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DETECTING AND SWITCHING METHODS
FOR SIMPLE BIFURCATION POINTS

Shi Miaogen (7 4)4%)*
Abstract ‘-

- For a finite-dimensional equation G(y, £)=0, where &: Dc R**1:5Fn, suppose that on :
its primary solution curve there is a simple bifurcation point x*= (y*, ¢*) from where a
secondary solution curve. is branching off. Then during the. trace process of the: primary
curve by a continuation method, it is always necessary to locate.z* and to-find another point
on the secondary curve for switching to trace it. This paper presents a proof of a ‘practical
criterion for detecting sunple bifurcation pomts and eonstructs a s1mphﬁed perturbatlon
algorithm for switching branches. The convergence result of the algorlthm is also given.

Our experiments show' that the new method ig more effectlve than other perturbatlon methods,
especially for large scale problems. L S

§ 1. Introduction

- 'We consider an equation of the finite-dimensional form
‘ . Gy, ©)=0" . =~ : @)
with a Vector y € R" of state variables, 'a parameter € R' and a.given map G: D
k"X R*—>R" which is assumed to be: sufficiently differentiable.. Whenever feasible,
we shall denote the vector (y, t) € R"x R* simply by #. The derivatives of G' with
repect to @, y and ¢ are written as G'(v), Gy(s) and G¢(»), respectively.

In many a,pphcatlons the interest centers on'the critical points of the solution
get of (1.1), that is, thoge solutions & where G ,(@) is singular. We restrict ourselves
here to the special cage of s.mnple bifurcation peints. Slmple blfurcatlon points are
solution points, say #* where i . :
rank Q" (w*) Gy(a*)=n—1- (1 2)
and a secondary solution ig branchmg off nontangenlually from the pr1mary solu-
tion curve. : ‘

In 1971, M. G. Crandall and P: H. Rabinowitz proved a famous theorem aboub
the solution structure.in a neighborhood of ‘simple bifurcation points (see [1]).
For the finite dimengional real space consudered here this result has the fol1owmg

;
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form.,

Theorem 1. Let D be an open subset of R"*, G: D R"*—R" be a twice conti-
nuously d%ﬁemntwble map and «(s): JCR'—>D with some pa/mmeter s be a simple
continuoushy d@ﬁ”efrentwble are in D such that G‘(w (s)) 0for any s€J, where J is an
open interval of R:. For some s* € int J denote o*=2(s*) and suppose that

(a) x(s*) #0,

(b) rank G'(x*) =n—1," Lk : ,

(e) N(G(a*)) can be sgmnned by a:(s*) and u*, and - 1.8)

(@) @'(@*) (a(s"), w)ER(G(@M). -

Then in a neeghborrhood of «* the totality of solutwns of (1 1) forms two continuous
curves intersecting only at o*. : ,

Usu,ally, we can use a standard continuation procedure for example™, fo trace
the primary solution cufve and durmg ‘the’ proeess to deteet simple bifurcation
pom’as by some criteria. In Section 2 we will give a proof for a criterion wh1eh has
been a,pphed by some authors without hheoretlcal analysus (see, 0. g. [8, 9]).

Furthermore, if an approximation of a sn:aple bifurcation point #* is located,
then the problem is how o produce numerically a point on the secondary curve
near the singularity from where a successful trace of that curve can be started. In
Tecent years, a number of iteration processes for this purpose were proposed, e. g.
[4, 7, 10, and 11]. We restrict ourselves here o the development of perturbation
methods suggested in .[4; T7]. Section 8 will give a survey of Keller—-Rheinboldt
method and in Section 4 we will give the representation and the convergence proof
of our simplified perturbation method. Section b presents a brief description of the
implementation of our algonthm For numencal experiments we refer to reference
[12]. .

§2 A Crlterlon for Detectmg Slmple Bifurcation Pomts

Theorem 1. eonﬁrms that o* is an isolated singular solution. Hence there is a
number §>0 such that on the primary curve
rank G'(a(s)) =n,

e 0< |s;-s*| <9.
: o a(s) 0, : : .
Regardmg to @' (@(s))x(s) =0, we have
() — G (@(s))\ [ =0, s=s" .
d<s)_det< (a(s))” >{ #0, 0< |s—s*| <3. (2.1)

Because d(s) is.a continuous function, if d'(s*) %0, then d(s) ‘must change its sign
while the parameter s passes through s”. Aétually, we have the following result.
Theorem 2. In.addition of assumptions of Theorem 1, suppose that w(s) is twice
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d@ﬁwentéab_lé, then we have o S
d'(S*)%O
Proof For ease of notation we write EERTET SR
G’(w(S)) (tle(S))”GR"*‘ L
’ cl,.(s)
and ‘ , ; .
di(s*) =dy, di(s*)di, 4=1,: m,
where
. @)F=Hu(aMa(sY), i=1, . S @2.2)
and H;(a*) is the 4—th Hessmn maitrix of G(w) at o From (1 3b) We ha.ve
| dy ; RS A s
vdet | d.” i =0_7
so that v e
. d
d’(s’) Zdet d; .
C= | .

G
Without loss of generality, we can assume that dy, -+, d,_s are linearly independent
due to (1.8b), and so there are constants. vi(6=1, s+, n—1); ey, B;and »i(i=T1, -,
n; j=1, +-+, n—1) such that '

Zaﬁd +/3i(w(8*))T+V (u*)T . - G4

The latter representatlon -comes from (1.8b, o), that 1mp1y R"”——span (cl “ee
dZ_y, a(s*), u*). Now it is easy to know that -

. - I ds —
a'(s*) =(v,;— ,§ v,-*v,)‘det Goy ¢ |,
| v = W
i (a(sM)”

where the determinant is not equal to zero, so that we only need to prove

n=1

. P'—Vn ‘_21 Vi‘vﬁe 0.?
Let w(s ) and u* be such that

||$(S’)H2*|| *"2—1 | .
and denote b= (u*)?z(s*). Because u a&w(s*), it ig obvious that |5]<1. Now from
(2.4) we have :
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bB&'I' Vi=d£u*r
,3;+bv;'=d£a.>(s*), :
A=), =d} (u*—ba(s")); i=1, -, - (2.5)
From (2.5), (2.2) and the deﬁmtlon of G"(2*) we know that
(L=52) (v, ++vy 2)"= @ (W”) (w(S*), u*—ba(s")).

and hence

Noting

@' (a*)(2(s"), #(s*)) +G'($*) z(s*) =0,
we p__btain

A=) 0 e n) @) (G5, )56 5" )E(s").
For the nullspaoe of (& (a*) )‘" we take
V =_(—wy, -, 'v,._i, 1)
which satisfies V7GQ’ (2*) =0 due 10 (2.3). Therefore we have
A=) p=VI[F" (@) (&(s"), u)+b&F (a3 ()] =V [G" (&) ((s"), u"].

It follows from (1.8d) and 1—52+0 that p+0, and the proof of the theorem ig
finished. ’ '

§3. A Survey of KelIer—Rheinboldt Method

‘The perturbatlon methods for switching branéhes are drived from the con-
structive existence theory (see, o. g. [1, 8, 5]). In [4], H. B. Keller presented the
generic forms of these perturbation iterations. But unfortunately, these forms are
too complicated to be used. | ‘

For the method IIT in [4], W. C. Rhemboldt [7] applied finite dlﬂ’erences to
avoid the evaluations of the second derlvamves, and for the primary curve a
parabolic approximation was introduced. In order to make the computation easier,
he also changed the perturbation terms. We describe the process. briefly as follows
and refer for details to the cited aricls. .

During a continuation process it is always the case that in a neighborhood of a
simple bifurcation point «*= (y*, ¢*) of (1.1), the primary curve can be loca,lly
‘parameterized by #, a suitably chosen coordinate, and go can be written as

“p(8): JCR*-R",
-~ (p®), )y €D, G(p(), ) =0, Vied, ... .. (3.1)
a*=(p@#"), ¢*), *€int J,
where J is an Open interval of R, 'Furthermore, we assume that G: DcR**—Rr
is of class C® and p: J CR*—>R" is a simple path of class O?, For ease of notation we

write ‘ g
g =(p@), 1); a"=g"=q(#")

L=Gi(g"), @.2)
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where I has rank—deficiency one, that i, TN
rank(L) =n—1, Iu=L"v=0, v"'y=2vTo=1, = o0 = (8.3)

Denoting -—q(t*) and u*= (u, 0), if .
D P R0 with ¢t =@ (") (r*, w*), T T (8.4)

then Crandall-Rabinowitz Theorem 1 asserts that in a neighborhocod of ¢" the
totality of solutions of (1.1) consists of $wo continuous curves in R mterseetmg
only at ¢* one of which is the primary curve. Actually, here we have the pa,ra,meter
s=4 and hence (s) =q(t). ¢(t*) = (p(#*), 1)#0 means (1.8a). @ (¢*)q(#*) =0 leads
t0 G4(g*) = —Gy(¢*) p(#*), which with (8.8) implies (1.8b). Obviously, -
q(#), W EN(G(¢")), rank(¢(t), u") =2 '
Hence N (G'(¢%)) —span(g(t*), u ) which is (1 30) At last, (3 8), (3 4) and Gt(g*) ‘
=—G,y(¢")p(*) imply (1.8d). : 3
For given small e%0 and n+#0 we mtroduce the notatlons
fo=10"+m, ¢°=g(%),

N 3.5
r1=q (%), r2=4 (to). : ( )
Now the method proposed in [7] can be represented by the mappmgs s
i R1>R™, lp(s) g°+ (ss)r1+ L os)ory,
¢: R™>R $(a) =4,,(s)_._v+ sut+ eﬂ(":), (3.6)
Vw= (w>€ Rn-l'i
s
.and : v ‘ .. . .
F: DyC R™>R*, F(2) =V G($(2)), Vo€ Dr=9¢">(D)
with,V=_( T‘) € L(R", R, (8.7
v " .

where, I is the n—dimensional identity Fand v ER” is defined as in.(8.8). The process
congidered there has the form

.A(w"“—m") +F(w") =0, @ 83,)

(uu)T Hi—v,o,! k'f:O, 1’ o -0'?0’:_'
with the matrix - ’ . .
: 82L :
: A*[ 0 s ]EL(RM) o (s

where ¢=gG" (¢*) (r*, u*) is a suitably chosen veotor ¢= c(e, n) € R" such that v ca&
0, and the readily computable vector o
c= G’.(z,°);r1 with é° =g¢°+ eu® (3 .9)
is used. Indeed,
o= G(g)rite@' (¢%) ('ri, u*)=8G" (¢* )(T u) e
and the fact v7e+0 will be proved in nexi section. TERN
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Because of rank (4) =n, (8.8)—(8.9): is a singular chord process in which

every step involves numerical solution-of : ,
Lw=>5, vw=0, bGR(L) : o (3.10)
For solving (3.10) the following approach is employed. Starting from w=0 we
iterate accordmg to formulas. -~ .
. 1. d:.=P1,(b~..-Lo'w),

2. solve Lyw=d, _ o (8.11)
- ‘ . 8. wi=w+P,w,
where LO_L is the nelghborlng nonsingular matrlx and P —T—wu?, P,—I— VU
are the orthogonal pro;eetlons onto N(L)* and R(L) respeetlvely.

§4 Slmphfled Perturbatlon Method

.. .Using a techmque based on a modification [2] of Orandall—Ra,bmovvltz proof
‘of Bifurcation, H. B. Keller suggested another perturbation approach, that is,
method IV in [4]. In this case Rheinboldt’s trick (8.6) with (3.5).can be applied
directly. But 1nstea,d of (3 7) we 1n1sroduce the mapping |

H: DHCRn-Fi__)Rn-FI H( ) (G(¢(m)))' (4.1)
' . s\ e
Va; ( )GDH ¢<‘1)(D)
The process considered here has the form © :
, M(w”fifwk)+ﬂ(w”)f0, k=0, 1, ., 2°=0 ' (4:23)
with the matrix ‘ , ‘ - ' S ‘
L
M- [ e EG]GMR"“), (4.2b)
v

where c=o(s’, ﬁ)‘GR” is chosen as in (3.9). Obviously we have M= H ’ (a2).
To begin with theoretical analyms of our method we give-the following lemma
Afirst.
‘ Lemma 8, Let B EL(R”“) "be of ‘the: form
B=[~LT c] with 5, o€ B, LEL(R").
s ‘, 0 . N B

I f rank (L) =n—1, L5 =0 and /T)TG#O, then B s nonsingular.
- Proof Becatse rank(L)=n—1, there is a nonsingular matrix P€L(R") such

that SR
| Ter® T
= P

So the right and left eigenvectors of .I ccorresponding to. the zero elgenvalue are u
=Pe; and v=P~"¢;, respectively, Now we agsume that
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w :
Bz =0 for some m-—f( )E R,

namely, Luw-+sc=0 and #%w= 0, Then the first equation means ”Lw-+sv"c =svfe=
0. Hence s=0 and w=au for a scalar a. The second equation implies o™y =0. Hence
-a=0 due to v"y =1. Therefore, the matrix B is nonsingular..
Corollary 4. For suﬁ%cwntly small & and w, the matriz M of (4 2b) s non-
singular..- i s : : :
Proof By Lemma 3 we. only need to Verlfy vTe#0. Letb po>0 ao>0 be such
that B(g* po) =D and Jy=[#*—0o, #"+0oe]J, and suppose by the hypothesis of
_continuity that under the 2-norm:: L :
' < " < . - P e -
::g(z(ig l ;«Z&HG @1 - VeeB ,(‘f'. w6
Mg 1<By, 1§@ 1<Bs VEETo. (4.4)
It follows from (3.4), (3.9) and G (g°)fr1—0 that
lo—so"] < (& (%) — & (¢°) — " (¢ su™)rs|

, + el 1(@" (g —G" (@) (rs, u")| +| I G‘"(q*) (Ti—-r u].
In what follows we restrict ¢ and 7 to

and

0< |n] <|&|<ge<0o. (4.5)
Then by application of the mean—value theorem, for sufficiently small g, we have
le—ec*| <wig? =~ = i Caeo o (4.6)

_“where », depends only on the constants of (4.3) and (4.4). Now from

: 7 rvc-—s[fvc+1 o (e— ec*)]
we have o T . o

EARS |e|[1@ o l—-]—-[lfvl’(c—sc")[ |=1eltloer| =l ]2

Therefore, for sufficiently small &, we have v%c+0 due to (3.4). :
We conclude from the corollary that the process (4.2) with (3.9) is a general

chord iteration wh1ch can be performed without using iteration (8.11). The

* convergence of our simplified perturbatlon method is based on the following result

about the chord method which is a simple corollary 1o’ Theorem 16.5. 5 of [6].
Theorem 5. Let F: DFCR""—>R" be of class ¢* on Dy with _

P (@)~ F'(3) | <vlo—3], Vo, €Dy, R C N )
where »>0 is a constant, and swppose thas AGL(R") is nonsingular. I f the starying
point ° € Dy is chosen such tlmt »

(a) 147} A—F' (=) |<d<1, v
(b) |47 pla*—a’] <(1-8)%/2, (48
(©) B@, 0)=Ds for p=ggslet~a"l, |
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then the dterations o S )
A(ﬁw’”in—w”)+F(a>"’) 0, k \0 1,
remain in'the set S = B(m", p) and converge to the umgue solutwn of F (w) -0 4n' S.
Now we give the main ‘conclugion. : SO g BRI
Theorem 6. Let G+ DS R"™—>R" is of class O° and the primary solution of
(L.1) can‘bé written as ¢ () = (p(8), ), where p: JCR=>R" is a stmple ‘path of class
O, Suppose that (8.8) and (3.4) hold. Then there ewist constants g4>0, >0 such that
Sor any given s and n with-0< 9| <|e|<eo, the tterations {a*} specified by (4 2) and
(3.9) remain in the ball B (0, p) ©HP(D) and converge to the unique solution &= a(s)
of H (w) =0 in that ball. Furthermore, 2= (%) is'a solution of (1.1) and for small s
the point 2 must be on the secondary solution curve.
Proof At first, we confirm the condition (4.7). Regarding to

| ¥ (@) [ of 87‘1+§2sf2]; |
we have from (3.5), (3.6) and (4.8)— »(4.5")_ )
@ I<Gatwlallel, o, |
14" () | <Bas, | Ve€R™  (4.9)
I () —g*| <(1+,31+Vz||mﬂ+?)sllw||2/2)] l,

8 i va=0o+B1, v3=00Bs.

: Henoe for any given ball B,=B(0, p), p>0, we have '
“$(B)TB(q* po), Veo<es(p)=po/(1+ B+ vap+v30%/2), ' (4:10)
where p, is a given constant such that B(g¢*, pp) ©.D. Now let #, € B, and thus z,
2€B(¢* po) for #=¢(2), z=¢(z). Then for dﬁy hE R™** we have
(' (@)~ ' @)h=V[¢ ()¢ (o)~ G ) ()T,

where

where
I
e (Lo 2o,
: and by the same argument descrlbed in [7 1, we ﬁnd tha,t
: | ' (2) — H'(3) | <ra(p) | 6| *|la—3], Va, zE€ B, .
where V4(p) is a cubio polynomla,l in p with coeﬂ"lments that depend only on. the

constants of (4 8), (4.4) and (4.9). 8o (4. 7) holds with = V4(p) |s|3
In what follows we Verlfy the, condmons (4. 8a -b, ¢). Let M, be the matrix M

‘Wlthc 8o’ tha,t is, - o - ‘ v -
el 8%
My= .
° [ e .0 J
L) /e with v

: .L_.c* - .
\oT 0/

Clearly, we have
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and (4 6) 1mphes | M — M| <»:|e|®. Thus for small enough &, it follows from

Mi=M"2(My—M)Mz*+Mz*
‘ tha.t

|3 (1— | 0 — Mo IIME“II)<IIM61H" N
and hence

Ay ¥5/8 /o3
“M ]‘\'1—V1v5|'8|<2p~5/8 [}

By the deﬁnmon of veetor ¢ we have o
L— G () . O)
M- H {Q v
©- ( )

and hence by the mean—value theorem % ' L
HM H'(O) I=e*IL—6 S (2 Il<az(1+,81)| el
After a further restrlctlon of &, We obtaln o
| 204 | 3 — H'(0)] <2a21«'5(1+,31)| l<8<1 o
whrch is (4 8a) For s.rmpllclty, suppose that 6<1/2 Because of ‘ )
E —O and at= —ﬂI‘lﬂ(O),
we ha.ve ‘
Ilcv1 —a’|< HM‘iﬂ IIH(O) I =I|M’1II |IV°G(Z°) I< 2”5 EICI B

Notmg G(g*) =0 and @ (¢*)u*=0, we may write e
AR G () =G (%) — G(!Z*) G’(q )(su ) ve T
Then the mean-value theorem leads to i b e
SR . @ E) [ <ews, ,
Where Ve depends only on the constants of (4. 8) and (4. 4) Now denoting 1;7—2»5113,
we have ! :

||m —w°|l<v7 R .
The condition (4.8¢) requires p=4v; and B,: =B(0, p)<Dg. By (4 10) and B (g Po)
D this ig an allowable requirement provided only that o< 81(p), and with it we:
find, after a possible further decrease of &, that

= 8)2 e | M|y |2t —2°| <8v5V7v4(4v7) | sl <1/2

which is the condition (4.8b). Therefore according to Theorem b we ﬁmsh the
first part proof of our result. :

At last, suppose that &= (?) is the limit point of process ( 4.2). Then 2=¢(£)
is'a solution of (1.1). Regarding to v BT ]

A A A
t=6l12="t+8s
and

A A » '&; 1 A . i
2—q(to+88) =s[u + 8(0 )+—2— es”('ra—_q(gt))_],
where 0<¢<s, we have T S
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o o lE—g(toted) =] (1~ (14p8)pss], el
which implies that for small ‘&, the point 2 must be on' the secondary curve, 'I'hig
completes the proof of our theroem. ' o

§5. Implemeﬁtation ‘Rerh,arks

We now give some remarks on the computational aspects of our methods.
+ Determine an interval 4= [tl,k i;] such that #;<<#*<f, where g(¢*) is a simple
bifurcation point. During the continuation process of tracing the primary ourve
¢(?), this can be done simply by monitoring the sign of the determinant d (£) defined
in (2.1). Because the procéss involves the cdi;nputationsi of the derivative G'(g )
and the tangent vector ¢(z),d(#) is an easy byproduct_ of the trace caloulations (see
* Reduce the steplength 4i=13—1 by, for instance, the bisection ‘technique to
produce an approximation. of "q-(t*‘), say, ¢° = (p(to); %). Numerical approximation
of r1=g (%) is a direct result of the process, and the diﬂ"ergnqe quotient (q(#,) —
g(41)) /4t based 6i1’kthe,'1a‘sit‘!intérvaf ‘may - be' expected 1o provide a satisfactory
estimate of r,=¢ (4,). i 6 R I T
* The matrix L=@q,(¢*) can be approximated by L,= Gy(¢®), and the eigen-
vectors 4 and v of I can be numerically computed by applying the inverse power
method 0 matrix Ly. For the test of the rank-deficiency assumption (3.3), we can
Testart the inverse power method with a vector. orthogonal to the one originally.
found. Note that for any odd rank-deficiency of the matrix L, the determinant d(#)
may change its sign. : SR ,

- ~For switching computation we give ‘the following schematic algorithm by
formulas (3.5), .(3.6); (3.9), (4.1) and (4. 2), where, w and s correspond ‘fo &2u¥
and es¥, respectively; g°= (79, #), r1=(p% 1) and ry= (% 0), & P

1. Input(te, 2°, 2° £° Lo, 4, v, &), - :
2. Initialize:

Cwr =0, §1 =0, . SRR

y:=p"+eu, t: =4, ‘
8. 03?@1(%'?)}130—*1@(1/,. DN :
4. a= lqﬂ’c'l,‘ test whether a is too small.

5. Loop
@ A =< 4 9 )

vTw.,

| Lo ‘o Aw\_ s ; dw)
©)) Solve( T O)(As/h_h for (\As.).
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. (w o w)_l_(A’w)
() s '_<s AS )
@ y=prspr g SO butw,

t:=tfo+s.
6. Output(y, ©). 4
In order to have some numenca.l experrments on swfoohmg methods we tested

a geries of problems. The results were presented in [12], Where a set of seven prob-

lems with a total of 31 snnple bifurcation pomts was uSed All of the SW1teh1nrr

methods selected there were divided into two classes:

(1) Methods based on calcula.tmg a rough branching direction, mamly, sug-

gested by R. Seydel.

The

(2) Methods using standard perturbation arguments.
numerical results show that for relatively 1ower"d'iﬁiens‘ionl problems a' Seydel

method may be better than others, but for large scale ‘problem”s"' it seems that our

simplified perturbation method is the ]oest one.
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