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GLOBALLY DEFINED CLASSICAL SOLUTIONS
TO FREE BOUNDARY PROBLEMS WITH
CHARACTERISTIC BOUNDARY FOR
QUASILINEAR HYPERBOLIC SYSTEMS

Ll Té.tsién‘ (#k;‘g‘)* ‘ Zha,p Ya,nchuh R 3 (?)** .

Abstract
In this paper, the authors prove the global existence and uniqueness of classical

solutions to some free boundary problems with characteristic boundary for the reducible -
quasilinear hyperbolic system.

§ 1. Introduction
Up to now, most of studies concerning the global existence of classical
solutions to quasilinear hyperbolic systems are concentrated on the Ca.uohy problem
for the reducible hyperbohc system S :

—H\,('r, s)—-—O '
{ 08, - (1.'1)

, Ty -+ (fr s)-— -—O
for boundary value problems, especlally for free boundary problems however
there are only few results, ‘

Suppose that system (1 1) is strlctly hyperbohc on the cloma,m under consude—

ration:
7"(". $)<M/(1‘, S), . . , (1'.2)
and sa,tlsﬁes the followmg oondltlons ‘ ' :
(T s)/O —-—(fr s)>0 ‘ (1.8)

Parheula,rly, system (1. 1) is genuinely nonlinear in the sense of P.'D. Lax, if
strict inequalities hold in (1 8)./In thig paper, pnder approprlate assumptions of
monotonicity, we prove the global existence and uniqueness of classical solutions to
some typical boundary value problems and free boundary problems with charac-
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teristic boundary for system (1.1)on an angular domain, These results can be used
$o digcuss some kind of discontinuous initial value problems for'the system of one—
dimensional isentropic flow so that we can prove, unper certain hypotheses, the
existence or the nonexistence of globally defined discontinuous solutions containing
only one shock in a,‘ciass of piecewise continuous and piecewise smooth functions,
and get the corresponding results to the interaction pr()ble'm'o'f a typical shock with
-a rarefaction wave. Since the space is limited, we shall giVe all the details of these
aﬁplications in a forthcoming papef_ (see [1']).? ’

'§2. Globally Defined Classical Solutions to a Class
of Typical Boundary Value Problems Wlth
~ Characteristic Bounda,ry e

On an anguiar domain »

R={(t o)[t=0, u(D<o<a(®)}, S @)
we consider the following typlca,l boundary Value problem Wlth cha,racterlstlo
boundary for system (1.1): S

on = wy(t), s=s0(t), . B (2 2)
" onw=ay(t), r=g(t, s). R ' (2.8)
Here o= wi(t) and s=a,(t) are all given curves passing through the origin Wlth
: 1(0) =2,(0) =0, wi(t)<w2(t), ve>0," @ 4)
4 moreover B= wi(t) is a backward eharao’ﬁerlstlo curve on Whlch we have
| | r=ro2g(0, So), N (2.5
BB=hr 0®), T (@8
where \
. So—so(O) . - @

We give the followmg hypotheses:
.- (H1) On the domain under consideration, A, w, s, g€O0Y, wi(t), wg(t) €02,
(H2) On s=w,(t), the following a priori estimates hold:
Ay )<Lz <u(r;s) (2.8)
| wh(8) —A(r, $)>a(To, 4, B)>0, VO<t<To, V|r|<4, V|s|<B,  (2.9)
where a(T,, A, B) denotes a constant depending only on 7', A and B
(HS) We have

o,nd f

aw<ov=o T aw
and the followmg a pr101'1 estlmate S e R

 memn®), 2050, g 9<o, @.11)
Theorem 1. Suppose that (1.2)—(1.8) hold, under hypotheses (H1)—(HS),
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the typical boundary value problem with characteristic boundary (1.1); (2:2)—(2.7)
admits a unique global: O solution ('r(t @), s(t, ‘@)) on the angular domain R.
Moyeover, we have : '

3r(t w) >0, »33@ 2) >0, VG, m)GR | (2.12).

Pfroof Aceordmg to the correspondmg theorem on the local exlstence and'
uniqueness (see Chapter 8 in [2]), by (H1) and , _

M(ro, 80) <a4(0)<p(ro, S0) (2.18)

(which follows directly from (2.8) by setting §=0), there emsts a positive number

80>0 such that thls problem admits a unique local O' solution on the angular

domain . .
R(ao) {(t m)|0<t<80, mi(t)<w<mz(t)} (2.14)

In order to get a global 01 solution on R, 11; is only necessary to establish the fol-
lowing uniform a priori estimate:

For any given T4>0, if this problem possesses a O* solution (r(¢, »), s(4, #))
on an angular domain . ‘ o

R(T) ={(, @) |0<f,<T a;i(t) <w<w2(t)} . (2.15)
with O<T <T,, then the 01 norm of the solution hag an upper bound dependmg
only on T, (independent of T'). :

We first estimate the 0° norm of (fr(f, z), (t m)) on R(T)

By (2.6) and (2 8), the backward (resp forward) characteristic curve passing
through the point (£, @) ER(T) must intersect the bounda.ry curve m=a(%) (Tesp.
ws=wx4(f)) at one and only one point, denoted by (,8(# w), 1n(%, w))A(,B(t w),
x9(B(E, :v))) (resp (a(t @), §(t w))A(a(t @), wi(a(t w))) Then, by means of
,boundary conditions (2.2)—(2.8),.it ig easy to see that

s(4, :v) —so(oa(i @), (2.16)
r(t, @) =g(B(; @), s(B(, @), n(t, #))). - (2.17)
Noting that o ‘ "
ot w) <t, (2.18)

it follows from (2 16) that : A
[s(3, @) | <O(T),. V(t w)ER(T) (0<T<To), (2.19)
here and hereafte;r O(To) stands for a constant depending only on Ty, Noticing that
B(, )<, ; (2.20)

(2.17) and (2. 19) give ; ,
|r(2, o) <O(To), V(t, ») € R(T) (O<T<To) (2.21)
Thus, the uniform boundedness of the solution 1tself ig obtained.
‘We now turn to ’ﬁhe estimate of firsh denvatlves of the golution. By sys’ﬁem
(1 1), it ig only neeessary to estimate the C° norm of 37'/ oz (%, m) a,nd 3s/3a;(t @) on
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The C° norm of as/am(t x) can be first estlmated Se’mng

83
k(r,S)
S T O e (2.22)
where k(r, s) is defined by ‘ ,.
ok __or
» a/]‘ IJJ—-?\” ’ (2.23)
it is easily seen that v sa;tisﬁes“the following Riccati’s equation Lt
dlv __ o | —i(r,s) 2 . ' R
=4 31*, L+ u(r, s) 2 (T e (2.24)

along the forward chara,ctemstic curve. Moreover, by means of (2.6) and the
‘second equation in (1.1), it follows from (2.2) that

ek(ro 8o(t)) (t) ; (2 25)

S ! PR i .
~ =) (7o, So(“f)) °
By 1n1iegrat10n from (2.24)— —(2.25) we obtain
’ 376(9'0,30(05))8 (a)
o s>‘( — A=) (o (@) ) (2:26)

B0, alr, @), so(a))sh(a)ekm e Ko s D ey

on a=u1(%), v

where o= a(?, @), and o= a;(qr a) denotes the forward charaotermtlc passing through
the point <oa, wi(a)) (a, £). Hence, noticing' (2 10) and (1 2)— (1 3), we can
immediately get the uniform boundedness of » and then ds/dw:

l—aa-%(t, o) 1 <O(Ty), Y, ) ER(TY  (0<T<To). 2.27)
Furthermore, we have ' R . : LR "
‘ (t a;)>0 V(4 w)GR(T) ‘ (2 28)
In order to egtimate the O’° norm of ar/0s on'R(T), we ﬁrst denve the fol-
lowing property: :
?L(t 2)=0, V(4 o) ER(T). L (2.29)

“To do this, dlﬁ'erentlatmg boundary condition (2.8) with respect o ¢ and using
System (1 1), we get

or 1 dg 6g"',"_"as'~‘“
on o=a:(8), Z- =T x[ + s (@) .”‘.)a_w']z oo 280
. Then, it follows from (2.8), (2.11) and (2.28) that
on s=ax5(%), —g—'r—>0 " (2.81)
Since r must be a constant albﬁg every backward chaiac’teriéﬁc, we have
r(, @) =r(B( ), (4, 2)), V(4 )€ R(T), o (2.82)

where (%, #) =@3(8(¢, )). Then, noting system (1.1), we obtain’



366 P CHIN.” ANN. ‘OF MATH. .. . Vol. 9 8er. B

55 (6 D=5 (B L D+, W GLG, 2)

= (@B, 2)~A(r (B, m), sCA, n>>>%§<t, DB, (289
where 8=A(t, @) andfr) n(%, @). Since ' ' - '
3B(t 2)=0 (239

by the definition of B(%, ) (we have actually the sirict inequality in (2.84)), (2.29)
follows directly from. (2.8) and (2.81). N

" "We now take care of the estimation of the C° norm of 67*/ 0z on R(T). Similarly
to (2.22), let-

u=g”(”3)-5;:, . R o (235)
where k(r, s) is defined by - .
- k23 _
oh _ s '
‘ cs : 7»-11/ | (2.86)
It is easy to soe that ° satlsﬁes the followmg Rlcca‘ul s equatlon :
du 6}: .._h(r 8) a2 .
dt = 3t +?“( T, ) ) (’r S)@ U (2 37)

along the backward characterls’ﬁlo Moreover at the point (,B(t ), 7, a;))—
(Bt @), @2(B(4, @))) on w=ma(¢), .

] '3 : .
g dh(_r‘(,e.,ﬂ),s(ﬁ,‘ »\"'_8_:- (,3, ), ‘ (238)

where 8=B(%, #) and n=n(}, #). Thus, by integration we get .
&6, 58,70 O (B, n)

u(%, ) — : —
A J ; % (r(B, 1), s(z, &(x, B)))erED:sB,=1(, ), 3G, &, 80 _g_;_ (8, ,7)07,,,’

(2.89)
where v=2(v, B) denotes the backward characteristic passing through the point
(B, m). Therefore, noticing (1.8) and (2.81), in order to obtain a uniform estimate
for w on R(T"), it is sufficient to establish a uniform estimate for the value of 64/'/840

on o =a,(4). Noting (2 9) and the uniform estimates prewously esta,bhshed for r, s
and 8s/0w, it comes from (2.80) that.

on z=ua,(t), ' or

}<0(To), T (2.40)
and then o

b, w>4|<o<:ro>, V6, &) CB@) (0<T<Ty. (2.4)
-The proof of Theorem 1 ig complete,

Remark 1. In the gpecial case
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_ So(t) So, ) (2 42)
by (2. 6), o= mi(t) must be a stralght charaeterlstle and 115 holds for the solution in
question that’ : - RPN
s(t, #)=8,, Lo (2.48)
namely, the solution must be a b’ack'ward simple wave. In this case, it is easy to see
from (2.80) that only the first’ hypothes:rs is needed in (2 11). Moreover let r=

vo(#) be the value of r on s =a,(4). By means of (2. 8), (2 29) and sys’ﬁem (1 1),
we have

;o(t) (@h(8) — ?\,(fr s))——-(t w)>0 e (2.44)

Then, by (1 3), this backward simple wave must be a rarefaction wave. Therefore,
the problem.still admits a nunique global O* solution on R without hypothesis (2.9).

Remark 2. Suppose furthermore that the characteristic A(r, s) of system (1.1)
is genuinely nonlinear: ‘

2w, 9>0. e
If problem (1.1), (2.2)—(2. 7 ) possesses. a bounded globalt 01 solu’mon (rr(t m),
s(¢, ©)),then e
. ro(8) Ar (%, 2a2(8)) =9g(, (3, wz(t))) (2 46)
_must be a nondecreasing funetion of ¢,

In fact, similarly to (2.26), we have
Hre(®),38, D07 ( R)

u(t, @)= ( (o @) —A(ra(B), sB; M) I )

("’0 (B) S(’D‘ ﬂ?(‘v’ B)) )TO(B> eh(fo(ﬁ) 8(8, m)=n(ro(8B),s(r, &, ﬁ)))d't'

(2 47)
where z= é;‘(i' B) denotes the backward chardcﬁeristic curve passing through the
point (B, n), where 8= B(t m) and 9= =n(%, w) 23(B(%, @)). Thus, if there exists a
B such tha frg(,B)<0 then the backward characteristic &= av(q;' ,8) passmg through
the point (B, n) can be infinitely extended, since z= wl(t) Jis also a, backward
characteristic. By means of the boundedness of the solution and the genuinely
nonlinear hypothesis (2.45), the denominator in (2.47 ) must change the sign in a
finite time along this characteristic = a:('v' B), hence, 11': is 1mposs11ble to have
a global C* solution on R. It turns oub that ro(t) deﬁned by '(2.46) must be a
nondecreasing function of ¢. This fact can be used 1o show'the nonexistence of global
‘0% golutions in certain cases (see [1]). :
In the special case that g does not exphcltly depend on s, it can. be ‘then: seen
. that, to guarantee the global existence of O solutions, ‘hypothesis -of monotonicity
. 7(2,11) is actually necessary. : ' ’ : ‘
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- §3 Globally Deﬁned Class1cal Solutions to a
Class of Typical Free Boundary Problems
Wlth Characterlstlc Boundary

We now generahze the result obtamed in § 2 to the eorrespondmg case of free
boundary problems

On an angula.r domain’

E={G 9)[t>0, &1(5) Se<aa(}, (3 1)
we consuder the follovvlng typloal free boundary problem w1th charaoterlstlc boun-
dary for system (1.1): ' SRR ' e

 @=u,(¢) i8 a free boundary on which: we prescribe the boundary conditions- /
r=g9(, ©,8), L (8.2)
@ (8) =G (8, @, s), #5(0) =0; preet e (3.8)
on the other hand, s=w,(%) is a given. baokward characteristic passing through the
orlgln on Whlch we presorlbe the boundary condltlon

s=s0(t). B € X))

Moreover, on s=x;(;) we have R T

£rl ' r=relg(0, 0, S5) - (8.5)

and ' oy , A i

. 2(3) =A (1o, so(t)>,..a71(0)=0, , (8.6)
where o

. So—so(()) BCH).
We give the following hypotheses ' y "

(HI) On the domain under consideration, 7\,, w; So, ¢ and G-€01 z;(3) €02,
(HZ) On o=g,(¢), the following.a priori estimates hold:

- Ao, s)<G(t @, s)<u(r, s) : e (3-8)
and ‘ ’

Gt @,'s) — x(r s)>a(To, A, B)>0 V0<t<T Vir|<4, Y|s|<B, (3.9)
where a(T,, A, B) stands for a constant only dependmg on To, A and B.
(H3) ‘We have : ‘
s:,(t><o, V=0 (3.10)
and the following a priori estimate ) e :

on a=ay(8), 2 (4, 0, 5) + 9 (4, 2, )G, , £)>0, -—(t s, $)<0 (3.11)
(H4) The followmg a priori estlmate holds on @ =w,(%): .
IG(t, @, S) ' <G1(To, B) +(Z2<To, B) Iw], VO<#<T{), V[Sl <B, : ! (3.12)
where @1(T, B) and (aa(T,, B) denote constants depending only on 7', and B.

« Theorem 2. Suppose that.(1.2)—(1.8) hold, under hypotheses (H1)—(H4),
the typical free boundary problem with characteristic boundary (1.1), (3.2)—(8:7)
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admots a umque globauy deﬁned classical soluigon: (rr(t w), s(t m)) € O0*(R) and wa(t)
€02, V=0, on the cmgula/r domarm R. Moreorvefr, we have

204, y=0, 2t 2)>0, V(, HER | (3 13)

. Proof A,ocordlng to the- oorrespondlng theorem on. the local’ ex1s’uenoe and
umqueness (see Chapter 8 in. [2]), by: (Hl) and . Co -
SR - A(ro, So) =21 (0) <G (0,0, So) = w2(0)</,b(/ro, So) N (3 14‘)
(Wh_reh comes d:reotly from (3,8) by setting i= 0), there exists a POSI'ﬁlVO number:
80>0:such that this problem: possesses.a unique locally defined ola,sswal solutron
(fl'(t @), §(#; @) ) €0 and wy(¢) €0” on.the angular dorhain: el b
(e | R(80) = {(t, ) |08 8oy #1.(8) <w<wa(¥)} . ; 3. 15)i
‘ In order to obtain the global existence of classical solution on R, it is only neeessary
o esta.bllsh the followirg unlform a priori estimate::

: For any given T'0>0, if, on an angular domam o

R(T)={(3, 6)|0<¢<T, nt)<e<am®} @ .16)
with O<T<To, +this free boundary problem admifs a clagsical solutron (r (%, w),’
s(t, ©)) €0* and wy(4) €O?, 'then ‘the O* norm" of (fr(t o), s(i, m)) has an upper
bound dependmg only on T (mdependent of T).
. *'Thig uniform a priori estimate can be obtained in'‘a smula,r ‘manner ag in § 2.
Ag’8 matter of fact, if this free boundary problem a,dmrts 4 olassical SO]'IIIilOIl (rr (t
a;), s(t @)) 601 and o, (%) 602 on R(.'I’) let ' _

GG =g 2s(®), 8, (31D

(r(t, @), s(t, )) can be desoribed as a classical solution to ‘the correspondlng'
typical boundary value problem with’ characteristio boundary on R(T), where 5=
~ @y(#) is regarded as a grven curve with the followmg boundary condition '

LN

on ‘o= wz(t>, r= g(t s) (8.18)
" By hypothems of monotonlolty (8.11), we have ' o
s 39“ s)>0' __i(i_s)<o C _ ) o (3 19)

I+ follows then that hypotheses (Hl) —(H8) in Theorem 1 are all satisfied for. this
typical boundary value problem with characteristio boundary. Completely repeat-
ing the proof of Theorem 1, it is easy o see that, after having got the uniform
estrmate (2 19) for s, it is only necessary to prove the followmg unrform estimate
for the free boundary &= mz(t) ‘ C

‘ Imz(t)| <0(To) V0<f.<T (0<T<To) . (8.20)
"By (8.8), we have SRR AR

, | wé<t>ﬂ=JiG<é w(e) s @D @D
Noting (8.12) and (2.19), we get *
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()| <01<T0>+02(T9>j"|m2<7) |d, vo<t‘<'r B CE))
then the Gronwall’s inequality gives the desu'ed estimate (3.20). |

The proof of Theotrem 2 is complete,

‘Remark: 8, Similar to Remark 1, in the special case that (2.42) holds,
Theorem 2 is ghill valid without hypothesis (8.9) and the second hypothesis in
(8.11). In fact, (2.48) still holds on the existence domain of the solution so that the
solution must be a backward simple wave. Thus, (8.8) reduces to :

Tl o wa(3) =G (3, w,, 8o), @2(0) =0, ' B (8. 23)
and then, by (H4), the free boundary curve o= @2(%) can be globa,lly predetermined;
Moreover, by (3 2) (3 3) and the first hypothems in (3. 11), it holds on z= a:g(t)
thatb

‘é—’;‘ g§+39 G=0. (328
Hence, by (1.8), this backward simple wave must be a rarefaction wave so that it
is not necegsary to get a uniform estimate for the O° porm of 9r/0x in order fo
construct the global solution, Moreover o=w,(4) must be a straight charaetenstlo
~ in this case. :

We shall use the result just - mentroned above to get the existence of globally
defined dlscontlnuous solutions only containing one shock for a class of discontinuous
initial value problems for the system of isentropic flow (see [1]).

Remark4. Similarly to Remark 2, suppose furthermore that the characteristio

A(r, s) is genuinely nonlinear, namely, (2. 45) holds. 1If the free boundary problem
1. 1) (8.2)—(8.7) possesses a globally defined. classical solution on the angular
domain R, and (r(4, @), s(¢, o)) is bounded, then
- To(£) Ar(t, 2a(2)) =g (%, 2a(8), s(4, wz(t))) o (3 25)
must be a nondecreasing funetron of ¢ Therefore in the case that g does not ex-
plmltly depend on @ and s, hypothesns of monotomclty (3 11) is also necessary for
guaran’ueerng the global existence, s
Particularly, ‘suppose that the value of 37‘/3:1: at the origin, which is uniquely
determined by system (1.1) and:the boundary eondmons s negative: ‘

(o 0)<o. . ' (3.26)

Suppose furthermore that so(%) is a bounded function of # and g(t @, §) ig bounded
ag s is. bounded. Then, the classical solution of this free boundary problem must
blow up in a finite time. In faet in this case the solution (r(¢, @), s(t,2)) is bound-
ed, however, r,(t) defined by (8.25) cannot be a nondeoreasmg function of #. It
miist be observed that the conclusion is still valid even mthout hypotheses (HS3).
and (3.9). i
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We shall use the foregoing result to prove the nonexistence of globally defined
discontinuous selutions containing only one shock for a class of discontinuous initial
value problems for the system of isentropio flow (see [1]).
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