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SOME PROPERTIES OF INTERPOLATING BASIC
FUNCTIONS IN THE UNIT DISK

Shen Xlechang (,7’{, é’;)*

Abstraoct

Consider the sequence of interpolating basic functions. If the sequence is incomiplete in
. the weighted H? spaces, the characteristic properties of its closure is obtained. Furthermore
if the interpolating points are uniformly separated,then the sequene is a basics in its closure .
in HP® spaces for p>1, and if 0<p<I, then generally it is not a basis in its closure.

Let {@}, k=1, 2, +-+, be a given sequence in the unit disk the elements: of
which can coincide with each other. We denote by s, the number of appearance of
@, in {as, as, *++, @} and by p, the number of appearance of a; in {a;}. It is obviously
that 1<s;<py, k=1, 2, =+ -

Hereafter we suppose

+o0 .
2 A=la])<+oo. | @
Under the condition (1) we construct the Blaschke product™
+ ' ;
B(z)= []-%—*%*_ la| - B 2
(- 1= lel, - )

where 'akl —1, when @,=0. It is known™ that B(z) is analytio in |z| <1, |B() |

<1in |z|<1 and|B(¢”)| =1 almost everywhere.
Consider the functions™ '

‘Qk(ﬁ>"‘(z Cﬁkl)-)"'a (ZB;Z%M kaSkau(wk) (‘”‘ ak) ’ k=1) 27 Y (3) |

where a,(a;) are the coeﬁiciehts of Tay_lor expansion of function (z—ax)®/B (2) at

2= Q. I:t is known that -
' 1, for v=4k, s;=s, ‘
Q¢ (a,) =40, forv=F, s;#s,, =1, 2, «+,p,, - 4@
0, for p#kh, s;=1, 2, **, Dy '
They are Hermite 1nterpolatmg bagic functions with its nodes at {a} in |z|<1
Specially when the elements of {a} are different from each other, we have
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Qk(z)=7@1§—g):w_k)—’ k=1, 2, ., ‘ | ®)

whioh gatisfy. _
1, fory=F,
(@) ={ 0, for »+k.
Hence they are Lagrange interpolating basic functions with its nodes at {wk} in
|z]<1. T v
Agsume that o (%) is a monotone increasing function with the bounded
variation and satisfies the following condition

| ji“’,ln o/ (D)di>—oco, | @6)
We denote by L?(o (4); |2| =1) the collection of all functions f(z) measurablé on
|z] =1 and satistying _ o o - ' L
[T 17 ao@y<+oo, p>0, oo
and by L?(c (8); {as}), >0, the collection of all functions 1) belongmg to: clasg

L#(o(3); |2| =1) and satisfying the following three properties:
1° There exist two functions Fi(z) and Fz(z) ana,ly’ulc in | [<1 and |z[>1

(except ati k=1 2, « )reopectlvely, Fz(oo) =0 and

R =f@)=Fuey (@

hold almost everywhere; o .
2° Fi(z)wi(2) € H*(|2] <1); AR _ S T T ()
8° Fa(® =@ B0y (@), |¢|>1, (10)

where B(z) is the Blaschke product defined by (2), #(z) € H?(|z|>1). (c0) =0,
wy (2) and w, (2) -are defined by : : L
wy(2) =exp{2ip Jo Z”+z In cr'(t)dt} : (1)
in |z]<1 and |z|>1 correspondently. It is known™ that w} (z) € D(|2| <1), w;(z)
€D(|z]>1) and
103 6 = o ) |2 o), 0, (12)
Theorem 1. Let f(z) EL”(G (®); |z]=1), p>0, and f(z) can be approvimated
by the linear combination of the system of funmction {Q(2)} én the space L*(o(%); |2| =
1). Then f(z) €L* (0 (3); {am}).
Proof Suppose ﬁhe"Sequence

Po(e) = 31072,(6) = Be)a(e) ) (18)

satisfies the condition

lim [ If@) - B ae@=0, (1)
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where
a%) =

@)= -t Dot g e@ e, )

Obviously
: ¢m(z)€H’(|z|>1), n(o0) =0,
B()Yu(2) € H?(|2]<1), n=1, 2,~~-.
From (14) and (2) it follows that
“-For any given >0, there exists an 1n1;eger N such that when n>N for
every 1nteger m, we have '

I | B(6*)a(6*) —B(e*) ll'nm(e") |70’ (D) dt<; - (16}
2° There exists a constant C* such that for any integer n we have
[ 1B raey<o. @D

Now we are going 0 prove the first part of the 1° and 2° in the definition of
L* (o (); {aw}). /
At first from the condition (6) and mequa,hty (17) we deduce

| f 1n+|B(ew)¢,,(e“)|dz<j 1n+]B<e“>¢,.(e‘t)|.za(t)+j In *+(1/o’(8))dt
| ;jo | B@*)a(e*) [ (8) + [ 1 (1/0" ()< 0. (18)

Hence from the properties of subharmonioc functions and (15) it follows that
for every r, 0<r<1, ‘ ' ' ‘ '

In+ |B(¢e“"’)n,b,.(¢e‘f)l<%ﬁw —_— cjsg’” oI 1n+|B(e“)tl:,.(e")|dt

<i Lo, 19y
It means that the system of functions {B(z){,(2)} analytic in |2|<1 is uniformly
bounded in the interior of |z|<1. Thus using the theory of normal family we-
deduce that there exists a subsequence of {B(2){,(2)} (without loss of generality we-
assume it is just {B(z).(2)}, which converges uniformly in the interior of [z|<1-
10 some analytic function F4(2): - | :

Mm B(2)yn(x) =Fu(e), |2]<1, T (20)-

and satisfies '
ﬁw In*|Fy(re®) |dt= HP J.z“ In *| B(re®) P, (re®) | dt
< Im | "In*| B(e)n(e") | a4<0,

where the last inequality is obtained by using (18). Hence F4(z) € A(]z|<1) (see:
the definitions in [1]). Thus it has angular boundary values on |z|=1 almost

# Here and after we denoted by C constant,which may take different values.
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everywhere. ‘
Besides, from (12), (16) and (17) we arrive ab .
Jo 1B@h (i@ B an(Iwi @ rit<s @D
and ) '
e <o, @

Obiviously B(z){,(z) € H?(|2|<1). Consequently B(z) l[!,.(k«') €D( | z|<1). Since
wy (2) GD([zl <1), using the property that class D(|z|<1) is a ring™, we ha.ve
B@)a()w; (2) €ED(|2|<1).
USmg (22) from the boundary properties of analytic functions we know
- B(@)a(2)wy (2) €H?(|2|<1). :
By wsing the properties of functions in H? space we know that for each r, 0<r<1,

[ 1Bren) ey (re") — B(re") Pnam(ryust (ro¥) | 7ds

<, 1B a0} (o) B uem(6"si (o) [P0,
Let m—>+oo, Usmg (20) from above inequality it follows that
J | B(re*) zp,,(re”)w; (re®) — Fi(a"e”)w‘; (rre") |?di< s, 0<r<i, A (24)
Hence by Fatou theorem we have

[ 1B ey (0 — Fu(0*yust () |t <,

[ 1B ~Fue ro Das<e. o (2B)

By virtue of (6), o’(4) +0 almost everywhere. By comparing (14) and (25) we
have
Fi(6*) =f(e")
almost everywhere.
Begides, from (24) it follows that

2
) J y | Fi(re*)wy(re') |2di<C.

Hence Fi(z)w;(z) € H?([2|<1), p>0.
Now we are going 10 prove 8° and the second part of 1° in the definition of
L*(o(8); {ax}). The proof is similar to previous one. _
Using (18) instead of (19) for each p,1< p<<+ oo, we have
20 2_
In* [¢n(pei”)|<2—];v—jo 1—2pcgs(t1 ?)+p° ‘
Hence the system of functions {,(2)},,(c0) =0,n=1, 2, « ., iSa norma.l family in

ot (o) | d< LET P+1 0. (26)

{2 >1. Consequently there exists a subsequence of {,(z)} (without loss of generality
'we can assume it is just {J.(2)}), which converges uniformly in the interior oft
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|2] >1 to some analytic function F3(z), F3(c0)=0: i : .
lim zp”(z),=F3(z)? || >1. | o (27)}
Using (18) for each p, 1<p< +oo we have N | .
j In| Py(pe*) |ds= 11m j In* [ (pe®) | di< hmj In*|a(6") |8 <.

Henoce F3(z) € A(|z] >1). Consequently it hag angular boundary values on [2] =
almost everywhere. °
. From: (12), (16) and (17) 113 follows that

‘p»(ew) A Cadl ke

di<s o (28)

Jo Lwp(e) - wy (6“)
and ( o 1s AT
g | o
| j L | ar<o. (29)

Obviously, .(2) € H?(|2]|>1), llln(°°) =0. Consequently. zp,,(z) €D(|z|>1). Since
wy (z) E.D(Iz] >1), w; (z) %0 for |[z]>1, hence

. ;”"(”) €D(|z|>1), 4'"_(( 3)_0 n=1'2, (30)
From the boundary propertles of analytic functions. and (28) for each py 1<p<+

oo, we obtain .
j ‘;b (pe ") ‘l’ +m( ll'n(&“t) - 1!;”4_,,,(9“) pdt<8
o 1wy (ee™)  Twy (p wy (6¥)  wy(e*) )
Let m—>-+oo. Using (27) from above mequahty we have
[ |y _ TGy |
o | wy(pe®)  wy(ps®)
Hence by Fatau theorem we have

di<<s.

2w (%) Fa(et) |? ‘ . ‘ B
: J’o :z;(i”) B w,;(iw) di=.e, (33)
Hence from (30) and (83). ‘
= U
and
j 4a(6%) — Fo(e®) | 70" (B)di< 5,
i. e,

I | B(e*) (e ‘) B(e")F.o,(e”)l”o- (t)dt<s. v (35)

By virtue of (6), ¢'(¢)+0 almost everywhere. By comparing (14) and (35) we
have :
J(e") =B(e") Fy(e¥) | (36)
almost everywhere, |
Let

Fa(e) = B(&) Fo(z) = B(&)wy (2) ng;”') = B@w; @) (@), ReLo
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where i(z) = Fs(2) )

wy(z)"
From (29) for each p, 1< p< +o0, We have
RACLINY Pa(e¥) |?
Jo et a<l| wy (7). <o,
Consequently from (27) we-have
j |4 (pe®) |w<j . 3EP";§ *di<0. (88)
w, S i

Hence from the boundary propertles of analytic functions and from (80) and (88)
‘Wwe obtain
. WO EEA(e] >1), (oo =0,

Besides, from (86) we see that . 4
Fa(z) =f(z), 2] ='1;
holds almost everywhere.’ : K

Thus the proof of Theorem 1 is eompleted perfeoﬂy :
We denote by H?*(a(2); |#2] <1) the collection of functions f (2) which are
~analytie in |2|]<1and have the measurable angular boundary values on [z|=1 -
and satisfy the condition '

[FifE@piom<to
The norm of the spa.ce H"(a(t), |z|<1) is deﬁned as the norm of the space
L2 (o (®); |2] = - : '
Corollary 1 The system of functwns {Q, (z)} is not complete in the spaces
(o (8); 2] <1), p>0. . -
Proof On the contrary if the system {Q.(z)} was complete in the spaoés
H?*(o(8); |2]<1), p>0, then according to the Theorem 1 and the definitions of
norm in H?(o(4); |2| <1), p>>0,there would be a funciion Fs(z) analytio in |z| >1

except atb {71—}, k=1, 2, «.., Fa(o0) =0, such that

13
1° f(2) =Fa(z) on |z| =1 almost everywhere,
2°  Fa(z) =B(2)P(2)w; (2), '

‘where :

@ ER([o]>1), f(c0)=0,

~and B(z) is the Blaschke product defined by (2).

' Géﬁerally it ig-impossible, hence Corollary 1'is valid.
From Corollary 1 we deduce immediatly the following Corollary 2.
Corollary 2. The system of functions {Q,(2)} s not complete in H *(Jz| <1).
In fact

Hr (2| <1) =H?(t;|2| <1),

1. e. it is the case of o(¢) =t ‘
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We have obtained this result already ™, . . _ SRR
Now we want to obtain the inverse theorem under ‘Ishe condmon o-(t) =1, 0<t
<2m. : ’
Theorem 2, The system of fwnctwns {Q (z)} is complete in ﬁw spaces L"(o-(t),
{a}), p=1. ‘ ¥ :
- Proof According to the Hahn—Banach theorem if is sufﬁelent to prove that for
any linear functional I(f) in I2(%; {ay}) from = . == 0

: I(.Q,,(g’,)) =0, '"""‘1’ 2+, (39)
it follows that I(f)=0.

Since the spacs L*(; {a.}) is the subspace of I#(s; |z| =1), every lnéar furlo-

tional I(f) has the integral representation o PR

| 1) == [T Foas

‘where _ »
g(e®) €Le(; |2| =1), 1/g+1/p=1, p>1.

(Here and after we can assume p>>1, since the casé of p=1 can be studled by the

similar method.) . ”

“Based on ‘the definition of L”(# {ak;), we know. f(z) EH"(I ]<1) For every
fixed ¢, |{|>1, we take the function (z2—{) *€ L*(¢; {ax}), hence "'

oQL- I(z C> 2m[.z, B 5&2 d?_zr“

. By virtue of g Ef) Lq(l | = 1), ¢>1, we have by the Rlesz vheorem e
| ) ¢(Z)€H¢(|z|>1), qs(oo) 0. (40)

Thus WQ have §
—21-77.[1z|=1 Q(z)f(z)dz;:é—%hlﬂ ['~2:7[F’l’jl;:[ =1 i(rz (i‘T ]f( )dz
=_,_2%7}—.“|11 21 gsl'v) |:27W.’“J‘lzl =1 f"Sz—)gz]dT

23”%.[111—1 g(T) f('v)d'r—— 2(,,_“ 9(9”)]0(6”)&#

~and ‘ : ‘
- zmj @<z>f<z>dz f(z) ew {an}) S (e
From (39) we obtain’ R

I(.Q,.)— o j B(2)0,(2) de=0, n={t, 2 (D)
Suppose . R e : ,
1 j B(M)B() 4
i T2\ dw
209 ) 1v1=1 T2 e
determines two functions ,.(2) and _(z) ang_lytm in |2]<1 and |z| >1 respeo-
tlvely, P_(c0)=0. ‘ C
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Using (42) and Theorem 1 in [8] we arrive at
1 j T _ gy=0, k=12, s,

2% J ivi=1 (7-—-@;1)3*

Using (40) we have . R
o S0 (a;") =0, k=1, 2, ==,

Hence D
' - D(2)B(z) € HY(|2| >1), ®(c0)B(o0)=0, - (48)
Baged on the definition of L"(t {@}), we have ’ : : -
I =gee| B BE(,

where (z) € H*( |z >1), P(o0) =0 and B(z) is defined. by (2),
By virtue of (48)
PWBEYE €HY(|z|>1)

and @(z)B(z){(2z) has a zero at z=oo at least with its multiplicity 2. Hence using
the Cauchy formula we obtain :

I(f)=0 for fE L (b {a}).
We completed the proof of Theorem 2.
From Theorems 1 and 2 we obtain 1mmedla,1;1y Theorém 3.

. Theorem 3. ' The necessary and sufficient condition for the function f(z) EL"(:‘,
|z| =1), p=1,t0 be approvimated by the linear combination of system {Q,(2)} is f(&)
€L (% {ax}), i. 0. . e ,

10 f(z) € Ho(|2] <1), R . (44)
2° f@=B@yQ); l«|>1], . . e i (4D)

‘where B(z) s defined by (2) and 1[:(z) € H?(|z| >1) ¢v(°°) O

~ Hence the closure of {€Q, (z)} in I2(%; |2] =1), p=>1, is L2(t;{ar}). _
We say that the sequenoe {ax} belongs to class A(P, 9), 1f -

v

sup sy=sup po=P< 400 - L (48)
and ‘
inf JT |2 —%_ | =§>0. “7
b ajFag 1—111,5(3;,

Obviously if {a,} € A(P, 8), then (1) is valid.
Theorem 4. Lei {a,} €A(P, 8), p>1. Then the system of functions {Q.(2)} is

the basis in the spcees TP (4 {a}). '

Proof Let f(e") € L*(%; {a}), it means that £(z) satisfies the conditions (44)

and (45). From the Lemma 2 in [4] we know that if {a@}€4(P, ), f(z)€ H 2(|#|
<1), then ’ :

f(z>=,§dk<f>rzk<z>+,,3<z> RN H

1wé Jim=1 B(v) v—2
where
e 1) 1g%t

dk(f)=.‘ L . 1f( )(%r)ldwl_fm-n(%) h=1, 2, e
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and the above series conveges in the spaces L*(%; |z| =
By comparmg (48) and (45) we ha.ve

f)= 2 dk(f)Qk(z),

this completes the proof of Theorem 4.

Thus the gystem {Q,(z)} is the basis-in ity clouse I?(%; @), p>1

We will prove that for the case of 0<p<1 the system {Q,(z)} is not a Baeis in
its closure which we denote by » (t {wk}), o

Theorem 5. e :

1°  For any sequence {w;,} the system {Q(z)} s rnot a basis in ifs closure P’(t'
{a}), 0<p<1. |

2°  Suppose {a,} is @ monotone fz,ncreasmg sequence, 0<ay<1, and theq‘e ewists
anfinide number of n; such that

(1— a,.J)<O'(1 @nppa)y €1, : - (48)

Then the system {Q.(2)} is not a basis in its closure V(t: {a}).

Proof Since Q,(z) € L*(¢; {ax}), we have

L 12(%; {an}) C L2 (3 {ak}), 0<p<i. v _

1° We construct a function, strictly monotone increasing and contmuous on

10, @], satisfying the following conditions:
w(0) =0, w'(#) =0 on [0, o] a,lmost everywhere.

Let
&) = {fw(t), 7 O<t L
(2w —1), av<f<2m:,
and 20 ety oo v
el G(Z 275,[ et—z d”’(t)’ -lzl<1'

COlearly ‘ -

6(0) = 5 (u2m) — p(0)) =0
and ‘

NEN i
Re@ (z)——w- o T=oroosG—p) +7° du(z), z=reé*, 0<r<1,

Hence Re G'(2) >0, |2]| <1,

j |Ro G(ro®) [d8< o0, 0<r<1, T (49)
G(2) € H*( |g|,<1), (50)
for each p, 0<p<1, |
Lot ‘Re G(¢"®) =0 almost everywhere, -~ .72 (Bl)
o - o ,
_ : H(z>={H+(z) = —G(z), for |z[<1,

o : co H_(z)=G(z™), for |3|>1,
Then from (51) it follows that: :
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H, () =H.>(e“’)
almost everywhere and ' ‘
H (z)EH’(|z|<1) H_ (z)EH”(I |>1), H_ (oo) 0 0<p<1 (52)
Let
" L@ =B@H), [2]<y
< 8(@)=B()H-(2), |2 >1.

Tt isebvious that - o .
T WERL LN L(z‘)EHP(]z|<1) : 0<p<1.

Begsides we have
: lim L(z) B(e”)ﬂ+(6“’)

r-1 —-0 2= re‘

 lim S(z) B(e"’)H (e"’)

p->1+0 z=pei®
almogt everywhere. Hence -

and

L(z)=8(z)
g valid on |z| =1 almost everywhere It means - . ;
CL(z) € 12(%; {an}), 0<p<1

L(s"‘i)(ak) 0 b= 1 2
We will prove that 4he" funetlon L(z) eannot be expanded in the senes of

systenmi {Q,(z)}.
On the contrary if

1im [ < o S0, ["a=0, e
n—>-+os - -
then using the same method as in ’ﬁhe proof of Theorem 1 we arrive at

o hm 2@[2 (z) L(2),

which converges in the mterlor of ] l<1 uniformly. Oonsequenﬂy for any ay, b=

and L(z) %O

1, 2, ..., uging the Weierstras theorem we have ke
lim jzl “jggsk L (wk) __._L(sk L (G},) =0.
n—r+oo J=1

By using (4) we obtain P S
. o @e=0, F=1, 2, v,
it means L(z)=0, So we are in the contradiction. Thus we have proved 1°,
~2° We will use the ‘main. idea of [B] to prove 2°,
Let {w,} be the sequence in li, i. e, ' _ .
Zl’wk'<+°° . - (83)

Then for every % we can choose a subsequence {an.} of {a} suoh tha.t

A. lw;aljlzl=1 f—%‘l Ide] = oo jlzl:l (17_3%"2)_1“12'

=i+
1gl~1

i=0 2 — “n, ’ z aﬂ,-ﬁ-i
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and

B. B j
. lzl=1

In fact since

B(z) _ . B(z)

l,Z‘—wnj 'i/';"“n_4+1
1

lel—l 1' ag

for any fixed % if all a,,, Gnyt1y Gngy w,,,+1, ) By a,,,‘_1+1 have been chosen we can
choose a,, such that (54) is valid. Besides o

fi B®) _B@ |

Z— wnj - Z Ay ; G+1
=I 2—p,41 T BTG {leI
1=t | (1—@,2) (1—a,,412) (1 a,,ﬂlz)(l a,,z)

Jiel <O<oo, (55)

, ldzl—>+oo (l—>+oo)

T N R Gy, a
= % d =f ) n _ nj+1
. j|z|=,_1 (11— a,uz) (1=@n;412) | I 1=t l._-__wn_{,z,“ A—u002 |(Zz|
o e T S R
<aj_1 T T8t i (88)
“where we have used the Lemma 8 in [5]. Obviously - L
. L 1 ’“nj' oo gy +1 ., ’ it j:l( wnb-i-llv’: “ “
g d = . A TN St/ ) )
j-il l—-a,w 1 — Gy o | ) A=y 10 L= d@
N | 1+a ‘ 1+w T g, 144, e
=1 "1"’1 25— Tn % Ty “r"l :
n = " —In: T In Tane ln iy <C’ | G1))
where we have used the condition (48).
Combininig (66) and (57) we obtain (55).
Now we consiruct a geries ‘
o0
() k=21 Z—ay, 2—@nyr1/° (59)

By virtue. of (58) and (55), using the Cauchy criteria we deduce that the series
(59) converges in the spaces L'(#; |2| =1). Hence applying the same method as in
the proof of Theorem 1 we can deduce ;

G(2) €V (g {mr) L' (b {ar}).
On the contrary if the system {Q.(z)} were the basis in I'(#; {a}), then by applying
@), i. e.

1 I {0, for n%-lo,
2w ) 1w=1 \I— an)Q (2| de] =81~ 1, for n=F,

we would obtain
Q)= 2 wB (z)

i=1 2—@Q
which converges in the spaces I'(; |#|=) —L(l | =1), where
w;, for I=m;,
w=< —w;, forl=mn;+1,

0, for other cages.
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Consider the partial sums ,’ ‘
‘ uB(2) bi(Z) (‘waB(Z) w;B(2)
m(®) = 1=21 z—a  2—y, +: 2 =@y, By’
By using (54) we have

jlzl=1 IS"”(z) I ]dzl > Iwkl JI
S mB(z) 0B ()

‘ _Ilzl=1 =1 By, =@y 41
Tt means that the §,,(z) does not converge in the space L(|#| =1). Thus we are in
the contradiction. o I

| |dz| =%—>-o0.

The proos of Theorem B is completed.
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