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ENUMERATION OF ROOTED VERTEX
NON-SEPARABLE PLANAR MAPS

LIU YA.NPEI ( ;nJ ,? {J.fl,) *

Abstract

In a rooted planar ma.p, the 1ooted vertex is Sa.ld to be non—separable 1f the verlox ‘om:
the boundary of the outer face as an indviced graph is not & cut-vertex. ' Vi
A In' thi§ paper, the author derives a functional equation- satisfied by. the ‘enumerating-
" Prinction 6f rooted vertex non-separable planar maps dependent on the edge number and the-
number of the edges on the outer face boundary, finds a pa.lametnc eXpleSSlOIl of its: .
‘solution, and obtains an explicit formula for the function. ' .

. Partlcula,lly, the number of rooted vertex non—-sepalable maps only replymg on the-
edge number and that of rooted: vertex non—sepalable tree-like maps defined in [4] acooldmg.' I
to the two mdlces the edge number and the number of the edges on theouter face boundar Y-

“or only one index, the edge numbe1, are also determined. SRR -

§1. I_ntroduction

General planar maps may be divided into two classes: rooted vertex geparahle-
maps and rooted vertex non-separable maps. Of course, their meanings are ]ust~
what the terms suggest. However, we should mention here that the rooted vertex_.
is separable or non—saparable accordmg as so is it on the boundary of. the outer"
face as an induced graph. e : ' '

As for general rooted ‘planar maps, the number H,,, of rooted [m, n] ~maps,
i. e., maps with m edges and the boundary of the outer face having n edges has:

been found in [4]

=min(m+1,n+2) i 2m—s—+1
H,,, D s {CHD + Tl , (1.1)
where o : "
(=1 (Us-1(n) +Us-a(n) + (—1)"Qy(n)), [n/2] +1<s<n+1;
T(n, §)— 1.2
R P T @2
for n>3,

T(0, 1)=2, T(0, 2) =4;
T(1, 1)=0, T(1, 2)=2, T (1, 3)=8;  (L.3)
T (2, 2)=2, T(2, 3)=—8, T (2, 4) =0,
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. (—2)4 I=[n/2]1—-1;
Ui(n) =1 Ui(n—1) + (— 1" ?Qi(n—2), [n/2] <I<n— 1 (1.4)
(—1)*2Q,(n—2), I=mn, ‘
for [n/2] —1<i<n, n=>3, '

U.®)--20s®=0,T:@ -8 @
and B B R e .
ri/21+1 X 21—4+-;-1 . s+1
; 1) 1 +1 2] <1 1;
Q(8) =) =72 25— (j—l, §—2j+2, i—l+2) y l'q,/ J< <Ib+1 B
‘r‘i/21+1( 1)’ 2 _7';\+1" I—i42 @-8)
= 2j—1\ j-1, j/ =&y
where
.. . : i =1, i 1‘
(my ng, *** m) ’"'1""'2 nn'(fn: g — "'—""’k)" b= 1"; R ( "

and, I_:v_l [o] represents the ma.xmmm, mmunum mteger not grea,ter, legs than @
respeetlvely
' "Let p(w, y), ol (a;, y) and ps(w y) be the enumeratmg funotlon of genera,l
rooted planar ma.ps rooted verbex non—separable and rooted verbex separable maps
with the edge number and the number of the edges on the boundary of the outer
face as indices respectively. It is easy to see thab
p(a, v) =1+p" (2, ) 9o, ¥), (1.8)
where the constant 1 means that the vertex map is distinet from .other .rooted
vertex non—sepa,ra.ble maps.. o _
Fur’ﬁhermore, it iy easily shown that ; T SR
p(z,-9) =1~ p”(w 20 e T (1.9)
from Whlch and, the functlonal equatlon of p(@, y) in [4], the funcblonal equation
sabisfied by ¥ (=, y) may be derived as follows

(y—1D)a(@) ) (@ (@, 9))*—((@y*+y— 1)a(w)—2wy)p”(w, Y)

+ay a(w)_‘ oy=0, . C R s +(1.10)
where, L ' L -
| a@) =1—p" (@, 1). S @)
For convenienoce, in what follows, we wrile. - ' N
¥ (@) =p* (@, 1). (112)

The main purpose of thls paper is to solve the functional ‘equation and find an
explicib expression of HY ,, the number of rooted verbex non—sepa,ra,ble planar
maps with m edges and the outer face boundary baving n edges, independent of
H,,, while HY the number of roo‘ued Vertex non-separable maps with m edges, is

determined, Consequently, thé corresponding - numbers of roo’oed vertex sepa.rable
planar maps may be obtained directly. ’ i
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§2. Parametrlc Expressmns

Since the diseriminant of 1. 10) is
Mo, y) = ((ay*+y— 1)a(w) —209)°~4((y—Da(a) - wy)(@@/m(@‘) —ay)
2 9 411)2 .
= (@(@))? [1-2y+(1— )y +(6w— @)y +(a _4m+‘al(m))¢], |
| 2.1y

and we Write
n(z) =0 —do+-=2_ ( ), L (2.2)
we have B
M3, 9) = (a(2))*(1—2y+ (1—20) g+ (w”+2w—n(w))?/"’+n(w)zf) (2.3)
However, the funotional equation (1.10) may be written ag :
(@y—Da@) —29)p" (3, y) — ((ap*+y— Da(a) —2ey))2=(a, . (2.4
If (@) is a power series of & such that the perfect square in (2.4) becomes zero-
when ¢=¢ (%), then ?\.(a;, y) has the perfect square factor (y= 5)2, ie, the following-
two equatlons are satlsﬁed sunultaneously

{h(w &)= 0, ‘

-‘% A, y) '.;:;: @5
According to the first one of (2.5), we have _
1-26+ (1—20)¢2+ (m“+2w—n(w))§3+n(w)§4 _ (2.6)
'The second one of (2.5) means that ' ' "
—242(1— 2w)§+3(a:2+2w—n(w))§2+4o7(m)§3 (2.7)
After rearrangement and reduction, the following forms may be obtamed
(1=€)* =282 (1~ ) o+ %7~ £3(1— £) (o) = (2.8
2(1=8)+2£ (2—88) w—8¢%2 4 £2(3— 4§)n(w) 0 2.9)
From (2.8) and (2.9), eliminating the terms with n(@), we have ,
(3-26) (1-€)*~28(1— ) 'a— g1t =0, (2.10).
The diseriminant of (2.10) is :
44 (1— 5)*+4(1—§)’§‘(3.-2§) =441-6*@-H%  (2.11),
Therefore
&= ——2?-(25’(1 £)2+262(1—¢) 2-9)
=_'£1_,,i>(3_~2§) or 1€ @19y

4 N
-Bince ¥ () =1—a(z) must bo a,power series of & with all the coeﬁieuents non - -
negative, the only choice of w ig the former i e,
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- 5) (3-26) - @.13)
In thls case, substituting (2 13) into (2. 8) we derive A |
(@) = (_1_§>Q_5§2 o (2.14)

On aoccount of (2. 2) and (1.11), we find the following parametric expressmns

a(m) 5(4_3@ . | (2.15)
() = — (L—=E) (9=TE) ‘ . '
Y (@) F-sm ‘(2-16)

§ 3. Selution of the Functional Equation

Subs’oltutmg (2 14), (2.15) and (2.16) into (2 3), we may obtain that
o =22 1 ] [t 2050 O=B =0 ] (5.

§(4—-3¢)*
Let us introduce a new substitution of the pa,rameters,
_1=¢ 1 ¥
= § , i, e, f-——t-_ﬁ-. (3.2)
Then, we have
Gt+1)* . . N, N2 a 41 (26+1) 92
AMa, y) = @+ @a (t+1)g) A-+ty) [1+_—(1+_tz/)”—,_]' | (8.3)

According o (1.10), the following parametric expression of p¥(x, y) may be
found

2((y=1Da(a) —ay)p” (2, y) = (2 +y—1)a(a) —2ay

%ﬂ—(tﬂm (1+8y) [1+4_ﬁ%z_y_]m. 6.0

In order to have h¥(x) =p” (s, 1) just be what we determined before, only the
positive sign is available,
Conidering the substitution (8.2), from (2.13) and (2.15), we have

o= —1(3+1), (3.5)
_Bt+1r e
= hii (3.6)

By substituting (8.5) and (8.6) in (3.4),
- 2((8t+1) (28+1)%— (Bt+1)2)pY (, y)
= —1(88+1) %2+ (3t +1) (8#2+ Bt + 1)y — (3¢+1)2

+ (1)L (+1)9) (1-+4y) [1+éf(—(l?jrity1)),i]l”. 3.7

Aftex; dividing both sides of (3.7) by —(3t+1)2 we may obtain
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2
2[1 My] ¥ (@, y)=t(3t_—i'1)g/2—_81i&_+l_y+1

3t+1 3t+1
~ Ty A1) T
— (= (+ D) (L) [1+ 2L I
Let us write '
t(2t+1) "
- A+iy)*

Then expanding the root form in ¢3.8) into Taylor series, we have

42+ 12 _ L S 1 2(26-2)1
[1+—<‘m>7‘]- R DT G D &

In addition, by binomial Theorem,
25+45—1\
vty 3 (=0 (T o
0 /. .
Thusg, it can be seen that

-3 L)+ 1) ( Hj 1)3/”‘*.’

'1;+y

=(2t+1) 2( 1) < '7 1> ti+iy2t+!.

From (3.10), (3.11) and (3 12), we have

S5(2641)g2 3 s 2 2@-2)(2%5-1)
|1+ EE=E ] ' 1+§:2< —DE («: 1 j

XA 28+1) gy
Let k=24-+j be substituted for j. Then _ ,
| L A2 D) P S - 12 26—-2\( k-1
14 22T Y — 1)
[ )’ ] E[E( ) ¢\ 6—1 J\k—2
x (28+1)'8] g

For convenience, let

2] 1 (2-2\/1-1 .
A () = —1)+ — 264+1)4,
=& (-1 K ( 4—1 )(z—%)( )
Substituting (3. 18) into (3.8), after rearranging it, we may find

[1 <2§:+11) ?/J 2 (a, y)=f_%l_l)_y+(t(2t+l)+A2(i))yz

+ (Ao(®) = A2 (D)W + 3 (Au(t) = Aua () —6(E+1) A s(6)) 0.

(8.8)

3.9

(8.10)

(8.11)

(8.12)

(3.13)

(3.14)

(3.15)

Multiplying both sides of (3.15) by the power geries expansion of

[1 (26+1)2

-1
341 ] , We may obtam

P (o ) = 3) S B [ZEED2]

where

| (3.16)
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—b(46+1) (36+1) 7,
0,
B.(3) —
Bi(®) £(2+1)2,
Ay (8) — Ayes (B) —3(341) Ay (3), >}
and 4;(t), 1>>2, are determined by (3.14).

I
PR

~

= oW
I

31D

I
RS

§ 4. The Determination of ¥ (x)
In this section, we calculate the power series of A¥(w) according %o its para-
metrio expression obtained before, From (3.5), (1.11) and (8.6), we have

Thus it can be seen thab
‘ 4 .x_ _ 2(181°+9¢+1) T 49y

dt - L (4t+1)2  ° o (4-2)
Moreover, the following derivatives may be found: = '

t"“l( 1™ (3t+1)""(4t+1) 2|i0=— 24’"‘1 Z Z_‘_Z}’)(m:_%) m!, (4.3)

( ok (3t+1)—Mt(4t+1)-2|t_0_24m—z(3>‘m_%__1_<mﬁ>m!; ('4_4}

: dt"’ it 4 m% i

59 [m+¢
—1)m(SE+1) "t (4 +1)F|so=— 4m—3< MG 2T L (4.5)
In consequence, we may easily oalculate that ‘

.in-j_ —1)™ —.m_d_.. N _ ,,.m-g m~,—3(3 ¢ m—‘q}~2 'm’+’1'
e (— "B+ 1) Y =3 [18. Sines () B02 m!

%
m=2 8 N\ign_ 5] +q,) Com=1l m—g fm,+l2,
- 4m 2<_> meoe = 1= m=1 !
024N T) Tmre < i )mERY (4) mEe\ m]
2, m=1; ’
= ~ 4.6)',
; { - 2m—3)| - m—g (Mo (
3m a ( m 2< . ! =2,
10- (m=2)] §>4 _ﬁm+'&< i >m m/z.,

By uswg Lagrange s series expansijon Theorem, the follovvmg is obtalned

hw(w)=2a;-;- g [10 3m—2% "‘;0 4m—z<4 Z+Z<m:%)]m ‘1<4'7)

The first few torms are o ‘ .
hY (0) =20+ 5a®+26a° +17 3m‘*+1310a; A+ (4.8)

§5. Rooted Vertex N on—'S'eparabl'e Tree-Like Maps )

In this section, we investigate the number of: combinatorially- disbinet ‘rooted
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vertex non—separable tree-like maps defined as in [4], i. e., such maps that would
‘be trees if all the multi-edges were considered as single ones,

Let us denote the enumerating function of rooted vertex non-separable tree-like
[m, 2n]-maps by 7% (s, y). Then, it is easily shown thab

T(w, ) =QA=T%(, ), o (B

where T'(z, ) is the eﬁumerating funetion of rooted tree-like [m, 2n]-maps, and
" notice that 7% (0, 0) =0, i.e., the vertex map is not considered. . ' ‘

From the functional equation of 7' (a, ) in [4], we may derive that T¥(w, y)
satisfies the following functional equation

(A—a) (T¥(2; ¥))*— (1=2)T" (&, y) +ay*=0. (6.2)
The discriminant of (5.2) is _ _
M@, ) = (1—2)*—4(1—-0)ay*= (1-2)? [1- 2L ] (5.3)

Thus, it can be obtained that

T (g, y) = E%—ﬂlwi@ —o)(1-32)"]

_ 1[4, dayy? 1/2
2 [1 * ( 1—o )
Bince T'¥(0, 0) =0, only the negative sign is avaﬂable. Therefore, we have

% (s, y)=—:2l-[1—'<1-— f_”_y:)m]. | (5.4)

Let #z= fyfzw . By expanding (1—42)*/2 into Taylor series about z=0, i, 6., z=

'Or y= 0,

2(2n—2)!  3.5)

(1—'4{’4)1/2=1 mzn

uMs

Henoe, (5.4) becomes

(n—1)In!
S Cn—2)1 [ a2 :
~ S5 1),m[ ~]". . (5.6)
On account of Taylor expansion or binomial Theorem, we may obtain
T, g)= 3 3 - Cn- DI m=D1_ oy, ®.7)

_ #=1 =t ((n—1) 1)2(m—mn) In!
Let t¥(v) "denote the enumerating function ‘of rooted vertex non—separable
plane trees with the edge number as an index; we have
#o)= 3 Z%‘m'i%v,'-_ am, (5.8)
whenever paying attention to that a rooted vertex non-geparable tree-like map is a
rooted vertex non-separable plane tree iff m=n, /
The first fow terms of ¢¥(x) are’
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() = = o+ 22+ 20°+Bat+ 1405+ - .9
In faot we always have the relation - ‘ '
¥ (@) =t (@), R (5 10)

where t(m) is the corresponding enumeratmg funetion of rooted plane trees. It is
eagy 1o find the 1-to-1 correspondenee between rooted vertex non-separable plane
trees with m edges and rooted plane trees with m—1 edges. In addition, since all
the non—separable vertices are with valenoy 1, the coefficients of 2™ m>1, in (5.8)
are also the number of the rooted plane trees of m edges whoge rooted vertices are
the ones with valency 1.

§ 6. Three Pa,rtic_ular Cases

In order to determine the expliéit expression of p¥ (w, Y), aocording to (3.16),
the only thing remaining we have to do is to expand the coefficients of y*, >0, into
power series of #. Let us write '

P 9)= Tl @)o", (6.1)
‘where
o (@) = 2 By (%) [(?g;f:l); 17 (6.2)

. In the following, we apply Lagrange’s Theorem 1o find the éxpansions term by

form for £<<3. '
k=1. In this case, 1=0, i. e.,

pi (@) =By(8) = —t(4+1) Bt+1)~%,

Since _
d 12424 8¢+1
Ti_t—.Bl(t)a—W’ S (6.3)
dm-t m $ m+1 st1 (2m—8)! am—g-1. .
P ( 1) (Bt+1)"2 |¢ = 3 s! ( 1) T’I;Ia—l—_l)‘— 3 (64)
for s=>0, and ‘
gtm—l( D™(Bt+1)—™ _d_B1(t) |tzo=2+3""1m g(%@?i:f_))l'- . " (6.:8)
we obtain '
N — N9, om=1 (2"”’ 2)! - g™,
pi(2) = 3123 =D 1 (m DT o (6.6)

k=2, From (6.2), and (38.17),
o¥ (0) = B: (8) (26+1)2 . 168*+208%-+ 88>+ ¢

B+1 @Ge+1)* °
Since v A ; b
dit 98 (@) = — (96#-+124¢°+6082-+ 134 -+1) (36-+1)=™D,  (6.7)
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dm—i m m . m—1 m dm—a—i _
mmff(—l) (8t+1) (+8)tslt=0=< s )8!(—1) mm@ﬁ‘n (m+3)|t=p
0, m<s+1, s=0;

- o - (6.8)
{ _1)s+1 m—1 m—s—1 (2'”7' 8+1)' . ( -
( 1)‘ s'( ; 3 T m=>s+1, §=0, :

and after reduction,

dm—:l

.‘W(—l)'"(st+1)*"'dit 22 (@) | 120

1, m=1 ,
={4-3”"3(7m+4)m(m—1) %n—i%))'l’ m=2, (6.9)

we have

¥ () — ot S 40500 _Cm-3)1
3 (o) ,m+"‘§24 33 (Tm—+4) CEOL (m+1)! | (6..10)
k=3. Based on (6.2) and (8.17),
oy o2 (28+1)272
3 (@) —l=20 Bi1(2) [—31;1—]

- — { —1 M
t(43+1) (3t+1) GiT 1) |
Let us write v b

_ @+ a
d,(t) = —t(4t+1) (_375—!——1)_3_’ Ap(8) =t (2t+1)2, 6.11)
In what follows, we expand 4,(%), 4z (%) into power series of # by using Lagrange ]

+1(2+1)2,

Theorem respectively.
Because of

-dit- A4 () = — (BT61°+ 124845+ 11044*+ 5123+ 13242+ 185+1) (88+1)~* (6.12)

and

gtm_l BBt+1)~mHO [, (— 1) m—s—isy< ] ) 3m—s—1%f§"%22'_,‘ (6.13)

for any s=>0, we find

%(—1)’"(3t+1) ""ditAA(t) It;o=576-3m—761 <m;1>£m—3‘%l
—1248.3705] (m;1>(?"’ﬁr;33)>f+1104;413m—5 < "’:1 >%@”’:—32>)!'
—512. 3|3m-4(m3 1)%’”%;7)'_“32 2v3m—3‘<m >(w(z_2i27'!.
. ety

~16.3"" m(m—1)%n+T4)>!- (9(@2m—1) (2m—3) (5m?—24m-+28)

—4(m—2) (m—3) (45m?—83m+32))



No. 4 . Liu, Y. P. ENUMEXATION OF ROOTED VERTEX PLANAR MAPS 399

=16-3"*m (m—1) (m2 4) (8m +3) <_<2m_+?%>_l.'_, m=>2, = 6.14)
and it is easily seen thab the derivative is 1 when m=1,
On the other hand'

dtm_i< n" <3t+1)-"‘ - As(8) oo |
= —12:373(m—1) (m— 2><—2”1—i*)—‘+8-3m—2< & Gn-9l _gn1(@m=2)!

. -1 (m=D1 (m—1)1
—2.8m-2 %__24))_'!, m>3, 6.15)

and —1, when m=1.
In conclusion, aecording to (6.14) and (6. 15), we obtain

P (@) = dt”“l ( 1) Gt+1)™ i (AA ) + A:@)) | t=o—!'

= 1,:,22 2.3"*(73m?— 6_8m —21) ; (m—g;;bl (:1,)—! 1 o™, (6.16)

§ 7. The General Formula of p¥ (x, %)

" From (8.16) and that obtalned in the last section, for determining the genera.l
formula of p” (@, y), it is only necessary to expand

B, = S Ba@ [EEDT .0

into power series of », for n>4 In this case, we may write ,
Hy(§) =Hy(b; ) +Hu(k; ©) +Hu(k; 9, (7.2)
where

ms 0 -mo [ S

{Hu(k; ) =Bo() [ ST @9

= (28+1)27F1
CHm (B 1) = % By (2) [_:9’754-—1] )

In order to find the expansions of Hy(k; 1), Hu(k; t) and H m(F; £) as power
geries of @, the following functions :

o(s, 156) =@3—1T)— §=0, r>0 (7.4)

have o be considered first because all of Hy(k; ), Hu(k; ) and Hi (k t) may be
represented as linear forms of them,
Since

th-q:(s, T )= W@(s r)t+s) (7.5)

and
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d",:.__l Gt+1) ™ —— o, 75 %) |1-0
=(- 1)m-33m_8m(s+q-) ((m ]3 : (2m(—,l,-n”:'_—,rs)_ll)! 1 (7.6)

for m>s; naﬁura,lly, 0 when m<s, we have (
2m+'r—s.—1>wm.

LCEDEICHD Ll

proprapn (7.7

m—s

From now on, we find the expansions of H; (&; 1), Hn(lo t) and Hy;(k; $)
separately by using (7.7).
For Hy(k; t), (8.17) and (7.3) mean that
H;(k; %) = —1 (46+1) (26+1)2%D(344-1) ~* ;
- 2% — -1\
=[—2t2 2%()”21‘( kj ) 2"2121( 2%- 1) t’](3t+1)"‘. (7.8)
= j
Afber rearrangement and reduction, '
2k—2
Hy(h; )= —p(1, k 1) — zzf-iﬂ”jifl—z(j J)eGEn. a9
By using (7.7), we may obtain .

{

Hi(k; 3) =0+ 3 Hh,uam, C (a0
where -
1 _ami kh+1 [2m+E—2
Honp=3 m+la< m—1
e 2k)( 1),_125_13"‘_3 2k+j—2 k44 (2h— 2)>< 2m+k—j—1)',
i= Jj=1  mtj\ j—2 m—j
| (7.11)

for m>1, k>4, | |
To calculate Hy (%; 9, from (8.17) and (7.3), we have

Hu(k; ) —s(@s+1)2[ D)

3i+1
2%—4 2k —4
= 2,2’( )¢(j+1, h—3; ). (7.12)
"= ’ B

On account of (7.7), the following form may be found:
' Hyuy(k; £) = ZH,,,,,,m ) (7.13)

where

min(m,2k—3) k+7—38 [26—4\[ 2b+b—j—4 .
HY, — §Qi-1gm—j J— . ‘ :
2T g (DT 3( j—1 w—j ) (714
for any m=>1, k>4, ‘
Finally, we detrmine Hyy; (k; t), which is the most complioated case among the

three According fo (8. 17) and (7.8),
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21 k—1-1
.mﬂkﬂ—Z(mu—W+@m4ﬂm[%%%ﬁu .
For convenience, let us write

‘ k-1 9 2%—i-1

Wol; 1) = 33 Aisa [%1—11)—] ;

) T—i~1
ol ) - S 4[ BV
Dy SV 2e+1)27 . _
W(s)(kr t) = l=23t Al-i[WJ’ 8—1, 2. ‘
Then, (7.15) becomes

H(b; 8) =Po(k; &) — g"w) (& ) =Py (B; 8) — P (b; 1)

- (7.15)

(7.16)

(7.17)

As above, expressing To(h; 1), Ty (b ) T (k; t) and ¥y (k; t) as linear

forms of p(s, ; ) and then employing (7.7), we may derive the following

Wo(k; 8) = Z’Fm.kw )

m=2

where
min(%~-1,2m-1),

wom,k;‘ 2 Wo(m; 7‘;; l), .

L(@+1)/2]
Wo(m,‘ k; l) = 2 F(l+17 '5)6‘0({)?:, ]G; l, ’l.’)r

i=max(1,l+1-m)
min(m,2k—1—1)

Go(m, IG; l, ?/) = 2 (_1){25+i—z-13,,,,7j

J=1—i+1

e 1<2k+q}~2t—2)<2m+k—’j—z—2>

11 j+i—1—1 m—j

W«»U"‘ t) Ew(o

where
min(k—1,2m)

w(o?k = % W(O) (my k; l) )

w2l
Doy (m, k; D)= S F(Q, 9)Goy(m, k; 1, %),

{=max(1,l—m)
min(m,2k—1—2)

Goy(m, k; 1, 6) = jzi (—1)#2ii-igm—i

m~+k—l—1

« jtk—1— 1(2]0—!—'1; 21— 2)(2m+k j—1—2

g+o—1 m—j

And, for s=1, 2,
Tl ) = 3} Tia™,
m=s+

where
. min(k—1,2(m—s)+1) .
w‘irﬁk: : 1223 w(s)('mr k; lf)r
L1/24
W(\’)(m) k z) = 2 F(Z_]'! é’)G(S) (my k; lr i)r

‘¢=max(1,i+g—m—1)

(7.18)

(7.19)

(7}-20)

- (7.21)

(7.22)

(7.98)

(7.24)

. (7.26)
(7.26)

(7.27)

(7.28)
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min(m,2k+s—1—3)

Gl B 1, §)= (~pymreirignd

J=l+s—i-1 .
jrk—1—1 < 2+5—20—2 >(2m+7o—1—j—2> |
xS0 : . (7.29
m+k—1—1\ j+¢—T—s+1 m—j ) ¢ _ )
In all of (7.20), (7.24) and (7.28), there is !
N 1 2@—2)(1—1) . -
F(, 6)=(=1)+ = ) 7.30
@ o=C0m () 7.30)
In brief, from those obfained above, we havei
Hu(k; ) = 3 Hifka", | (7.31)
where - | : _
B =Ts—Y = V5h— T : (7.32)

Noticing that no planar maps have m< [k/2], of course, which may be examined
directly or indirectly, we are allowed only to consider m>[k/2]. In this case, we
have ‘ ‘

H@ )= 3 Hiwom,
) m=[k/2]
where '
B o=Hpp+Hop+ HiL, m=>[k/2],
in which the three terms are determined by (7.11), (7.14) and (7.32) respeoti-
vely. : '

§8. An Example

Using the g'eneral formula of p¥ (&, y) obtained in § 7, we caleulate H (4; t) as
an example, : '

In order to find the first '7 terms of Hyy (4, #), we obtain the following table by
(7.19—30). | | |

m 2 3 4 5 6 7
W3, 4 1 5 34 273 2394 22194
TR, - 2 8 54 432 3780 34992
L5 -1 -4 —27 —216 —1890  —17496
(A 0 1 7 BT 504 4698

Thus, it can be seen that |
=T =D, —UP, -T2, =0, m<T, 8.1)
In fagt, from (7.3) and (3.17), we have :
Hy(48) =A— (P+1) Ay— As
' = =8 (2+1) + A (@+1)2+ (B +4) (26+1)i—2(+1)$2=0,  (8.2)
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Henee, in this ca.se; ' ‘ »
| H (4 ) = Hi(4 6)+ Ha(4 9). 8.3)
According to (7.11) and (7.14), after rearrangement and reduction, we finally
find

H(4; ) =o*+ 238-3m~7(856m4+3456m3+695m2—5o4om—936)

X

(2m—5) | o
D BT " . (8.4
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