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Abstract

. This paper considers invel_‘sé systems of affine groub schemes. The author eétablishes

. the existence of the limit of such a system and proves some properties. of ‘the limit—some
. about its structure and some about its representations -and cohomologies. In pafticulai‘,‘a
new explanation of generic cohomology is obtained: Let G be the inverse limit of the fol-

lowing inverse system

F _F
G —G<—G<—-

where F' is a Frobenius morphism of a linear algebraic group G. Then the generic cohomo-
logy of @ (with respect to F') with coefficients in a rational G-module V is simply the
rational cohomology of G with coefficients in V.

In [B] we proved that the generic cohomology is the cohomology in the )
category of so—called quasi-rational modules. Later 8. Donkin ™ pointed out thab
the category of quasi-rational modules for a linear algebraic group is just the
category of rational modules for another affine group scheme. We reconstructed
this affine group scheme as an inverse limit and we found that the procedure of
constructmg the affine group scheme may be generalized. The present paper is a
generahzatlon We consider an inverse system of affine group schemes. We construct
its inverse limit and prove some properties of the limit-some about its structure
and some about its representations and cohomologies. We reobtain some known
concspts and results (with a little generalization) as a special case of our main

_results.

This paper consists of 3 sections. In Section 1 we establish the existence of
inverse limits and prove some structure properties of the limits. Section 2 ig
devoted to a discussion on the representation and cohomology properties of the
limits. In Section 3 we give some remarks on generic cohomology.

§1. Inverse Limits of Affine Group Schemes

In this section K is a fixed commutative ring‘ (with 1) and all affine group
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schemes we consider are over K. The category of affine g_roup- schemes over K s
denoted by 7. : :
Let S be a directed set, i.e. a partially ordered set mth the property bha,t for
each pair r, s in § there exists 1ES such that r<¢ and s<¢. An inverse systen.
over .=/ indexed by S consists of an affine group scheme G’ for eduoh reS and a
morphism p’*: G—>@° for each pair s<rin §, subject to the followmg conditions:

i) @ is the identity morphism of @ for each r€S; and

ii) p=pou’ whenever t<<s<rin §. ' '

A morphism of inverse system (@, u™) to inverse system (H', o) is a family
(¢"), where qf :@—>H"is a morphism for each €S and p™og"=gou whenever”
s< r in §. Thus, inverse systems over .o/ indexed by 8 and morphisms between.'
them form a category which will be denoted by .27%. ' . ‘

As an example of such inverse systems, we can fix an affine group scheme G, \
and then let G" =@ for each r €S and let u*: G">G* be the identity morphism of
@ for each pair s<r in §. The inverse system we obtain in this Way is called the
constant system associated with G and will be denoted by const(@). Obvlouslyr
const is a funotor from .7 to 7%,

Tt is known that the right adjoint fanctor of const (if it does exist) is the
inverse limit funetor ].1m f>of. For a system (G, p™) in /%, the inverse limit

'G‘—hm @ with the a.dJunotlon w' G—>G may be characterized by the followmg

unlversal property: Suppose we are given an affine group scheme H and a morphism
¢: H—>G" for each r €S subject to ucf" =6 whenever s<r in §, then there exists
a unlque morphism §: H—>@ such that uof=0",

" First we establish the existence of the functor 113

Proposition 1.1. - Let (G, u™) be.an énwerse sysiem over ¢ indeved by S.. Then.
the inverse lq}mitli(EG” ewists. - : SR Ty

Proof The dual category of .o/ is' the category of commutative K—-Hopf alge-
bras, so’ we, only need to prove that a direet systom of -commutative’ K—Hopf
algebras has a direot limib. It is well-known that a direct system of commuibative:
K-algebras has a direct limit, and it is easy o define a comultlphoatlon a counm.
and an antipode o make the. 1m11t a K—-Hopf a,lgebra, Tt is also easy to prove thls.
K —Hopf algebra to be the direot limit of the direot system in the category of
oommutamve K-Hopf algebras The deta,lls are 1ef1; to the readers. .

For a morphlsm (¢') (G’ ”)—>(H" '3) we can obtaln a IllOI'phlSm llm ¢'= )

hm G"’—>hm H as follows: first we .use the ad]uncmon 7585 ]Jm G’——) @ to obta.m a
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universal property of lun H' %0 obtain a morphlsm hm s hm G"—)hm Hr, It i
-easy to verify that we ha,ve made 11m & func’nor from .,ca{s 170 M '

” Next we let (G”, ,u,”’) be as before and A -K [G"], the affine algebra of Q. Let
also Msr be the comorphlsm of ,u,"" Then (4,, sr) 18 a direct system of oommutablve”
K—Hopf algebras indexed by §. If A— 11m A4, and G= ~lim @, then A K[@].

‘Therefore, 1f we wanb to know the srtucture of Q, we have to mvestlgate ‘the K-
algebra homomorphisms of 4 to any commutative K- —algebra Beeause A is alse the
direct limib of direct system (4,, ) in the eategory of commntative K. ~algebras
the K-algebra. homomorphmms of 4 to a eommntatlve K-algebra R are in one-one
correspondence with the families (z,), where ,:A,—>R is a K —algebra homomor-.
rphism with #,0 ,u,;,.=a;s for s<¢ in §. It follows that the elements of G'(R) are in
one-one correspondence with the families (@), where z,€G"(R) and W' (@) =,
whenever s<r. Thus, we ha,ve proved the following proposition. .

Propos1t10n 1.2.. Let (@', p™) be an snverse system over o indewed by S. Then
2ve have

(hm an (B) =lim (G"(R))

Jor any commuiative K-algebra R. : ' =
' Now the adjunction’ w’: lun G"—>@* and the morphlsm 11m " hm G’—)hm ar

where (¢7): (G, u™*)—>(H", p") is a morphism-in 7%, have ~eoneréte forms; W is
simply the projection to the s-coordinate, and (li‘i @' is simply the application of p"
#0 the r-coordinate for each r€f§. _ . :

Next wo shall prove that lim also commutes with ker; The precise statement ig
as follows, :

Theorem 1.8. " Let (p): (@', ') —(H ", ") ‘be-a' morphism -in /5. Let "=
7| xerpr. Then (kerp', %™y is also an jmwerse system over <7 sndewed by S, and

3 ™ ~ 14 '
ker (im ¢") = lim (ker. ¢").

- Proof Let @ =ker 9" and »": @—>G" be the canonical embedding. Obviously
(") is a morphism of (@, »*) o (G", w*). Being a right adJomt h.m ! preserves
kernels So it is enough to prove that ") is the kernel of (<p') in Ja{" On the one
‘hand, we have (p") o o(p") = - (@"o»") =0. On the other hand, if we are given a morphlsm
@n: (P, &> (@, p,”) with. (7)o (") = (gv ot[:') =0, then for each r &S there
©Xishs a unique morphism {": Pr—>Qr such that Yr=pol’, for »" is the kernel of ¢
in o7, We want o show ({') is a ]IlOl']_)hlS]Il of (P’ 5’3) to (Q’ ”*), i. e. Zsof” =u""
whenever s<r in 8, In fact :

P! ocsof”’ lIJ’OS"= "°¢Ir ncp oC'-—p og["oC"
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Since »* is a monomorphism, we deduce isoffs—n'“oﬁ ag- requu-ed Therefore (Z’)
ig a morphism of (P7, ) o (Q, »*) with (lp') @) o (L"), and: “$he umqueness of
~such morphism follows from the umqueness of Z’ for each T Hence (v’) is the
kernel of (¢p") in J/" ‘ ‘

‘v

§2. Representatlons and Cohomologles
- ' of an Inverse L1m1t ' '

In thig section we assume for eonvenience that K is a field, We consuder an
inverse system (@, .u™) over o7 indexed by S again. We' shall seek son:te relatlons
‘between cohomologies of G and those of the limit G= lun G-, ' :

Lemma21. LetV bea finite dwmensrz,onal rational G—module Tken thefre emsts.

~an index r €S such that V has a mtfz,cmal G —module sta'ucture fwhwh goes baok to the‘

omg'mal G—module strilcturé i the adyunctwon W G—Gr. |

Proof Let A=K [@], which is the direet limif of A K [G’], as mentloned_‘

‘before. Lot 4y: V—>V®A be the A-eomodule s’ﬁruobure map assomated with the
given G—module struobure on'V. Ohoose a K —basus of V say fui, ’Ug, 2ty Om and 19'1;

AV (”1) 2 ”t@“mv wwe-A Lo

for g= 1 12, +++; m. Since {wi,} is a finite subset of A, we ocan find an mdex s and’
by € Ay for 4, j=1, 2, «-, n such that w,(by) =ay, W’ bemg the com01ph1sm of e
Let B be the Hopf subalgebra of A, generated by these by, Then B is finitely
generated as a K- —algebra, (see, for éxample; [1; Lemma 3. 4 51), so it'is a noether=
ian ring. Let I =ker.u, and J=BNI. Being an ideal of & noetherian ring, J is
finitely generated, so we can find an index r>s such thab i (J) =0, wy being the
comorphism:of u'. Now w: -A,—>A maps B’ =uy(B) 1somorph10a11y onto a Hopf
subalgebra A’ of A, Since A’ contains all of the ay, ¥V isan A’'~oomodulé ‘thus also’
a B’-comodule provided we let

Ay (v;) = 2%@#«“(6&)

But B'isa Hopf subalgebra of A,, therefore V' becomes an A,—oomodule under ’ohls

definition. Hence ¥ becomes a rabional @'-module, which 0bv1ously goes back o

the original G-module via u'. '
Now we consider the followmg situation: we are given a rational G"—module

M, for eaeh re8 and a G"—homomorphlsm Ty: M—M, for each pan: s<r'in &,

- where M, is considered as-a G'-module via u': G*—G*, sub]ect 173 '

i) @, is the identity ‘homomorphism of M,y v and

ii) 7 =707, Whenever i<s<r-in-§. . C
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Obviously, if we define a G—module structure on ‘each M, via the adjunct'ion '
G—>G;, ‘then (M, ,.: %y) becomes a direct system of rational G=-modules indexed by S,
Such a system will be Qailed a direct system of rational G"-modules. We can form
the direot limit of the system as a sysem of rabional G-modules: M =h(£ M, and we.

- have a canonical G-homomorphism =,: M,—>M.

Lemma R.2.: Let (M,, vy) be a dq?reot'sy‘stem of ratsonal G'—modules, and V &
Jinite dimensional ratyonal G—module. Then any G-homomorphism @: V—>M Sactors:
through v, for some r €S. More precisely, there ewists an‘é}ndem rES such tha _

i)} -V can be given a G™—module siructure as in (2.1); and R e

ii) there ewisis a G’—komo'mqrphq}sm e VoM, with P=TpoQ,, . : .

Proof Obviously there exists an index s€8 such tha oV o, (M) and V-
has a G*-module structure as in (2.1). We .choose a finite dimensional - G*~-
subquule/U of M, ﬁueh that o (V) C2,(U). If neéessa;ry we change a bigger index
for's and can assume that LA mabs U .J‘nje.otively into M, _Now, as in the proof of”
(2.1), we can find a Hopf subalgebra B of A, which is ﬁﬁitely -generated as a K-
a,ig_ebija vsﬁeh‘tha.t the A,~comodule structures of V and U are realized in B. Then.
there exists an index r>s in § such that the ideal BN qu s Of B is kjl_led by Hhisrsy..
s and ,u,s,bemg the comorphisms of u® and u’, respectively. Now B’'= ;Ls, @B is a.
Hopf subalgebra of 4 and it may be regarded ‘as a Hopf subalgebra of 4, and V"
and U’ ’——.—p,s,. (U) may be regarded as B'—comodules, Since @ is a G-homomorphisms:
sending ¥V into y, (U)' =u, (U, itisa B'~comodule homomorphism sehding ¥ into-

. y,,.(U’) . But U’ and w,(U’) are isomorphio as B'—comodules, 50 we can define a B~
cdmodulq ‘homomorphism ¢, sending V" into U’ with p=1,o0,. Obviously @, can be:
reéarde‘d: as an A4,~comodule homomorphism sending V. info M,, 5o we have-done.

Plﬁ@ﬁosition 23. II;et (I, T) be a direct system ‘of G'-modules with I, &'
rat@oﬁqlly;q)pject%e G'—'-moogul_e Sfor each v €8. Then I =£:'LE{ I.isa f)"ationdlly injective:
G-module. N '

Proof It is enough to show that for any injective G-homomorphism @: M—>N"
Wit.h N rﬁnite‘djmensiopal _and ah_y G’_Thomomorphism G: M—)I . there -exists.a G’—
homomorphlsm a: N —>I suoh that 0:5 §o¢,_ Ths}qfkswto (2.1) ‘and ”('2.2), there -exists%)
an index r €8 such that . ,

. . 1) M and N have G'™-module structures as in..(?-"l')f;_, :

o @ homomorphion;

i) 0 factors a5 O—,ey with §: M>I, 3 @'-homomorphism, . :

Since I, is a ratllovrvxa,lhly injept;vegne'-—jnaodule,.,_we. have?a,-G{ﬁ~homomorphism J,:‘:
N1, such that gy~ Jiop. Now let §=r,0f,. Then . ., . . . .. . o
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‘ §°¢=7r°$r°¢’=7r°l!’r=0’
as required. - :

Next we state the main theorem.

Theorem 2.4.  Let (M,, =) be a direct system of -G'—modules and V -a finite
dimensional G-module. We choose an indew- roC S such that V has a Qr=module
structure as in (2.1), and define a GQr—module structure on V via '™ for each r=1¢ in
8. Then, for r, s€ES with fro<s<fr and any nGZ v tnduces a canongeal homomor-
g)hfi;sm TR

Ext* () » Bxtihs(V, M) —>Exté(V, M,). .
lese homomorphisms make (Bxit (V, M), Exi®(vy)) @ direct system of K-linear
spaces wndewed by {r €8|r=ro}, and there ewisis a canondeal and natural ssomorphism
lim ExtGr V; M,) =Exty (V, M).

e
Proof We first prove the theorem for n=0, The existence of
Hom (74) : Homgs v, M) —>Homg, (V, M,)
is a trivial fact and obviously these homomorphlsms make (Homar (V M, ,’
Hem (q;s,)) a direct system. We can deﬁne a canonical and natural homomorphlsm
0: hm Homgr(V M,) —->Homg (V M)

Tore : L
by sending each representative a € Homar v, M) to TpO0%, The sur;eetlvlty of 0 is,
in faet, the. eoneluS1on of (2.2). To prove the injectivity we assume that there is a
G'-homomorphism a: V—>M for some =1 with v0a=0, i. e. 7,(a«(V))=0. Since
a (V) is finite dJmensmnal there exists an index s>fr ‘such that 7, (@(¥)) =0, i. e.
7,,06=0, It means that « is 0 as an element of lim E[omgr WV, M,), which proves the

T>7o
oo .

’sheorem for n-—d
Next we choose a ratlona,lly 1n3ect1ve G“—resolutlon of M, for eaoh s>fro
. 0(=>My)—>I0>Ii>I—>
Thls resolutlon may be regarded as an acyelic eomplex of G”—modules for ea,ch ¢>s.
via u', Therefore we have a eomplex map extendmg ‘the G*~homomorphism 'rs, '

0 (——)M ) —>1' °——-)I1——>I A

(*) Lol . ' o ' o Tor . |Tar. l’d’r l’”sr
0> M) > Ty T s T2—>s

We apply funotor HOID.Gr(V —) to the resolution of M s for each r o get the
followmg dlagra.m for each pair s<r: L v -
0—>Hom@. (V I“)——)Homgs W, IY) ——>ee
Hom (79, lHom (73)
" Q——>Homge (¥, 1) —>Homgr (7, I})——>1se

By ta.kmg cohomology, we obtain’'a homomorphism' - e
Ext® (ve): Extls (V M ,) SExt-(V, M.
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Thanks to the general theery of. homological algebra, the homomorphisms ws
get in this way are independent of the choic> of the resolutions and the :choice of
- the complex maps, so ‘they are canonical, and it is easy. o see thab ‘they are: a]so.
natural. It ig clear also that the conditions for direct systems are satisfied by those
homomeorphisms. Therefore (Exti. (V, M,), Ext*(z,)) becomes a direct. system of "
K-linear spaces for each n & Z*, B O SRV SRR :

We. ga back to diagram (*) again, We ocan construet a.: speela.l mJectlve:.
resolution for each M, so that (I%, ¢7,) is a direoh system of G'—modules for .each
nCZ*, If §=N, the natural ‘numbers, thig is easy. In general, thls also can be:
done. For example, we can take the standard resolution . :

oy n+1 copies

r®K [G':l ®"'®K [G(r]’

e n+1 factors

_'Vsr®lllsr® ®F”sry i ) .
Losr bemg the comorph]sm of W', Now we arrive ab a dlrect system oi resolutions:
whose hmrt by the faot that ].un preserves exactness and @. 3) is, a rahonally

and

mJectlve resolutlon of M, By applymg functor Homg:, (V =) to the resoluhon of”
M, we obtain a direct system of complexes whose limit, by the theorem for n=0 we-
have proved, is the complex -obtained by applying functor Homg(V : —) ‘fo the-
limit resolution. Finally, by repeatedly usmg the faot that lirn_> preserves exaotness,

we obtam the requlred oanomcal and natural 1somerph1sm ‘ i
lim Ex’ogr (V M r) Ext" (V M )
: Gorollary 25. Let (M,, 7, bea dwect system of Q"—modules. Tlum for any s<r fm
S and any n E Z ) Tor lmduces a@ canongeal homomorphq,sm B
- e ('vsr) H"(G%, M,)—>H" @, u,).
These homomorphisms make (H’ ”(G' M,), H*(zy)) a direct sysiem of K-limear spaces:
mdewed by S cmd there ex@sts a canonfwal and natural fbsomorplz'z,sm
‘ ) hmH"(G’ ,)NH”(G M)
Proof Let V' =K, the one—dlmenslonal trivial module in (2.4). Note that K
may be rega,rded as a G”" module f‘or each r €S, so the: eondrtron rr>fro is unneces--

\'-,5

AR

B R S A A S

sa1 v, ,
Reocall that for a morphism of affine group:s‘ehgﬁdes @ H-G we can define “an.
induetion funetor ind, frofﬁ":izlie' ca‘teg‘ery of rational H-modules to that of rational
‘G—modules. This functor is.the right adjoint of the funotor res, which is simply
viewing a rational G-module as a rational H-module via @. Funcior ind,. is left-
exaol. We are also interested in its right derived funetors R* ind,. |
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. Recall also that ind,V = (V®K [¢])# and, more generally,
s ~+ Rrind V=H"(H, V@K[G’]), nEZ*‘ ‘
Usmg this faob and noting that:
_lim UV (hm U)® (hm Vr)

for two direot systems of K -linear spaces mdexed by S we deduce mmedlately ’ahe
following result. :

Corollary 2 6. Let (H?, p™) and (G" ') be two tnverse systems over of indewed
by 8 and (p"): (H', p™)—>(G", u") b2 @ morphism. If we have a direct system of H'—
modules-(My, ), then for any s<r én 8 and any nE& 2*, vy tnduces @ canonical and:
natural G-hormomorphwm SR

R*ind (v,): R"ind,s Ms—>R‘1ndq,r M,.
These homomorphisms mahe (R"ind,r M,, R*ind(zy)) o direcs system of ratgonal G'-
modules, and there emsts a canomcal and natural G—q,somorphqsm
: lJm R md,,,f M,_R" 1nd M,

'wlwo”e (p hm ¢" and M= hm M,

ooof Use (2.5) to the direot system of H'—modules (M.QK[G'], 'v's,®;u,s,),
e being the comorphism of w', and note that the procedure of takmg limit is
compatible with the actions of G".

_If we replace the direct system (M,, 7y) by a finite dimensional rational G-
module (or a finite dimensional rational H-module, in (2.6)) M in (2.4)—(2.6),
we can deduce the following results. The proofs of these results are almosi the
same: using (2.1) we regard M as a direct system of G* (or H")-modules indexed
by a subset of 8, say So={r ES|r=>ro} for an index ro€S, then we apply (2.4),
or (2.5), or (2.6) with § replaced by So. . ' "

Corollary 2.9. Lot V and M be finite dimensjonal G-modules. We choose an
indes 1o €S such that V and M have rational G"—module stfructwres as im (2 1), and ‘
define G* module structures on V' and M fvw wre forr any 1=, Then there ‘ewists ‘a
sanonical and natural isomorphism Co '

lim Exti. (V, M) éExtz W, 'M) i

—>
)

Corollary 2.8. Let M be a finite dimesional G—module We choose an index o€ -
S such that M has a rational Gr—module structure as ¢n (2.1), and define a G'-module
structure on” M-via '™ fOfI‘ zmy fr>'ro Then there emsis a canomcwl and natural
%SOmOfrlph’bsm
lim H”(G", M)=H"(@, M).
: 1‘>To :

Corollary 2.9. Let (p"): (H' o) —> (@, p) be as in (2.6), and M be a ﬁr:;fi;"o :
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dimensional rational .H-module. We choose an index ro €S suclz, that M has an rational
H"—module structure as in (2.1), and de ﬁne an H'-module structure on M 'vw p"° for
any r=>10. Then there eaists a canongeal and natwral ésomorphism

lim B"ind, M=R"ind, M.

—>
=1y

§3 Some Remarks on Generlc Cohomology

In this section K isan a,lgebraleally closed ﬁeld of characteristic p>0 and @ ig
a linear algebraic group over K. Let F: G—G be a fixed Frobenius endomorphism
of G. Then we can construct an inverse system mdexed by the natural numbers N

G°<—— G1<—G2 & G‘”’«—G‘-" e
with G’ G‘ and wHhi=F for q,EINI This system differs from const (G) deﬁned in

Section 1, for the morphisms 1nvolved here are not 1dent1’ﬁles Lot G=1lim at,
<

Theorem 8.1, Let V be a rational G—module I f we fragaq"d V as a rational G‘—module
va the adjunction 10 G—GO= @, then there exists a canonieal and natiral @somorphz-sm
, |  Hezen (G, V) NH"(G‘ V), S
Jor any ne Z* S :
Proof Obviously the G‘—module structure given via u' is just V&, the i~th
Frobenius twist of ¥, Theretore (2: 5) gives a canonical and natural womorphlsm
' H"(G V) hmH"(G-i V) '

=lim H*(G, V)

en(G V),
by the definition of generlc cohomology :

In [6] we defined generic. cohomo]ogy as the cohomology of the oa.tegory of
quam—ratlonal G—modules The quasi-rafional G-modules are just rational G——
modules, In fach, (2.1) tells us that any finite dimensional rational G-module is a

rational @~module for large 6. This means that any finite dimensional rational
G-module is a G—module which need not be rational but can be changed into a
rational G-module by a power of 7, and thus’ any rational G-module is a direct
limi$ of such finite: dimensional G-modules, This is just the defining conditions of
quasi-rational G—modules From this we see that (3 1) is a version of [5, Th. 3.1];

It is easy o oconstruct. K- [G1 directly, Let A4, be.the set of. K ~valued functions
defined on G. Then 4, is a commutative K. ~Hopf algebra in the usual way, and
there is a Frobenius endomorphlsm F# deﬁned on it: .+

F#(f) (a;) —f(F(a;)), for a,lleAo, wEG
Now let : :



No. 4 Wang, J. P. INVERSE LIMITS OF AFFINE GROUP SCHEMES 427

A={f EA| (F*)'(f) €K [Q] for some 5 EN}, :
Then A is a Hopf subalgebra of 4,, so it defines an affine group scheme, Whlch is
just @, i. e. A=K [G]. The detail verification is left to the readers. :
The adjuncbion u®: G—>G°‘—G‘ is an epimorphism, for K [G7] is a Hopf sub-
algebra of K [@], so we have an exact sequence of affine group schemes:
E—->Q->G—->G—E,
where K is the trivial affine group scheme, and Q is the kernel of u° .
Proposition 3.2. leimG’,, where Gi=ker F*, an énfinitesimal subgroup scheme

of G, and the homomorphism G—G; for $<<j is the restriction of F'~': G—@.
Proof We can deﬁne a morphism from (G’ w) to cons (@) as follows:

= 10 21 32 43
@ @ g ..

lid lF 117'2 lFs
A id b id & id id

It is easy to see that the limit of this marphism is just the adjunction u%G—>Q°=G.
So, by (1.3), the kernel of u° is the inverse limit of the inverse system (G, »"),
where Gi=ker F* and »*: G;—@, is the resiriotion of u”, which is just F/~,

The affine algebra of Q is A/M A, where M is the augmentation ideal of K [G].
Tlus follows from the general theory of affine group schemes, ‘

Because Q is a normal subgroup scheme of &, we have a Lyndon-Hochschild—
Serre spectral sequence for any rational G-module V:
@.3) Eypr=H"™(Q, H(Q, V))=>H™"(G, V).
IfV is a rabional G-module, then it is tr1v1al as a ratlonal @-module, so the
spectral sequence becomes
B4 v Byn—H"(@, H"(@, K)QV)=Hw (6, V),
where K -is the one—dlmenswna.l tnvla.l Q—module If we let H"=H" (Q, K), it is
known that k

H=1]] H"

ne€zZ+

has a graded K-algebra structure. It is the cohomology ring of Q. Of course H is
also a rational G—module, so we shall call it a rational G-algebra. From (3.4) we
see that H will play an important role in the calculation of generic cohomology.
Let

H,;,= ]‘%H?, where H;}=H"(@G;, K),
nezt .
i. e. H; is the cohomology ring of G;. Then H, is also a rational G-algebra whose
G-structure is defined via the isomorphism G/G;=@Q induced by F* (this G-structure
is usually denoted by H?, see [3], for example).
Proposition 8.6, H=lim H; as rational Q-algebras, where the homomorphism
—_—

\
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H>H; for i<j is induced by »=F~|q: Gy>Gy. N

~Proof Apply (2.5) to the inverse system (G, #*) and the constant direct
system of G—modules (K, id). It is'nob difficult o:see thab the G-—ac’ﬁlons are.
compatible with the proecedure of taking direct limib," w

Now we see that the G—algebra:H defined here is just that defined by Fried:
lander and Parshall ® when G' is ‘reductive, The following is a generalization of
[3, (1.5)] (but we do nobt know whether H" is finite dimensional or not, so we
cannotb state the result in terms of Hom functors as Friedlander and Parshall did
in [3]): ‘ _ R ; SRS

Proposition 8.6. If I és a rationally énjective G—module, then

. Hiu(@ I) = (H'QD)C.

Proof TUse spectral sequence (3.4) whloh collapses when I ig ra.tlonally

injective.
. o R ' -
S. Donkm 21 pointed out that [5, Th. 8. 17 means
Hy(@, VY= EG 7,

where @ is defined by him as the affine’ group scheme havmg affine algebra A which
we defined in Section 3. He also pointed out ‘that the Kernel of G—@ will play a
role in the theory of generic cohomology becaUSe of the spoctral Sequenoe \3 3) T
would like 0 express my thanks to hlm for hlS letter ‘ '
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