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Abstract

Congider initial value probiom v;—,=0, u;+p(v),=0, (E), v(z, 0)=uv,(z), u(z, 0)
=uo(x), (L), where 4>0, p(v) =K%, K>0, 0<y<3. As 0<y<1, the authors give a
sufficient condition for that (E), (I) to have a unigue global smooth solution. Ag 1<y<s,
a necessary condition is given for that.

§ 1. Introduction

The first order quagilinear system

V=0, =0, u+p(v) ;= —24u, (4>0) @®)
aTises in a variety of ways in several areas of applied mathematics. There has been
much investigation to the problem of establishing global existence and nen—
existence theorems of smooth solutions for initial-boundary value problems,

Nighida™ has considered the initial value problem for the damped quasilinear
hyperbolic system (E) (p’(v)<0) with smooth initial data
(s, 0) =v(2), u(z, 0) ~vy(), €y
which is small with respect to 4>0. He has shown that initial value problem for
(E), (I) will possess a unique global smooth solution. In other words, under some
conditions, there exists £>>0, such that if

sup|r(a, 0) | +sup|s(w, 0) | +sup|r.(z, 0) | +sup|s.(a, 0)|<s,

where r, s are Riemann invariants, then the initial value problem (E), (I) hag
a unique smooth solution in the large time. Here >0 depends on A, and s(4)—0,
as A—0,

Slemrod™®, on the other hand, has shown that if |r(w, 0)| |s(z, 0)] are
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sufficiently small and r,(z, 0) or s,(s#; 0) is negative and sufficiently large in the
absolute value at any point s € R, then the initial value problem for (E), (I) hasa
- O"—golution only for a finite time, :

It 1s more mterestmg t0 1nvest1ga,te the problem with “big” mltml value.

In the case A=0%" the necessary and suﬁo1ent condmon of the ex1stence for
globa,l smooth solution is » ' ki s o
‘ r) () =0, ‘sﬁ(w)>0.’ '
The condition is available for “big” initial data. '

_ In section 2 of this paper ‘we glve some conditions for ex1s1;enee or nonexistence
of global smooth solution for certain’ p(v). The cond11;1ons are available for A=>0
and “b1g” initial data. : PR D '

In detail; suppose that p(v) =K?0™, K >0, 0<7<3 v>0, Introduoe Riemann
1nvar1ants as r= u+d§(v) s=y— di(fv), here D (v) =L\/ —_p (s)ds._ The main result
in sect1on 2 can be stated as follows ) | -

" Under conditions (A), (0),
, suplro(w) [ +sup|se(2) | <mm{ 20(0), 245(00)} | Ay
ro(®), 5(0) EOVR), |rh(@) | +|sh@) [<M,. . (O
(1) As 0<y<1, if condition (B)

ro(a) > — 5o v0(a), (0>~ (@) ®

holds for all s € R, then the 1n_1t1al value problem (E), (I) has a unique global
smooth solution,

(2) As 1<7<3 if condmon (B) faﬂs -2t any a;ER thon the initial value
problem (E), (I) has a O*—solution for only a finite time.

‘Combining (1) 2), we obtain a necessary and sufﬁolent condition of the
existence of global smooth solutions for y=1. This is the result of Zheng in [5].

The condition: (A) ensures that the O'-golution is strictly away from o=oo (asA
1<7<3) or v=0 (a8 0<y<1). In view of 'bhe cagse A=0 (see [10,11]) we bhelieve
that the right side of the inequality (A) can be replaoed by o,

§ 2. The Existence and Nonexistence of
Global Smooth Solutions

Congider the initial value problem (E), (I), where p(v) =K ?fv"",. K>0, 0Ly
<8, v>>0. The characteristics are S
A=/ F@) == b, =N F () =%

1

11 . .
where b =K %y %, and the Riemann invariants are taken ag !
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= u+@(fv), s<=u—.‘d,5('v),w,‘
@(@)=j 1(s)ds.

The Rimann invariants give a one to one smooth mapping from .Q={(u, lv) IuER
vER,} onto Qy={(r, ) |20(0)<r— s<2d5 (o0)}. The Riemann invariants diagona-
lize the principal parts of the system (E) as S o
: ritMe=—A (r+s), St sy = ——A(r-i—s) (B),
and transform the initial data (I) into A
- 1w, 0) =1 (uo(2), 'vo(w)) =ro(®), o
5@ 0) =s(u(a), w(@) =s0(a), . . F
‘We borrow a priori estimate of Nishida™?, : :
Lemma 2.1. Under the conditions (A) (O), the initial value problem (E)i, (1)1
has the a priori estimate-for O'—solution:
sup|r (e, 1) | +SHPIS(w t) l<suplro(w) l +SHPISo(w) | <min{—25(0), 26(c0)},
for =0 as long as the O'-solution ewists. Therefore the} solutfwn remains n the freg@on
o |
We are going to dlSOllSS the a priori estlmate of r,(w, t), ss(w, t). Following
Slemrod® 3‘, we have ‘

0’=—f62—A0'¥Ay’, @)

b - @ =—fp—Ap—Ag", (2.1),
where :
19 4 0 o _ 9., 8
2t 2 Mo )
1 or oy, L or 1 o . —TEL Ps o
=72 Z1 1 = 2.0 —p1 .
O=u® o =070 T g et =bT T o .2)
-1 1 _B=r r-=8 21 . . ok
f—m =T, g=[T L@@ @9
Then . AR ' AP :
’_ 1 _*21‘ r_ _% ’_ % ’ -1 1, . )
=5 (r—8)=p 20 =p%' =072 % o, ‘ (2.4)
() -G —owTE 2.5)
where :
_r+1 ‘
o-t*L, o (2.6)
(2.4), (2.5) implies . :
r_(OY
v_ 7=(5)- @0
Moreover, we set ' | -
| wé-6+vA—fa—, ST ' : (2.8)

so that we can rewrite (2.1);as
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- —f(W———) A( ) (2.9)‘1

of = — fur+ A 20— 1) w40 (1 . @

Slmﬂarly, pub y= <p+—AT- (2.1) 5 implies

g =—fP+ A0~ 1)y+ f (1 0).
Lemma 2.2. Oonsider the initial 'value problem. .. L
2 ()= —F(t)z”(t) +A20~1)2(8) + = F(t) (1 O), (2.10)

2(0) =z, | - (2.11)
where A>0, F($) €C*(R,), F 1an(t)>O R

Q) If 0<O0<1, 2=>0, then the thwl 'value problem (2. 10), (2.11) has the @
priori estimate for O'—solusion (%)

0<z(t)‘<max{ ‘;O , zo} o *  B (2.12)
(2 If 1<O<oo 20<<0, then the initial value pq"oblem 2. 10) (2 11) has o O'-
solution for only a finite time.

Proof (1) The proof is done by contradlctlon If the a: pnon estuna,te @. 12)
failg, then there exists 'r;>0 such that

‘ ‘ , .- z('zr)<0 o (2.13)
or exists qr>0, sﬁoh that " ' . ’ . ' . .

z('v') >;q@x { ’fllg , 2,0}~ (2.14)

Howevér, from (2.18), since 2o=>0, there exists 0<<d<<7, such that .
z(1) <0, v—3< <7, (2.15)
a(w=8)=0. o : (2.16)

(2 16),(2.10) and F >0 imply | : . - -
2 (7—8)>0, as 0<0<1, - (2.17)

(2.16), (2.17) contradict (2.15). As O=1, '
Ca()) =0, t=>v—3, = (2.18)

is the unique solution of the initial value problem (2. 10), (2.16). But (2.18)
contradicts (2.15) also.
~ From (2.14), there exists O<8<'v suoh that

~2(%) >max{‘%,o , zo}, Ce—0<t<Ty . (2.19)
¢(v—8) =max {%7—, z.,}. o (.20

Rewrite (2.10) as
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—

z(t)=—F(z———-) ( i AO) L (2.21)

(2.19), (2.21) imply | _,
% (t)<0 LIy, ¢ v (2.22)
(2. 20) (2.22) contradict (2. 19) _ : '
(2) Since 1<O< oo, 2<0, it is easy o prove that 2(3)<0 as long as mésomﬁon
2(¢) exists, and e L :
E)<-— *z“(t)+A(20 1)z(t) o (2.28)
Consider the following initial value problem * ’ o ‘
' {y '(8) = —=F 2+ AQ0O-1)y(s),
y(0) =2o.
Soleg (2.24) by elementary method we get

Tl o 20030y | 4 (20 1) <% -

Obviously, y(¢) goes to —oo in a finite time for: z,<<0. Comparing (2.28),. (2 24),

(2.24)

by comparison theorem, we got 2(%) <y(t) <0 as long as z(t) exists. Therefore z(%)
exists for only a finite time. ’

Lemma 2.3. - Suppose 6<y<1. Under the condition (A), (0);, any C*—solution
@0 the qm/%mhw problem (E)1, (1)1 has the a priors estimate:

¥ e, <M, [su(o, )| <M,

where M only depends on K, r, A and the bo'wnds‘ of ro(x), so(), ro(w), s{,(&;)

Proof TFollowing the proof of the part (1) for Lemma 2.2, we can prove tha,{;
O'-solution to the equation (2.9) has the a priori estimate ‘ :

0<w(a, t)<max{f . } (2.25)
if . o
w(w, 0)>0, zCR. (2 26)
From conditions (A), (0), f.=inf f(=, t)>0, wo=sup w(w, 0)<oco. Since u,=
w(v)or, Q5=7(a"—s), vy = ;, we have /u,,—-—;-,u/ ”',=—_4b—' From (2.7),»(2.2),
(2.8), (2.6), ‘ '

w= ,u, (fr,a —AOu7") =u ( ot 5=
Consequently, condition’ (2.26) is equivalent to the condition B). rs is bounded.

Its bound depends on K, 7, 4 and the bounds of 'ro(w), so(az), ro(w), so(w) Slmllarly,
s, has an analogues a priori estimate,

4-Afz’)), )

The a priori estimatesin Lemmas 2.1, 2.8, and the local existence theorem for
(E)31, (I)1 give the following global existence theorem.

Theorem 2.4. Suppose 0<y<1. Under conditions (A), (O), if condition (B)

holds for all « € R, then the initial value problem (E), (I) has @ unique global smooth
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solution.

According to the part (2) of Lemma 2.2, the following theorem can be proved
by contradition.

Theorem 2.5. Suppose 1<y<8. Under conditions (A), (C), if condition (B)
fails at any poimt x € R, then the initial value problem (E), (I) has @ O*-solution for
only a finite time.
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