
result about the asymptotic behavior of the nonosclllatory solutions of Equation
). - . :

Theorem 1. Consider the NDDE (1) and assume that the hypotheses (Hi) and
(H,) are satisfied. Then the following statements are rue: '

(a) Assume that .

n is odd and pa<—1.
Then every nonoscillatory solution y (@) of Equation (1) tencs to +-oo or —oo as t—>oo,

(b) Assume that

.

n is odd and ps=>0 (11)
or

(n is even or odd and) —1<p1<pa<<O. 12)
Then every nonoscillatory solution y(3) of Hquation (1) tends io zero as t—>co.
Proof As the negative of a solution of Equation (1) is also a solution of the



326 C S - 'CHIN. ANN."OF MATH. . =~ = Vol. 9 Sér. B

same equation, it suffices fo prove the theorem for an eventually positive solutlon
y(%) of Equaion (1).
(a) Set
z(t) y(® +P(t)y(t—'v)
Then from Lemma 1 (iii) we have
lim z (t) = —oo0,

t~co

Observe that

piy(t—_fv)<P(t)y(t—m‘)_<z(t)-—>-—oo ag f—>o0
and so '
lim ¢ (3) =

(b) Assume that (11) holds Then using Lemma 1 (iv), we ﬁnd
0<y () <2(¥)—0 as t—>o0

llm y(t) 0.

and so

Next assume that (12) is satlsﬁed Then Lemma 1 (iv) implies that (4) holds.
Depending on whether  is even or odd, we distinguish the following two cases:
Case 1. n is even. In this case Lemma 1 (ii) implies that
2(3)<0

YO <—=P@ByG—v)<y(—7).
Therefore, y(#) is a bounded function. Assume, for the sake of contradiction, that
]jnta supy(¢) =s>0,

and hence

Let {#} be a sequance of points such that
' ‘ lim ¢, =co. and llm y(ty) =s.

ko0

Then, for sufficiently large %,

2(8) =y (8) + P () y (b — %) >y () + 1 (5 — )
"and hence

A lim sup y(#,—7) =>—2 >s,
L . S ke —P1
which is a contradiction. : ‘ ]
Case 2. n is odd. First we will prove that y(£) is a bounded function. To this
end, observe that from Lemma 1 (iv) we have -
#(t) >0, #()<0 and lim #(#) =0, .
Therefore, there is a positive constant B such that

2(t)<B.
and so

- Y(B) < —P($)y(t—7) + B< —puy($-7) +B. (18)
Assume, for the sake of contradiction, ‘that y(3) is not. bounded Then there..is a
© sequence of points {¢,} such that
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. k—)co

Thus, from (18) we have '
y(t) < —pxy(ik—f) +B<—pwy (%) +B

lim f,—co0, limy(h)=co, and y(&)— maxy(s).
k—)°°. ‘ , N o t.'<8<tg

or equivalently o
(1+p)y(h) <B,
which as h—>oco leads to a contradiction. Set
s= hm L Sup y(®) .

which exists, because y(¢) is bounded. Let {t;} be a sequence of points such that
. lim¢,=o0 and hm y(tk) =8.

Tomsoo
Then, for sufficiently large &,
2 () =y (8) +P )y (4) >y (0 +p1y(#n—'v),
which as k—>oco implies that s=0. The proof of the theorem is complete
The following examples show that Theorem 1 may not be true if e11sher the
hypothesis (Hy) or (H,) is nob satigfied, :
Ewsample 1. In the NDDE : |

dt.. [y(5) —dy(-—1)]+e 2yt —2) = —0, #>1, n is 0dd,

the hypothesis (Hi) of Theerem 1 (a) is not sat1sﬁed Note that y(t) =g lisa
solubion of this equation with lun y(t) =0,

- Ezample 2. In the NDDE L
dtz[y<f>+[——+<t —1)-]y6—)]
- gyl a1 -1y ]y-2) =0, 8,

the hypothesis (Hz) of Theorem 1 (b) is not sa,tlsﬁed Note tha.i; y(t) =142 is a
‘golution of this equation with hm y(t) =00,

§ 8. Sufficient Conditions for Oscﬂlatlon
of Odd Order NDDES '

In this section we study the oscillatory properties of the solutions of the odd
.order NDDE ' o

dt,,[y<t>+P<t>y<t _1+QWyG—) =0, B D

“where P, QEU( Cto, 00), R): and the delays 7'and o are nonnegative consfants.
The following lemma (as well as Lemma 8 of the next section), which:will be
used in the proofs of Theorems 2, 8, and 6, has been -extracted from results due to
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Ladas and Stavroulakis™218, _
Lemma 2. Assu me that n is odd and r and W are positive constants such that
1 .

eo

Cpn B
n

Then, the Sfollowing statements are true:
(i) the inequality
a™(8) —ro(t+u) <0
has no eveniually negative solusion;
(ii) the inequality o
: o™ () —rs(34+p)=>0
has no eventually positive solution;
(iii) the imequality v R
v o ™ () +ro(t—u) =0
has no ezvm#dally nég«ztiw solution; » o
@(iv) the ineguality v
o™ (8) +ro(t—p) <0
has no eventually positive solution.
Let y(%) be a solution of Equation (1). Set
g 2(8) =y(#)+P@®y(—=).
Then a direct substitution shows that 2(¢) is an n times continuously differentiable
~ solution of the NDDE ' .
2 (&) + R(@)e™ (8 —7) +Q(8)2(i—0) =0, =1, “(14)
where . o

R(t)=P(t—a)-Q%(_i%.

Theorems 2, 8, and 6 below provide sufficient conditions for the oscillation of
all solutions, while Theorems 4 and 5 deal with unbounded solutions only.
Theorem 2. Oonsider the NDDE (1) and assume that n is odd and that the
hypotheses (Hi) and (Hy) are satisfied with
' ‘ pe<<—1,
Suppose also ihat there ewists a positive constant r such that >0,

Q) -
P(t+'zf—0‘)< T ' (15)
and ~ ,
prazesl a0

Then every solution of Hquation (1) oscillates. o

Proof Otherwise there is an eventually 'positive solution y(#) of Equation
{1). Set o
2(8) =y () +P(8)y(t—).
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Then
2"”(t) = —Q(t)y(t—a) <0

and also, Lemma 1 (iii) implies that
z(H)< 0.
- Agz® (t) <0, from Equation (14) it follows that

2™ (%) +7’(T€—Zi—@—_) 2[4+ (q;——o‘) [<0»

which, by Lemma 2 (i), (15) and (16), has no eventually negahve golution. This
is a contradiction. The proof is complete. . :
Theorem 8. Oonsider the NDDE (1) and assume that n is odd and.thai the
hypotheses (Hi) and (Hy) are satisfied with %
—1<p;<pa<0.
_ Suppose also that
| gre>t . €l
Then every solution of Hquation (1) oscillates.
Proof Othermse there is an eventually positive solution y(t) of Equation
(1). Set
2()=y(@®) +P(H)y(t—7).
Then z(t) is a solution of Equation (14). Also
2™ (3)<0,
and from Lemma 1 (iv) ‘

_ 2(%) >0, ' 8
Then, from Equation (14) we find ’ ' ‘ '
2™ () +gz(t—0) <O0.

But, because of Lemma 2 (iv) and (17), it is impossible for this inequality to have
an eventually positive solution. Th.‘lS contradwts (18). The proof of the theorem is

complete
 In Theorems 4 and 5 below the hypothegsis (Hz) is not reqmred
Theorem 4. Oonsider the NDDE (D and assume that n is odd,
~1<p;<P(#)<0, | |
O

and _
I Q(s)ds=oo. ' (19)
Then every unbounded solution of Hgquation (1) osmllates “
Proof Otherwise Equation (1) bas an eventually positive unbounded solution
y(1). Set

Then #(5) =y(5) +P (%) y(5—3).
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. z("_)(t) = -fQ(t)y(t—a) <O, -(20)
We will prove that B B o -
2(£) >0 R (21)
and .
F(#)>0. . | (22).

If (21) were false then z(#) <0, which implies that

y(B)<—PBy(t—7)<y(t—),
that is, y(#) is bounded. On the other hand, if (22) were false then #"(3) <O and in
particular z(z) would be a bounded function. Thus, there would exist a positive
constant B such that : : : ’ .
y(B) <—P@)y(t—=) +B<—pwy(t—) +B. o (23)
As y(¢) is unbounded, there must exist a sequence of points {#} such that
lim#y=co, limy(#)=oco, and y(f)= maxy(s).

Fo—>c0

Then, from (28) , :
y(t) < —p1y(t) + B,
or equivalently

(A+p)y()<B,
which contradicts the fach that y(tk) is unbounded. Thus (21) and (22) have been
egtablished. Since
. 0<2(t) <y(t),
Equation (20) implies that

2™ () +Q(6)2(t—0) <O0.

Integrating from % to #, for #; sufﬁcieriﬂy large, we ﬁnd

2D (3) — gD (ti) +z(i1—0‘)j Q(s)ds<0,

Whleh in view of (19), implies that , ‘
: 20D <0, (24

From (24) and (20) it follows that z(t) <0, which contradicts (21). The proof is

complete. . '

Theorem §. COonsider the N DDE (1) and assume that n is odd,

0<P(¥)<1, Q(t)=0,
and . »

[} 0@ 1-Pa-c)1ds—cs,

Then every unbounded solution of Eguatwn (1) oscillates.

Proof Otherwise, there isan eventually posmve unbounded solutlon y(t) of
Fquatlon (1). Set

Z(t) .«/(t) +P(t)y(t 7).

Then ._
z‘”’(#) = —Q()y(s—0) <O. (25)
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Clearly : : : : -

z(t) >0, 2(¢) >y(¢), and z(t) is unbounded.

This is already impossible for n=1, while for n=>3 we have 2 (t) >0 and so
2(t— o-)<y(t a) —I—P(t —o)z(f—v— a)<y(t ) +P(t—cr)z(t o)

or
y(b— a)>[1 P(t—o)]z(t—0).

Thus, Equatlon (2b) yields
: : ' W)+ Q) [1—P(#—o0)]2(t—0)<O.
Integrating from % to #, for ¢ sufficiently large, we find .

2D () — gD (4, fa(hy— o‘)j Q(s)[1—P(t—0)1ds<0,

which ag t—>oo leads 10 a contradiction. The proof is complete.

Remark, For n=1, the conclusion of Theorem 5 remains true under the
hypotheses . ' ‘ ; .
P(t)=pi>—1 and Q(4)=0
only. The proof of this follows from Theorem 8(i) in [8].

Thecrem 8.  Consider the NDDE (1) and assume that n s odd, (Hp) 4s satis-
fied, Q(t) is @ v—periodic function and '

P($)=p€ER.
Then each of the following conditions implies that every solution. of Equation (1)

oscillates: iy
‘q Ung—g 1, ' 26)
(i) p<— 17>o‘and< 1+’p> — > . (26)
(i) p=—1 ' o | @7
- g Yro—v_1 ,
(i) p>-—1, Of>f§; and (1—I—p) —— 7 o v (28)

vPafoof Assume that one of the conditions (i)— (iii) is satisfied and that,
contrary to the conclusion of the theorem, Equation (1) has an eventually positive
solution y(%). ‘Siet :
2() =y(®) +py(t—v) and w(t) =2() +pe(E—7).
Then ‘ ’
2™ (8) =—Q(H)y(t—0) <O,
w () = —Q($)z(t—0),
w® (£) +pw™ (t—7) +Q(H)w(t—o) =0. (29)
First, assume that (26) is satisfied. Then by Lemma 1 (J_u) it follows that (3)
is satisfied. Thig implies that
w™(t) = —Q(#)z(t—0o)=>—qr(t—0)—>+o0

w(t) >0. D | (30)

and

and so

‘Also
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w® (t—7) = —Q(t)z(t 7—0)<—Q{)z((—0) = 'w(”’(t) - (31)
Substituting (31) into Equation (29) we find
"‘)(t)+—— fw(t+1;'—0')>0 o - (32)

Bnt, in view of Lemma 2 (ii) and (26), Inequality (32) cannot have an eventually
positive solution. Thig contradicts (80) and proves the theorem when (26) is satis-
fied. : ' . ' -
Next, assume that (27) holds. Then, by Lemma 1 (iv) it follows that (4) is
sahsﬁed This implies that (81) is true and that
w (%) >0.
Hence (29) yields
Q) w(E—o) <O,

which contradicts the fact that w(¢) is positive.

Finally, assume that (28) is satisfied. Then, again, (81) holds and (29) implies
that

w™ (%) +_1.39r_5 wlE—(c—7))<0:. (88)

But, in view of Lemma 2 (iv) and (28), Inequality (88) cannot have an eventually
positive solution. This contradicts (80). The proof of the theorem is complete.

§ 4. Sufficient Conditions for Oscillation -
of Even Order NDDEs

In this section we study the oscillatory properties of the solutions of the even
order NDDE '

L@ +POyG—)1+Qu(—0) =0, >, @

where P, Q€O ([f, o), R) and the delays = and o are nonnegative constsnta.
The following lemma, which will be used in the proofs of Theorems 8 an11

below, has been extracted from results due to Ladas and Stavroulakis™®,
Lemma 8. Assume that n is even and r and  are positive constants such that

fr1/”ﬂ>l.
n” e

Then the inequality ‘
a® () —ra(t—p) <0
has no eventually negative bounded soluiion.

Theorems 7—10 below provide sufficient conditions for the oscillation of all
solutions of Equation (1), while Theorems 11 and 12 deal with the oscillation of
all bounded and all unbounded solutions respectively.

Theorem ¥. Oonsider the NDDE ) and assume that n is even and that the
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hypotheses (Hi) and (Hy) are samsﬁed Furthermore assume that P (t) is not efventually
negative. Then every soluiion of Equato,on (D) oseillates.

Proof Assume, for the sake of contradiotion, that y(£) isan eventua.lly positive
solution of Equation (1). Set o '
| 2() =y(®)+P (t)y(t 7). , €))
Then, eventually, 2(¢) takes nonnegative values. But, since n is even, Lemma 1
(ii) implies that #(#) is eventually negative. This coniradiction completes the
proof.

The example below illustrates Theorem 7,

Ewzample 8. The NDDE

d y(t)+(1 +cost)y(t 2w)]+(—+cost>y(t 4@ 0, =0,

satisfies the hypo’ﬁheses of Theorem 7. Therefore, every solution of this equation

cos §
3/2+cos ¢

The following example shows that if we remove the hypothesis (H,) from

osecillates. For example, y(¢) = is an osclllatory solution.

Theorem 7, the result may not be true.
Ewample 4, The NDDE

)+ G 1)y G~ D] +1/4 (-2 (5-2) =0, ¥>2,

satisfies all the hypotheses of Theorem 7 except (H,). Note that y(¢)=#"* is a
nonoscillatory solution of this equation, ‘
Theorem 8. Oonsider the NDDE (1) and assume that n is even and thai the
hypotheses (Hi) and (Ha) are satisfied with
—1<p;<Pa<O0.
Suppose also that there is a positive constant r such that o>,

Q)
P(+z— (r)< T (34
and '
D A" an T >l | ' (85)

Then every solution of Hquation (1) oscillates.- :
Proof Otherwise there is an eventually positive solutlon y(%) of Equation (1).
Set 4
2(8) =y (&) +P By (t—).

Then z(t) is a solution of Equation (14) Olearly

2™ () <0 ' (36)
and from Lemma 1 (ii) and (iv) we conclude that () is an eventually negative
and bounded function. Using (86), from Equation (14) we obtain

"R(#)z W(@t—)+Q()z(4—0)>0.
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Hence : . ‘
| z<~>(z>+7,—<§£?7)z(t (e=m)<0,
which, in view of (34), leads to the inequality
z‘”’(t) —re(t— (a 7:))<O
But, because of (85), Lemma 3 implies that it is 1mpos91b1e for this mequa,hty to
have an eventually negative bounded solutlon This completes the proof of the
theorem.
Haainple 5 For the NDDE

2[y(t) (4+e'*)y(t’ 1)]+e(d—e)y(t—2)=0, =1,

the hypothesis that —1<p; is ‘not satisfied. Note that y(t)=é"is a nonoscﬂlatory
solution of this equation.

In Theorems 9°and 10 the hypothesis (Hz) is not reqmred

Theorem 9. Oonsider the NDDE (1) and assume that n is even. Suppose also

that : ;
Q1) =0, Q(%) =0 end v—periodic,

0<P(t)=p is constans.
Then every solution of Hquation (1) oscillates.
Proof Otherwise there is an eventually positive solution y(¢) of Equation
(). Set ) , : '
2(t) =y(®) +py(t—7) and w(t) =s(t) +pe(i—2).

Then. -
2(t) >0 and w(¢)>0.
Also '
2™ () = —Q()y(t—0) <0,

~and .
w™ () = —Q(#)z(¢—0) <O.

‘We claim that ‘
z‘”‘i)(t)>0 and 'w(”_i)(t) =0, (37) _
Otherwise : .
2* () <0 or w1 ($) <0,
which together with 2™ () <0 and w™(3)<0 implies that
- 2($)<0 or w(%) <0,
which is a contradiction.
Next, we claim that
2’ (£)=0 and «'(t)=>0,

Otherwise
2'(1)<0 or w (t)<0

But any one of these inequalities implies that the higher derivatives of odd orde:r
of that function aro also negative. This contradicts (87). Thus we have proved that
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2(#) and w(t) are increasing functions of ¢, Observe now that w(#) is a continuously
differentiable solution of the NDDE i : :
W) +pw® (t—T) +QH)w(t—0)=0. (38)

'w(n)(t —7) = —Q(t)z(t o— 'v')> Q(t)z(t —0)= w(n)(t)
Equation (38) 1mphes that

W (@) + Q(t)w(t a)<0

As

Integrating both sides of this mequa,llty from t1 1;0 A W1th 71 suﬁiczenﬂy large, we
find that |

w‘ﬂ'”(t) — ™D (4;) + 1 rw(ti— a)j Q(s)ds<0,

which leads to a contradiction as {—>oo. The proof is complete. _
Theorem 10. Consider the NDDE (1) and assume that n s even. Assume also

that
0<P(t)<1 Q(t)>0
and that

N Q(s) [1—P(t—0)lds=co.
Then every solution of Equation (1) oscfz,llates '
" Proof Assume for the sake of contradiction, that y(¢) isan eventually posmve
solution of Equation (1). Set

2(8) =y (@) +P(Hy(i—7). (39)
Then ‘ ' o T o
2(4)=0 : : (40)
and , _
2™ (1) <O0. (41)
Henoce 22 (%) is a decreasing function of ¢. We claim ihat -
200 (4)=0. - (42)
. Otherwise

) z(ﬂ—i) (t) <O
'Whlch together with (41) implies that
lim z® () = —oo, k=0, 1; «+, n—2,

- =00

But this contradicts (40).
Next, observe that from Equation (1) we have

2™ () +Q(#)y((—0) =0, (43)
Using (89) in (43), we see that o -
. 2™ () +Q(8) [2(4=0) — P(t—0)y(t—r—0)] =0. (44)
s o S
, 2(8) >y (8),
(44) yields - ,

() +Q() [2(—0) —P(t—0)2((—7—0)]1<0,
which, in view of (42), leads to the inequality
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2P (@) +Q() [1—P(t—0)]2(t—0) <. ' (45)
Integratlng both sides of (45) from #; to &, with # sufficiently large, we ﬁnd that

2D (5) — 2D (3,) +z(t1—o-) L Q(s) [1—P(s—0)]ds<0,

which, as i—>o0, leads to a contradiction. The proof is complete.
Theorem 11. Consider the NDDE (1) and assume that n.is even. Assume also
that the hypotheses (H) and. (Ha) are satisfied with
| ‘ L Pa<0
and that there is a positive number r such that o>,

Q)
Phrr—o)~ " . (46)

and

piin T 7>_1_

Then every bounded solution of Equation (1) oscillates. :
Proof Otherwise there is an eventually positive bounded solution y (%) of Eq-

nation (1). Seb

)=y +PDyCi—).

Then . by e
2™ (£)<0. 4D
Since n is even, - : » - E
2($)<0. (48)
Therefore, z(%) is an eventua,lly negative and bounded solution of Equation - @.
In view of (48), (47) and (46), we obtain -

2™ (8) —rz(t— (o —7)) <O0.
But, Lemma 3 implies that the above inequality has no eventually negative
bounded solution. This contradicts (48) and the proof is complete.

Example b, which we presented earlier, also illustrates that under the
hypothses of Theorem 11, Equation (1) may ha.ve unbounded nonoscllla’cory
solutions, '

In the next result the hypo thesis (H 2) i not reqmred

Theorem 12. COonsider the NDDE (1). Assume that n és even,

—-1<P(t) <0,
Q@)=0, .

[  eis=co.

Thow every unbounded solution of Hquation (1) oscillates.
Proof Assume, for the sake ef contradlotlon that y(t) is an unbounded
posétive golution of Equation (1). Set
2() =y () +P(DyGi—7).

and that
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We ha.ve N

e () = —Q(Dy(i—0) <O

and so z“’(t), for §=0, 1, «--, n—1, are monotonio functions. We claim. ‘uha.t
2D(£) >0, 2 (t)>0 and 2(£)=>0.

Otherwise z(t)<0 and so , SR

- y($)<—PBy@—)<y(t—),

which is impossible because y(#) is unbounded. Integrating (1) from # %o #, with

suﬂicienﬂy large #;, we find

2D () — 2D (1) +z(f,1—o-)£ Q(s)ds<<O0,

which, as t—>oco, is impossible, The pfoof is complete.
Ezample 6. The NDDE

96%/2 4 g /2 2(e® —o 2"
dt‘*[ () — Wy(t—%)] 03””(/”+2 -34;/)2 y(t—-—> =0, =0,

satisfies the hypotheses of Theorem 12. Therefore, every unbounded solution of this
equation oscillates. For example, y(%) =eé‘cost is such a solution. On the other hand,
the bounded solutions of this equation do not have o oscillate. For example, y(?)
=67t is such a solution.
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