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PR‘OPAG“ATI'ON ‘OF SINGULARITIES FOR
~SOLUTION OF SEMILINEAR
e WAVE EQUATIONS
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Abstract

In order better to research the singularities.of the solutions € H 10(Q), QCBn, s>-;—‘-

+1, for semilinear hyperbolic equations [] w=# (4, Du), in this paper, a kind of weighted
Bobolev space (H*)%,, =1, 2, py=D,—|D,|, Py=D,+ | Dy |, closely related with the solu~—
tions of the equations, is presented. It is discussed thattheir products tacitly keep. roughly
: H?3n microlocal * regularlty on the characteristic du'ec’uons for P, and invariance under
“monlinear maps. Then it is obtamed that 1ough1y H3-n propagatmn of singular: ities theorem o
is valid for (J w=s(u).

§0. Introduction
In 1979, Ra,uoh oY firgt ana,lySed regularlhes of the soluinons for semﬂmea,r
hyperbohc equatlons Ou=f(u), .QCR” S >—, f is a polynomial on ». He showed
that if the regula,nty of the solution « at some point in 7™(02)\0 is loss than or

equal to' H™ , then it propOga,tes along bicharacteristio of Od. In 1981 [5] ,-in

1982 [2], in 1984 [6],.[8] a roughly m* 3 propagation of smgulant;es theorem
for Cu=1(u, Du) is given. In 1982 M. Beals ™ tfacitly acquired the result about -
roughly H3» prbpaga.tion of singularities for [Ju=7(u). In 1984 Chen Shuxing
also analysed roughly H®*™" regularities for [Ju—.f (u).

As we know, Rauch ™1, M. Beal and M. Reed ™ showed thab if ﬁ<'s<fr< 25 —
- H*NH, (5, o, %, £) conshuutes an a,lgebra In order to acquire roughly H3sn

propagatlon of singularities theorem for Du f (u, Du), it is necessary to prove
roughly H™*™ microlocal regularities of the produets on the characteristic
directions of [] and invariance under nonlinear maps. This is the content in this

paper.
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§1. The Microlocal Theorem on Products

~ Let a, B=0. I'ys —R" is a conic neighborhood. Write Py=D,— - | D, |, Py=D,+
|D,.|. Define . , .
"u"(ﬂ’)f»,,(l"l) = "<(7J §)>7<P ("7'? §)>Bu<7 §> ||L’(f':)a
where (@ Y=+ (5 O, | &)= (+ zgz)
P.(z, &) is the symbol of P, u=1, 2.
17| g, By ang o = Il o, Bmy + [l g,
()= (3, (R = {u €8s [ul e, < T
(H)%,(I'1) ={u€8’; |u| @93,y < ~+oo},

. Write Ni={(w, £); v>|&|},

: . ' Na={(z, &); —v>|&]}.

Definition 1.1. € (H*)3,N (H"E,(to, oy To, £0), (foy @0, To, £0) ER? % (R™\O)
means that there ewists a smooth ¢ (4, ), supporied near (ty, @) with & (bo, wo) =1 and
a cone I' im R"\O about the direction (vo, &o) such that

(1) {(m O)a— |£]>bu(n, &) €IA(R?),

(1) <@, ©)><o—|¢[¥Pulz, ©) €I2(D).

In the same way, we can define (H*)% N (H")%,(ts, o, %o, &o)-

Let K <T*(R")\0 be a olosed cone for (7, &), If u€ (H)g.N(HNEG o, 7 &)
V(¢ @ v &) EK, we say u€ (H%, ﬂ'(H')P“(K) Note when a=8=0 in the
definition, it is ealled H® N H%,y (%o, @0y To, 50) (see [2]). If condition (i) is valid,
we say u € (H*)%, (%, o). In this paper we always suppose o, B8=>0, 0<s<r, (§, o)
€QCRXR", |

Leb g1, ga, be nonnegative functions, If there exists a oconstant 6;>0 such that
g1<<c1gs We can write g1 gs. If there also exists a constant 0150 such thab ga<eagi,
We say g1~ ¢a. ' -

‘We often apply the following lemma and do not point it out (see [3] or [4]).

Lemma Suppose that K: R*X B"—0 4s a locally integrable mensureable function
such that either o

: sup (1K (s, & 4 n) Pardn<oco,

| sup [ K (z, £ % n) |*wdE<co
' s : Cem) o
holds. Then, the map

(9 W= E (@ & A gla—2, E=n)h(h, m)drdn
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extends from 2D(R") XQ(R") %o a continuous bilinear map of Lz(R") x L2(R") to
L?(R"). That is :

|[& G & 3 ote=1, e=m 1 n)dxdnll <elgl Il

Applying Holder 1negua,11ty, we can easily prove the following offen used
result. :

Lemmal. 2. Let >0, a0, i=1, 2. If s;-+s,> 51

and 81+32+“1’*T'
Oa >%, imtegral

- v d\dn -
s J e (v ™A= [y (5 —h, E—m)p=w—A— [E—7] o |
If we use <A+ |n|) instead of A—|n|> or <v—A+|é—n|> instead of {r—A—
'|é=n|>, or both instead of them, the integral is valid also.

Write s=min {s;, sa}, r<min{r;, ra}, a=min{a;, ag}, B=min{B;, Bas}. It
always means a theorem is valid respectively for u=1 and [.(, =2 that P, appears
in the theorem

Theorem 1.8. Let u,G(H“) N{H™ )% (to, @0y To, Eo). =1, 2. If

7+,8<m1n{71+/81+72+,82, S1tautsatam, yit+Bitsatas, sl+a1+'yg+,32}—-n/2
7+B<si+s3— (n—1)/2, (v, &) EN,,
7+B<min{si+sata, ri+ss, ratsit—(n—1)/2, (vo, £o) EN,,

then wyua € (H")%, (Yo, @o, To, o).

Let I'y be a conio neighborhood of (7o, £o) such that u,é (H™E (I'i) There
there exiss a conic neighborhood I" Iy of (wo, &o) With a constant c<0 such thab.
the following inequality is valid

"“1“2" (HE, (SO H Nl carongy m ncazroge oy »
Vu € (H*)%, (B) N (B8, (I'). | ‘
Proof We prove it only for w=1, i. e., Py=D,— | D.|, because the proof is
the same for Ps. We assume u; have been multiplied by a smooth cutoff funotion so
as to be compactly supported. We consider for any (7, &) €I’

I=<(7, €)><(v— |§l>"u1us (% &)

=2I Ki915(A, 1) 9a(v—A, € —n)drdy
=1JQ;

=I+Ta+I3+1,
where ¢1;, 92,€ L7 Q;, K; are given later on.
@ In Q={(A m): (& ) €Ly, (v—A, E—n) €T3},
K= (@ H><w— |§|>6 ' 3
<A n)>"‘(7v- [n]>#< (w4, £~ n)>”<7 A—[E—n[>5"

O If |4 n)|<7|(% O 1= &—n) |‘>§I('F, ¢) | and notice
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(= [€])><{r—A—|E—9]>+< (A n)), it follows that
, 1
R O ez P o e P
1
, (% ) VAN VEOD — [ [ D p—A— [§ — n|>""
@ I |0 m) | >4 (o )], apliying o= >SN |n[>-+{(e—h, E=m)
follows that ' -

1

EsS g—Tarse =G, ) R e R
-1 .
) PP VC oy Wy S L T LTy ey g e e

According to Lemma 1.2 and the given conditions, we have sup Jm. K2dAhdy<oo, g0
hat '
: DTl 2 <<eloaa | @ @ lwl oy @
@ InQ={(h n) &I, (32 E—n) T3},
Notice the following fact ™,
. Soppose I'y, I'y, I'scR"\0 are olosed cone, and I'N (I"aU I's) =4. Then there
e Char P, exists a constant ¢>0. such that
(7= E=m) % [ (A m) | ™
>c| (7, &) |z.+z,’
V(& ET, (v—M §—n) €Ly, (M) €T,
where 13, 1,=>0.

oe (5 YK (= [£]5?
RGO
V€S G-l g =l

1

<
S . ~e 7“ S1tSa—(y+3) }\' >0h
Fig. 1 relation between Char Py, I'y, I' {<( 1) < Il

r—=A—|§—n >
and Z0\I'y in 7=1. If (w0, &) € N4, it is valid abviosuly, so

wo suppose (w, &) Ny and (s, &) €Ohar Py—{(s, £); v— |¢] =

Let 2 be an adequately small conic neighborhood of Char P;. Then we can
choose an adequately small conie neighborhood of (570, o), as Figure 1 shows, such
that if (A, n), (v—A, €—n) €Z\I'i then (v, £) &I, so thab if M m) €E2\T'y then
Lo—A—[E—n[>~L(z—N, §—n)).

1
K S Sy+83+oig— 2%
AZ L )y TEEERG,— Ty [

Using Lemma 1.2 yields sup JK 3dMAdn<<oco, By analogy, we can analyse it in other

©ase, so thab

1 all eery<clull@es: @aro = 142l @ s @aro «
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(@) In Qs={( m); (b m) €L, (v—M E—m) & 13} :
Notice that sappose I'y, I's are closed cones and I' I'3=¢, then there exists a
constant ¢>>0 such that | (A, 1) [>c] (7, &), V(=M E—n) €Ly, (v E)ETL.

k- ((w, £)57¢a—|€ "
o My Ty (v~ E—m) oA [E—7]5™
1 |

= L= [n]YB 2 (w =N, E—m) P+ g~ — [ —n[>™
o= [0 (71, E—m) DT Ha" g — A — [E—m [ D™

Similarly, using sup sz d dn<co it follows that

_ "Is"L’(r><0Hu1" @ms a»*® I|u2|| ()% Rp/T2) e
(@ In Q={(, n); (N 1) ¢y, (v—A, £—n) ET}.
Notice that suppose I'y, I's are closed cones and I'N Iy =¢, then there ex:sts &
constant ¢>>0 such that | (v—A, E—n) |=e| (v, &) |, V(v, &) €L, (A, n) €L,

Kome (( OYKa— €] |
Ly m)>A— [n[ > (w—n, E—n) )77 —A—[E—n[)*
) S
= (A, ) V=B~ [ [ Do p—A— | — 7] >

+ 1
Ly )PV A~ [ 9| D p—A— | E—q [ YB7E "

Using sup IK 2 d\ dn<oco it follows similarly that

I La]l sy <ellwl] (HDHZ Ra\TD) * “uz_"(ma)g; ()

Adding up previous 4 normal inequalities, the proof is finished,
Corollary 1.4. Let u;€ (H*)%, N (H")%, (Yo, w0, 70, &0). If
s+a>n/2, s—B>(n—1)/2,
r+B<s1+8s+2a—n/2,
r+B<sitsa— (n=1)/2, (v, &) EN,,
Ut B<sitsata—(n—1)/2, (vo, &) EN,,
then wyus € (H")8, (to, @, 7o, &o).
If s—a>(n—1)/2 ‘also, ugus € (H*)%.N (H")S, (toy w0, To, o).
Remark. If “=B=0’ Corollary 1.4 is Rauch lemma ™,
Theorem 1.5. If s,>|ss|, s1—a>(n—1)/2 and s3+a>n/2, then
| (H™% (H3,c(HDE,.
Proof If s,>0, using Theorem 1.3 the result is proved 1mmed1ately If sz<0
it is easily proved also. :
Definition 1.6. If u=v;+vs [1W (v) CH; where v€ (H*)%, Ei={(w, §);,.;
v=>0}. Be={(v, £); v<X0}, 4=1, 2, we say u€ (H*) 5D (H*)%:, and write
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floc) @y eE™I: = Inf 2 o (H“)“ .

v1+vg §=1

One easily proves the following result.

Proposition1.7. Ifsl+a1=s2+a2>%, s,;—a,>“;1, 64, 4 j=1, 2, then

C{H™)g: H“’)?;C(H‘*’) @D (H*™)$, and there ewists a constant ¢>0 such that
Neatsa | ooy @camgy <0 Noslcarmogy * lsa lcaonss
Yu, € (H ") Fe

Using Theorem 1.5 and Proposition 1.7 we have the following theorem

Theorem 1.8. If sitoz==Ss+a>n/2, si—o;>(m—1)/2, 4, j=1, 2, then
(H>)%,@® (H*)%, constitutes an algebra.

Lemma 1.9. Suppose (1, w) €Char Py, (v, o) @5 not in tangent plane B 4o
‘Ohar [ at(1, w), I' és @ conée neighborhood of (v, &), and I' N H=¢. Then thery are
conge ne%ghbo¢hoods IPof (1, w) and I'*={(7, £); — (v, §) EI“’} of (=1, —w), such
That '

(7, O><er({w—A+ |E—n|>+<A—|1]>)
Y, n) €I (v—A, £—n) ET, (%, &) ET, where Op>0 is only dependent of cone I'.

Proof Assume without loss of generality that w=(1, 0, --, 0) €ER", so thab
E={(v, £); v=E£4. Then there exists a constant ¢o>>0 such that '

|7—&1]>200| (v, £) |
For an adequately small >0, take I adequately small,

If 7—£1<0, similarly, one can prove O’o[(’v', O|<—=(@—A+[E—n])—OA—[n]),
so thab it has been proved.

Remark If the Iocations of (A, m) and of (v—A, §—m) interchange,
similaﬂy, one can acquire ' . .

{(z, £)Y<Op(<m—A—|E=n]|>+ <A+ |n]3).
Proposition 1.10. Suppose wi€ (H*)EN (HN%:(fo, @0y 7oy €0)y 70>0, ua€
{H*)% (to, o) and [1 wF (ua) CHa, a=min{es, ag}. If
— B> (n—1)/2, sat+as>n/2,
f/'+,3<s1+32+a1+a2—n/2
r+B<si+82— (n—1)/2, (7o, &) & Char P1U Ni,
r+B<si+8ata— (n—1)/2, (7o, {o) €Char P1UNy,
then uyus € (H")E, (to, o, 7o, &o).

Procf The idea of the proof is the same as of Theorem 1.3 and, we adopb the
same denotation. The erux of thequestion is in Q, where we eagily prove that there
exist limited conic neighborhoods I't such that Char P1\Z’1CL‘J I and exists a

donsgkant ¢>0 such thab
(7, &)y<er—A+[E—n|>+<A=[n[>)
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V(?") 7)) GH) —(7 -\ - 77) €I? and (T) &er.
It is easy to make limited cones I'j; I} such that Char PI\T1CUI’¢,_E , and

4N (I'+2\I') =¢ for small conic nelghborhood T of (0, &), 1. e., if (7, é1) €
I%, then (7, £&1) is not in the line which go fhrough some point in I" and one im
2\I, as shown in Flgure 2. Soif (A, n) €Iy, — (v—MNE—n) € I, for any V(z, £)
cr we have : '

PO (X 3552 ol [P S 5
=T R
1

S T AR

G T e =
By using Lemma 1.2 the proof is finished.

In other case one can prove it similarly.

. Remark. If uy with u,, By with.Hj,
P, with Py, Sy with S5, «; with o, inter-
change at the same time, then the previous

resul’b is valid also.
Definition 1.11. Suppose (to, @) € '
RX R, If there ewists p €07 (Rx R*1), SuPPO’”’ d near (fy, @) and q’(f"” w") -1

such that pu € (H*) 5@ (H*)E:, then we say u € (H*) 1@ (H*) i (t, o)+ il
By using Corollary 1.4 and Proposition 1.10 it is not difficult fo prove the.

Fig. 2

important produet theorem we need. ‘

" Theorem 1.12 - Supposs w€ (H3,@® (H*)%, (o, 7o) and wE (H?)%, (foy %o, Tor

£0), To#0. If | B N
s—B>(n—1)/2, s+a>n/2, r+B>n/2,
r4+B<2+2a—n/2, '
r+B<2s— (n—1)/2, (7o, &) $Char P,
r+B<2s+a—(n—1) /2 (%0, §0) €Char Py,

then uiuﬂe (H')P‘,(tOI Poy Toy 50) If s— a> o 1
wua € (H®)3,® (H ’) #.(to, @0).

also, then

§2. Invariance under Nonlinear Maps

‘Wen can prove the following result, :

Prop051t10n2 1. Supposes—B>(n—1)/2, s+a>n/2, 0<o<s,0<,8<oa Define
AcHom(L2(R"), A:={DY°<{D;— | Ds|>?ia{Dy" {Di— |D,|>* and suppose 0<e;<<
min {s—(rn,‘—l)/Z, sta—n/2, 1}, 0<ea<min{s—B—(n—1)/2, s=B+a—n/2, 1}.
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Then there evists a constcmt c>0 such that for any v ¢ ELA(R") and any real aC
(HS)P;(R"), . -
((A+4")¢, ¢)v<cll¢llzm II¢IIL= llwllm,,l if B= 0,

((A“‘A*)‘?S: P p<cldlmds, . H’"L’ lal rg, O B+0,

By using Proposmon 2.1 the following result can be acquired.

Lemma 2.2. Suppose s>n/2, a<<8— (n—1)/2. Then there exists a. polynomial
P with P(0) =0 which is only dependent on's, o and n, such tha‘t,

» "3“‘”1"(17')5“(&.) <P(lal @z, @) -

Y real o€ (H*)3,(R"). _ .

Since S(R") is dense in (H*)%,(R"), one can acquire also the following lemma,

Lemma 2.8. Suppose s> (n—1)/2, s+a>n/2. Then each u € (H’)PM(R”) s
contimuous function which vanishes at imfinity.

~ Theorem 2.4. Suppose f: O¥—0 or f: R¥—C is O function with £(0, 0, -, 0)

=0. w€ (H),(R"), i=1, 2, -+, N. Suppose s>>n/2, s—a>(n—1)/2. Then f(us(-),
- un(+)) € (HH%,(R"). .

Proof It can be assumed that u; is real and f: RN —C. By Lemma 2.3 it ean
‘be assumed that f ES’ (R¥). S,

- ORICOR G

‘where u=(u1, «es, %y). Since
0%~ 1= (4~ 1) + S IT (6%~ 1),
ied

‘where the sum i over all subsets of {1, +--, N} with cardinality N—1, by Lemma
2.2 it is true thab [e' —1|gsg, is polynomlally bounded. Thus, the mtegral is
-absolutely convergent in (H 9)%.. This proves the result,

Remark. f: O¥—(C need not be analytic.

Definition 2.5. Suppose K C R és compact set, write

(H)%,[K]= {uE@ (BR"); supp uC K, u€ (H®%, (¢, ©), V(, ) EK}.

Suppose {¢:} is a ﬁmte paritition of umty, so that ¢ € (H,)%, (BR") and Zgb;—l on &
wmetghborhood of K. Let

leell caroygoms —2 I (H)E,Rn) *

If u=uy+uy, u‘E(H’)p‘[K], =1, 2 then write u € (Hs)pl[K](-B(Hs)P,[K] Deﬁna

“u“<m>hrme<m>p.ml-— Inf 2 iz
u—u|+u‘ §=1

. .Proposition 2.6. Suppose KCR" is a compact set and $— a>2 1, s+a>

Then /
(i) (H"%,[K] és @ Banach algebra,
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(i) (H93IK1®EHEE, [K7 is @ Banach algebra.

Proof It can be so proved as Theorem 2.4. :

Theorem 2.7. Suppose s—a> (n 1)/2 s>n /2. Let f: 070 or f RE->C be
0%, € (H*)3,®(H*)%,(t 2), j=1, 2, -+, N, (¢, 2) EQCTR". i hen

| ﬂ%mwﬂﬂﬁm@m%ﬂw
and the chm}n rules

, b ;
és valid as an identity in (H*)%,® (H*™)%,(4, o). o .
Commutator Lemma 2.8. Suppose by(7, é) €82, a (4, z) € (H™)%, e
(H"*2)4, (o, @0, 70, E0), v(E, @) € (H*)2.N (H")S, (b, @0, To, E0). Lf ‘ :
(s1—e—B>(n—1)/2, sy—&+a>n/2, 0<<e<l, _
—B>(n—1)/2; s5+B>n/2, -
Y+ e+ B< 81+ 8+ 20—n/2,
Y+ e+ B<si+8a— (n—1)/2, (Lo, §0) EN,
v+ e+ B<si+sata— (n—1)/2, (Lo, §o) F Ny,

then [bo(D), a(s, ©)]1v € (HY*)5 (%, @0, To, o), and for the conic neighborhoods:
TCCTI Of (1707 §0>7 ‘ .

I [bo, alo| @, mSC lal (H3,(Rn) N (H™9)8, (T ° I (H®3)3,(Rn) 0 (H”)3, (T2

Va € (H*)%,(R™) N (H™*)5,(I's), v€ (H*E,® N (HN2,(I'y).
Proof It can be so proved as Theorem 1.3, only exeept usmg in Q, the fack

that if | (A, n)l<—l(% £)] then [bo(z, &) ~bo(z—1, £— ”)|~<§¢, 23;

Proposition 2.9. Suppose cone I'CR" s independent of t1, r>n/2, r— ,8>
(n—1)/2, si—a>(n—1)/2, ss+a>n/2, o+8,=0. If

(i) HwF(w)ccT, I denotes the projection in the dual place,

(ii) real function a € (H™)%, N (H"2, (1),

@DﬁEmW%ﬂ% | L .

(iv) w€ (H)E, if =0, o = e
and w(ty) =saw(t1) +g, then w € (H)%S, '

Proof By the calculation of pSeudodlﬁ'eren’mal operators the energy inequalify

—-Il’w | @oye, <cilw| @y, +02

can be acquired, so that by Gronwell inequality the result is proved ‘
Propos1t10n 2. 10 Suppose v(tl) —e“”'—l ae (Hs) 2N (H % P (t.,, B0, Tor
£o).
Iy
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s>n/2, s—B>(n—1)/2, s—a>(n—1)/2,
r+B<2s+20—mn/2, :
r+B<2s— (n—1)/2, (v, &) EN,,y
r+B<2s+a— (n—1)/2, (vo, &o) E N, )
then v (4,) € (H®) 2. N (H"?E, oy @0, 70, o).
Proof The equation v(#;) = baw (41) +4a, 9(0) =0 is reduced to a proper form.
Then after using Proposition 2.9 time and again, to make boofstrap arguments is

sufficient.
Theorem 2.11. Suppose f Of—0 or f: RE—0 is O function and u; € (H*)% %

N )P,.(tm @0, To, o), j=1, 2, =+, N. If
$—B>(n-1)/2, s—a>(n— 1)/2 s$>n/2, -
V+B<2s+20—mn/2,
Y+B<2s—(n—1)/2, (v, &) EN,, .
o - Y+ B<2s+a— (n—1)/2, (w9, &) €N,
Zhon f (u, ++, uy) € (H®)%, N (H")E, (to; @0, T, Eo).
Proof TFirst of all, one can prove a result which is analogous with Lemma,
2.2. Then apply the argument similar to that of Theorem 2.4,
Theorem 2.12. Suppose f :08—0 or f: R¥—C is O~ Junction,
u € (H)2,® (H3,@, o) and u; € (H")S, (o, %0, 70, £o), J=1 2, «, N,
If : '
s—B>(n—1)/2, s—a>(n— 1)/2 s>n/2
r+B<2s+20—n/2,
r+B8<2s—(n—1)/2, (v, &) ¢ Char P,
r+B<2s+a— (n—1)/2, (v, &) €Char P,
Zhen
S Cuyy -y uy) € (H)3,® (H)%, (o, o0),
, I @y« ux) € (HN)E, (b, @0, 70, £o). ,
Proof One can prove several results which are respeclively analogous to
Uommutator Lemma 2.8, Proporsition 2. 10, Lemma 2.2, and then apply the
argument method in Theorem 2.4,

§8. Singularities Propagation of Solutions

Theorem 3.1. Suppose u€ Hj,(Q), s>ﬁ is a dlistriz}bution solution in QR

For Ou=f(u), where f is C~ 'w%th respect t0 w. Then u& (H*)2.® 2 @ (H ’) x4, @), V(t

1

o) €Q, and Va<s—2_—+1,
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1 we have

Prroof uE (H2.®H)?,E, o) = =H*(%, a;) If for a<<s——
. u€ (H’) @EHYEG, 0), G 2) €Q,

-we can prove for 0<a<s—= uG (H) 3@ (H) %23, )« _
Theorem 3. 2 | Suppose uEHm(Q), s>-— @s a d':,stmbutwn solution n QCR"

for Clu=7f(u), where f is C* for u, visa null—bwhafractemstw of [ passing through
(o, @0, To, E0). If w € Hr (t, @0, To, £0); and r<L3s—n+2, then u€ H ().

Proof By Hormander theorem on singulariby propaga,tlon, Theorem 3.1 and
“Pheorem 2.12, il is easy to prove this theorem.

It can be proved by using pseudodlfferentlal operators w115h nonsmooth
coefficients that roughly H¥™" propagation theorem of singularities for [lu= 1,
Du) is valid also. o
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