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LARGE TIME STEP GENERALIZATIONS. OF -
GLIMM’S SCHEME FOR SYSTEMS OF
(CONSERVATION LAWS™

WANG JINGHUA (_}'_ —12)*

Abstract
Two kmds of generahzatlons of Ghmm s scheme for C’omant numbers 1arge1 tham

%‘- is mtloduced For one kmd of the generahzatmns 1efer1ed to as L T. S. Ghmm’ s scheme-

@), it is shown that f01 any fixed (but arbltra.ry large) Courant number 1f a seqUence of:
approximate solutlons converges ; to a limit u as the mesh i is refined, then w:is a werk solution.
to the system of conservation laws/ for almost choise of random sequence. ‘Furthermore it is:

" dbtained’ that for scalar equations ‘and systems of - conservatlon laws the- fa,mlly of:

; app10x1mate solutighs.contains ‘convergent subseqtince. ol
For another kind of generalizations' with any fixed (but albltra,ry large) Courant -

number, referred to as L. T. S Glimm’s scheme (II), it is’ proved ‘that” the fam.lly of
approximate solutions to the- system of isothermal gas dynamics equations contains a
eonvergent subsequgnggprovi_g_led the total variation of the initial data is bounded.

§ 1. Introduction
We are concerned"with ~§ysbéms of coﬁéérv'a‘tidh 1&Ws§ é)_f the form" -

Ut f(u)e=0,  —oco<w<oo, t=0., . 7 - . (L1
with initial conditions :

| (@, 0) =uo(a), —colo<oo, = 1.2)
Here'u(wr' t) = (u1 (wy t)" *5%, w (@, t)) GRm and fl(’LG({U, t))r ) ‘f"'(u(a;, t))) s a.
smooth mappmg from a reglon Q of Rm o R™, We assume that the system (1.1) ig:
strlctly hyperbollc in the sence that - the matrlx 3f ‘hag-real and distinet-

- eigenvalues '

‘ Mg (u) <Aa () <ooo LAy (w).

..Solutions . to, the. initial .value  problem (1.1), . (1.2).generally. develop-

dlscontmultles (shocks) -even when the initial data. to (%) is smooth,  Therefore wes
- seek weak solutions to (1.1), (1.2), i. e., solutlons u(w, t) which saiusfy
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S (it f () o) i+ j’“ do(m)él;f:(w&,VO).ilé;;b"" ey

for any O* best funetion qS(w, t) Wlth eompaet support ‘ v

The major breakthrough in the theory of systems o'f eonservatlon la.WS 1s
Glimm’s work [3], in which a random choice dlﬂ'erenee seheme, Gl]mm s seheme, V
ig introduced to construct the approximate. solutlon to the initial va.lue problem
(1.1),:(1.2) and the convergence and consnstenoy of the seheme is. obta,med'
provided, Vuo(+) is- sufficienlly small and system is genumely nonl1near Here

throughout thig paper by \/ g(+) (Vg(+) resp.) we mean the total variation of

g(@) over the 1nte1'val (w b) ((—~oo o) resp.). It is fair to sa.y thab most of the
subsequent work on theory of systems of conservation laws is based on it, The
Glimm’s scheme is also an effective method. for numerlca.l caloulations even in
“several spaoe Va.rla.bles by the method of fractional stepsm The main advantages
of Glimm’s soheme for numerical caloulations are sharp resolution of discontinuities’
and absence of over shoots and undershoots. ‘ ‘ ‘ ' '
Now we give a brief mtroduotlon to the ‘Glimm’s scheme. Before domg it we
assume that the Rlemann problems for gystems (1.1) with suitable Riemann data"
ean be solved into unique centered wave solutions,” We dlsoretme R %[0, ) by
choosmg spa.tla.l mesh length 6 and time mesh length 7. Let t =nz, n=0, 1 2, sy

a;,,—laa m,,ﬂ,z-(k:l:——> 8, k=0, 1, :l:2~-- We ohoose a random sequenoe {oq}

equidistributed in (0, 1). Assuming that u(z, ¢, 3), an approximate solution to
initial value 'problem;v has been determined for #<f,, we define u(w, v, 8) =Uj,n=
u(@y+d, ta—0) for s €Iy= (w4, Txea). Lob w(w, £, 8) on Yin={( t), op_ra<o<l
Dus/ny I <E<tnia} e the restriction on ¥y, of the solution u,,(w, ) to the Riemann
problem; o S 20 - w :

@@€1 - S
u (w,. tn) = {uk—i'?" o< ' (1"4) ’
To inifiate the scheme, at n=0, we set -

u(@, 0—, ) =uo ().

Each wave in the solution to Riemann problem travels with speed that equals or
is bounded by cooresponding - eigenvalue A, Denote || =max |As(w)| for all w

under consideration, then it follows that the centered waves issuing from ad]aoent‘ ‘
centers (wy, &) and (Tigy1, o) dO not ‘intersect each other provlded ‘

Therefore u(x, t, 8) in the strip S,={(@, 8), ‘—oo<s<0, fait<tnsa} I8 .G
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voncatenation of solutions o Rlemann problems . 4) ab (@, @ ) £=0, :l:i +2 ..
thus u(m, %, 0) is a weak solutlon ‘to system (1.1) in S, Thus (1.5) is always
assumed for Glimm’s scheme:" Here O is called Oourant number deﬁned as’ mesh
ratlo v/d multlplled by I?\,I o

Smoe it is a fime oonsummg prooedure to solve 'Riemann problem and that’
OOurant number is nob larger than 1/2 is only a sufficient condition’ for the hold of”
OOurant—Frlednohs—Lewy eondltlon. it would be reasonable to generatize Glimm’s:
scheme to Courant number larger than 1/2. In fact, LeVeque™ has successfully::
generalized Godunov’s method for- arbitrarily large Courant number in proving:
the consistenoy of the large. time step generahzatlon of Godunov 8 method for
system of conservation laws and the oonvergencs for scalar conserva’olon 1aws

- In this paper a large txme step genra,hza,tlon of Ghmm S soheme whlch for
short -we refer 0, as L. T. S Glimm’s. scheme (I), is mtroducad in seotion 2 an&
we show the consistency of the L. T 8. Ghmm s soheme (I) for any ﬁxed (but»
arbitrarily large) Courant number _ . . oo , .

;. In seotion 3 we prove that the total va,rlamons of the apprommate solutlons

eqnstructed by L..T. 8. Ghmm s soheme (I), fo initial value problems for scalar
conseryvation laws and, genera.l systems @.1) Wlth oorrespondmg inibial data are
umformly bounded _Therefore 'by the consistency of L. T. S. Glimm’ s scheme (I)
obtamed in section 2 the exmtence of global solutlons to these initial value
ploblems is proved A% the same section another large time step genera.tlza,tlon of*
Glimm’s scheme, which is ealled .L.. T, S ‘Glimm’s scheme . (II) :for  short; -is..
deseribed, ‘and: the' converngence” of this scheme for the system of isothermal gas.:
dynamlcs equa,tlons is obtained. : '

§2 A Large Tlme Step Generahzatlon of Gllmm S
‘Scheme and Its Consistency

e

When Courant numbers are larger than 1/, the contered waves issuing from:
adjacent centers may interact each other in §j. Of course it would be: not practical .’
or even impossible to handle these interactions exaclly. We should handle these-
intoractions’ properly’ and: approximately sothat approximate results of these-
interactions dre-aceurate enough to make L. T. S; Glimm’s schemes consistency and:
~ conyvergence as well a.s”the proeedtire of handling these . interactions asg simple ag-
possible for numerma,l caloulations. LeVeque’ s Work [5] suggests we may handle
Wave interaotions lmea.rly in some gense,

“Now we' give desoriptions of the L., T. 8. Glimm’s scheme (I). Dlscretlzmg;;
R [0, oo).'we:allow. the Courant number O {0 be arbitrary (fixed) constani;. i..e,,. -
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"’m —O<N, - @.1)

Where N is the least infeger no smaller than O. After determmatlon of the
approximate solution (w, %, 8) for t<#, we solve the Riemann problem 1.4) atb
“ mesh points (@, ), k=0, £1, £2, -~ and obfain their solutions uk,,,(w, 1) =
(w, (@, 1), =, wr, (@, 1). In order nob o be overloaded with subseripts we omib
the subseript n in the sequel. Then we set the approximate solution as follows:

u (&, t 5) uk(‘v: ) +2(’“z(’3 8) —u;(w, n))) (@, ) €Y yym @.2)

o or the same ’ ’ C oy
u(wr 2 8) =u(m) ny 8) +2(ui<my t) —u;(w, tn)_), ‘(97, t) GIS’”. (23)

" The above procedu‘ire may proceed for all $>>0 provided we have suitable bounds
on u (=, %, 8). We assume these for the moment and demonstrate the consisteney’ of
L. T. S. Glimm’s scheme (I): v I ; |

Prop051t10n 2.1. Assume that each chowe of the random se guénce {os;} yields a
family {u(w, t, ), 0<3<<do) of approzimate solutions which are defined and \ u (e,
%, 8) are uniformly bounded in d and t. Then there ewists a sequence d—>0 such that
for almost all chowes of {a} '

u(a;, t 6,) 25 u(w, 1), &0
and u(a; t) is the solution to the initial value problem (1.1), (1.2).
~ Proof First Wwe DTOVe tha’ﬁ our apprommate ‘golutions are L Lipschitz .
continuous in time (modulo the time s’nep) Lot o €Iy, ' € [bmr tmgs) aDd &7 € [,
tmy1), m1<<ng. Then by (2. 3) we have for 1<<j<xm
luf(w, t, 8) —ul (a, ¥/, 3) | < | (, ', &) —u! (@, tuy 8)| '
+ [ (@, by O) — u’(m, by ) | + oo+ | (o, sty O) — —u! (&, g1, 8)[
+ |uf (@, tmya—, O) —u' (@, T, 8|

<2 2 a‘m\7+1 uj('y tl‘+y 6>~ - “ ‘ (2'4)

nm<i<ns Yx-x

Theréfore

J | v (@, 3", 6)——u’(w, , 8) |dw<2(@N+1) (ng—n1+2)0 sup Vu’(- t, 6)

(4:N—¥ 2)“\“(#" t+3'v)sup\/u’(' i, 8) (2 5)

The mequah’ues 2.4), (2.5 and the unlform boundedness of Vu(-, %, 8) 1mp1y
that the approximate solutions are Ly Lipschitz continuous in ftime (modulo the
time step), which with- boundedness of Vu(e, ¢, d) yields that there exists a
sequence §,—>0 such that '

: u(, 3, 81) 25 ule 9, a,-»o
Now we are going $0 show that u(w, 4) is the (weak) solutlon to the initial
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~ value problem (1.1), (1.2). For any besb functlon qS(a;, t) we have the followmg
obvious identities: : :

” (w(a, 4, 8)¢t-|—f(u(m,t a>)¢,,)dmdt+f uo(a;)qa(w, O)da;

I+ - %_-2 Tow @
where v N , . . ' .
| - ir”w(w, t=) 8) —u(@, by 0))$(w, tyda, @.7)
I;,,..——H (u, , 8) et f (u(a; 4 5)) cbe) dur
 %L%Jwat&¢M~ﬂ%t8D¢ﬁ R _@3)
and o o | | L
—ﬂ(u,(a;, 9 bt f e t))¢¢)dwdt+J' ) pda~ f(u,(a;, DYt
f=gm b N<i<h+N, : @9
L= [[ o, ) df (e ) )i+ j (e ) gl
| Y—k"f(u,(w, t,.))qbdw) =0, k— N<q,<lc+N 6%k, "'(2 10)

Here that v (a0, t), Ic N<q,<lc+N and w;(w, ,.), k— N<q,<lc+N i#k are weak
~ solutions on ¥y,, 1s used, It follows from (2.8), (2. 9) and (2 10) that

Ikm Ik,n k-N2<k+NI n+ 2 I Ikn+IZ,m ‘ (2'11)
- where : ’ — L ) 4
L= ﬁtf(u(w £ 8))— F o ) - 2 (f (o, ) = (o, 1)))]+ fudads
. o k—N<i<k+N ’ ‘ '
| 2.12)

B[ @ 1, )~ e ) |
=2 (Flule 0)—f(wley t)))]]54- $ds, (2.13)

P k—NéKIaM]
Here (2.2) is used.
: By mean yalue theorem we have

mnl—'ﬂj 2L (e, )0 1, ) o, 1) (o 1, 8) o, D),

d0¢¢dwdt~—f J 3 fi e 0ot -t 1))

Yin b—N<i<k+N

% (s, t) iz, ,.))dﬁ $dodi
<H 2| 4| f Iui(a;,t) u,(w,t)[ola;dt

J IC—NS <k‘
Y
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' <u” V u(e, oty O)dodi=ped N ule, tur, 8), O (2.14)
PR o I 2 i K )

where the constant » depends on the L., ‘noi"ms of ¢, and the matrix %’ which is

bounded for smoothness of f and umform boundedness of u(w, %, ).
Noting tha’ﬁ : . S
v u{(mkd:ilﬁ_' t) 'Ms(%ti/z"' t), : tE (tn; tn+1) v 3
exoept for possﬂole finite points of (£, fu41) and Un (Dps172—, tn) = u;(wkim+ bn) for

k=0, +1, :|:2 s, n=0, 1, 2, -+, wo obtain = P , -
. XI.=0. . : (2.15)

Thus it follows from: (2.11), (2.14)and (2.15) that

|2L,,,,|<2Nv75 V u(s, t4, 8). : (2.16)

The number of s, in whmh the test functlon ¢> does not vamsh 1den1;10a11y is
order of v~ since ¢ has compact support. Therefore we obtam from (2.16)

lZIk.n|<5vsupvu< ta>, 2.17)

where v depends on N, ¢ and L., norm of matux -g% v o

By Glimm’s celebrated argument there exists a subsequence -of {u (@, 8, )}
(denoted by {u(w, %, 8)} again) such that I tends to zero as 80 for almosb al]
choices of {a;}. Thus it follows from (2.6) and (2. 17) thatb ‘

Jof e, Dt o ) g dwdi+ [ uo(@) ga, 0)da=0

i.e u( ¥) isa weak solutlsn to mltlal value problem (1 1), (1.2). The proof is
complete

§3 Convergence of Large T1me Step Generahzatlons
’ of Ghmms Scheme R

In this section we establish the bounds on the total variations of the
approximate solutions construeted by L. T. S. Glimm’s scheme (I) for scalar
conservabion laws and the general systems (1.1) with corresponding suitable
initial data. Then by Proposition 2.1, the global solutions to the initial value
froblems are ob’ﬁained as the limits of some sequences of these approximate
solutions when the mesh is reﬁned Another, large time step generalization of
Glimm’s scheme, called L. T. S, Glimm’s scheme (II), will be described and the
umform bound on the total Varlatlons ‘of the apprommate solutions, constructed
by L. T, 8. Glimm’s schéme (II), to the system of isothermal gas dynamios
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equatlons with arbitrary intial data of bounded total variations is also obtained.
First we consider the initial value problem for scalar conservation law -
' ut—l—f(u)a,-—O o R )
 u(g, 0) = (@), | - (3.2
where f €O* and uo(w) is an a.rbltrary function of bounded toatal Varlatlon
Lemma 3. 1. Vu(- i, 3), the total variation of the appa*ommaﬁu solutions to
initial value problem (3.1), (3 2) constructed by L. T S G‘hmm s . scheme (I), is
unifor mlg/ bounded in tand &.° '
Pfroof Since the centered wave solution to the R1ema,nn problem @. 4) for
Scalar equation takes on its value monotonely from Ug—1,n $0 Uy, u->, WO obtain
;Vuk('r ?) =‘§Iuk.n*uk—1.u| <SVu(ey ta=;8), €8, (8.3)
It follows from (2.8) that N
- u(@ty, b, ) —ulw, %, 3) .
=L@ty by )~ UG, b 8)) - 2<uk<w+y, ) —uGo, 1)1
/ +E(uk(m+y, t) — u,,(a;, $)), €8, . ‘ (3.9

As in [5] we know that if 0<y<& then the term in the braoes is zero. Hence
u(w+y, & 8) —ulw, 3, §) = 2<u,,<m+y, £) (e, 1), y<6, t€S,  (3.5)

|u(a:+y, 3, 6) —u(w, %, 8) |<2|u;,(w+y, t) — (o, N, y<d t€8, (3.6)

which lmplles

Vut, 4 8)<2:\'/‘uk(.‘t)y tES X

It is easy to know 1nduct1vely from (3 3) and (3. 7) that . »
Val, & <SVuC, fa=, H<Vi(-), €8, (3.8)

The proof is complete.

Proposition 2.1 and Lemma 3.1 yield the following theorem.

Theorem 3.2. The family {u(w, %, 3), 0<8<8o} of appromimate solutions to
initial value problem (8.1), (3 2). ‘eonsiructed by L. . T. 8. Glimm’s scheme (I)
contains a subsequence u(w, t, 6,) such that forr almost all choices o f {a:}

u(w, i, &) Haih S u (@, t), 8,——)0
and u(w, 1) is the solution to the initial vakue problem (3.1), (3.2).
We now introducs another large $ime step generalization of Glimm’s scheme,
L. T. 8. Glimm’s scheme (IT). Without logs of generality we may assume that for
system (1.1) there exists a ' local coordinate system w(u) = (fwl(u), o w™(u))
detmed in Q consmhng of Riemann mva.rla.nts, i e. R

’l'; Vfwf—&,, 1<?}, j<m,

lwhere r; is the rlght elgenvector of @f for },‘. In fact there existy suoh a ooordmate
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gystem for m=2 and whilestuding general systems there exists a eéordinate gystem
(w'(u), +++, w™(u)) having the property riVw'(u) =8y, 1<4, j<m, where % i a
~ constant state near whioh we consider the system™,- ’ SR

The approx:mate solutions % (a, #, ) to the initial value problem (1 1) @. 2)
are constructed by L. T. 8. Glimm’s scheme (II) as follows: . : .

The discretization of B X [0, co) is done as in L, T.'S. Glimm’s scheme (I) so
that (2.1) holds. After determinating the approximate solution u (=, #,8) for t<f; 'v
‘we solve the Riemann problem (1.4) at mesh points (a ,.), k=0, %1, 42,
and obtain their solutions u;(w, ). Then we set

 uta, %, 8) = (' (w(a, t, 8)), * um('w(wr £:9))); A(mr ) G”S,.,; - '(3'9)

where SN RIS s e
w(w, i, 8) tw,,(a;, t) —I—Z(fw;(zv, t) 'w,(a;, ,.)), (@ 8) €Y s - (8:10)

or the same o ’ B e
w(w, t, 8) = w(u (m, fy 8))+Z(w,(a;, t) fw;(w, t )), (w, t)E S (8.11)
and l o |
'wk(w’ )= ('wl(uk(wr t))r . ') 'wm(uk(w; t))) (, t) ESW ; k O E1, £2- (3.12)

Next we consider initial value problem of the system of 1sotherma.1 gas
dynamies equations : o R

{u’,+(”b1)’=0’ V’ (3.13) .

: Vi —u=0,

wi:thinitialidata, Sl S Co
(;M, ’D) It—o_'(uo(w)w ”0(50))) : v (3 15)

where u is velocity and v is specific volume of the gas, wuo(w) and 'vo(m) are
arbitrary functions of bounded total Varla.tlon Wlth Vo (w) >fv>O ‘

The existence of global solutions to initial value problem (8. 13) (3. 14) was
proved by Nishida™ via Glimm’s scheme. Now we shall prove the convergence of
the approximate solution, donstructed by L. T.'S. Glimm’s' scheme (II), %o initial
value problem (3.13), (3.14).

Theorem 3.8. The family {(u, v) (&, %, 8), 0<3<do} of approzvimate solutions .
1o the initial value problem (3 13), (3.14) constq'ucted by L. T.. S Qlimm’s scheme
11 contains a sequence (u, ) (w, 1, 8,) such that

) (u) 'U) (@, ¥, 81) (u, ’U) (wr t)’ 3,—>0.
Proof The Riemann invariants for system (3. 13) are wy=u+ (—1)'q, 4= 1 2

where g = —logv. v
The Riemann problem (8.18) ‘with the Riemann data

wowo-{o
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where w;, u,, ©,>0 and 2,>0 are constants, has a piecewise continuous’ solution,
'This solution consists of ab most three constant states (uy 0)," (U, ) and (uy, v,)
separated by a 1-wave (1-shock.or 1-rarefaction wave) and a 2-wave (2-shock or
2-rarefaction wave) respectively. We define the functional. QU(w, q), (uy, g,.)) =
|¢"—g™| +|¢m—g:|, the sum of the absolute values of differences of g across “the two‘
_ Waves in above solution, which is the tolal variation of ¢ in this- solution too. By
the faet™™ that shock and rarefaction wave curves in terms of (u, ) have the same’
figures respestively and. are independent of thier mltla,ls we have for there’,
arbltrary constant states (w_, ¢g_), (7, go) and (uy, ¢,) Gl g
Qs ), (s g))<Q(u, ¢), (Wos 90)) +Q( (o, o), (way g4)). (3. 15y
From the fact that ’ﬁhe mapping between (,wi, fwz) and (u, q) is hnear (8. 11) d

is equivalent to. - |

(%, Q (‘v) B, 8) (’M, )(w)tﬂy 8) +2((’M" 90) (mv t) (u,, gD (a?, tn)), (:v, t) en,

(3. 16)
Where Uy §i= —1oga); is the solution to (3. 13) wﬂ;h Rlemann data
(u, v) (a;;_1+a,.6 ). 0),, o<lay, - S
y U y Un, ! 3.1 2
Cwo@w-{ @+ad, 1=, 3), . w>a, @D

Prooeedmg as we obtain (3. 5) in Lemma 3.1 we can show
@ ¢) (@+€, 1, 8) — (u, ¢) (&, 1,8 -
=2((uu @) (@+€, t) — (uy, @) (; t)), (=, ) €S _ (3 18)
By repeated applying (3.15) to both sules of (8. 18) we obtain for = t i1, B= a;;‘-l-
O 1d; w+§ = Tp-1+ 020 ‘
Q% 9) (wk—1+“n+16 b1, 85 (, ) (wk+an+13 tn +1, 0)) o
‘ <2 Q((uh .‘Ii) (wk-z+06n+15 tn+1) (u‘, D) (wk+a,.+16 trs1)). (3.19) '
Summmg the both sudes in (3. 19) over k we obtain , - , :
V(s 4 O<T Vaile, )< Vil faaa =) = X Vale, t +) Vq( tat, 8),
5€ (ns, M) '
Then inductively

Ve(, b 8)< vqo‘(o,'t)<%_ Voo()+ Vi), #0, G20y
Hence | ) ‘ | | R
E (@, z)g}elgo m)lg(w, b 8)'<M°’ , (3'121)
where

My=|log %<-oo) i+— Vos(+) ¥ Voo (),

e ”°< sup V (@, ¢, O)<e ',i:': (8.22)

© (@Y€ RX[O0, 00):
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M oeM

V/v(- t, 8)<e“° Vg(- t 9 <
.nIo@

t‘>0, (3 23) |

Vule, & O<eVo(s; 8 <=2—, >0, ' (3 24) -

It follows from (8.22) that (s, %, 3) has posﬂuve lower bound.: Therefore
(u, ) (#, %, ) can be defined for all $>0. As in the proof of Proposition 2.1, we
ocan prove that (v, v) (&, % 3), are Ly Lipschitz continuous in time, which Wlth
(3.23) and (3.24) yield that there exists a sequence (u, v) (w, t, 6,) such that

(ur 'U) (m; t 61) (u! 'D) (w’ t)

The proof is oomplete
" Finally we return %0 consider initial value problem (1 1) (1 2). Let fn(u)

and l; (u) e the rlght and left e1genveotors of f for the elgenvalue A In addﬂuon

to strict hyperbohclty we assume thatb the system (1 1) is genumely nonlinear in
the sense that
' ’I.';', V?\.;#O, 1<j<m.
Near constant state % we ﬁormalize 1j, 1; such that
| " m,=1, 1<j<m LT (8.2B)

and then v o ' v
: . ‘ Z,-fr,—l 1<j<m : AR (8.26) :
Furthermore we assume that each e1genvalue does not change ifs sign, i. e. there’
exists an mdex say I, such tha’u for u near u . ce T R

' M () <O< Ay (). e (3..27), :

We reeall some well known definitions and results (see [3, 4, 7]). If ; and u,

are any two constant states near , then the Riemann problem (1. 1) ‘with initial-
data. . : ‘
Uy, w<0

u(a;, 0> {u,-, o>0
which, for short, we refer 0 'as Riemann’ problem - (u,,' ~u,.), has imique centered:
wave solution, denoted by (u,, u,) oonsusts of m+1 constanti states ue=1u; w1, =+ tp_1,
U =1U,, Where uk_l is conneeted on the right to w, by a k- wave (a. k—'shock or a:
]c—rarefactlon wave). We choose w; 1<6<<m, defined near % such that

: (3.28)

CorVwi=1, 1<j<m, 0 T (3.29)
and et
o rpVals=0, j<k. . . (3.30)

Then we define - e I C :
8=w;(u;) =w; (Uums); 1<j<m o (8.81)

~ aw vhe signed strength - of ]—wave ‘"We shall gather all this informakion in the
canoise foxx , i e e e T
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) (g, up) = [ (o, U Un)/(e2y **ty Em)]. - (8.82)
'We have the expansmn for (w, u,) ’ |
"ut— 2 8" i(uD '|“ 2 Szb‘hEi,h@lz %), (3 33)

Where By (wy, u,) is LlpSGhl'hZ continuous in u; and Uy, 1<h<q,<rm Let Uy, U,y u, be
three constant states near u and let S :
Wy tm) = [ty oty ) /gy oor, frn;)], » o
 (Umy ) = [ (ugy ==+ )/ (81, -+, B 3] ' (3.34)
denote the solutions of respective Rlema,nn problems (u;, 4,) and (um, %,). Glimm
proved that T '
' Nal<|%]+]8:]+0D(7, 8), as |7]+[5] small = (3 35)
where D(7, 6) 2]’)’ | 18], the sum is over all pairs for which the ¢—wave in %’ and
Jj-wave in u” are approaching. In what follows C denobes the generic constan’s
depending on flux function f and some small nelghborhood of 7,
Letb w;, 4, w; and u, be four constant states near % \and
(W, ur) = [ (oo, ==+, tm) / (&1, -7, 8)],
. (s, U) = [(oy ***, Unm)/(Bs, +=) Em)],’
" and suppose that . B
o lor—w| <Olai, |u—u|<0]|3], (3.36)
which mean that the strength of 4-wave (j~wave, resp.) in (u, u) ((u, up) resp.)
is of the same order of |g| (]&| resp.). Then we have the following lemma.
Lemma 8.4.  For (w,+4, u,+4) = [ (uh, » o, up) /(& e, 8] oftke solutzon of
Riemann problem (u,+A U+ 4) we have the folliwing estimates

]sk sk|<0]s;] ]s,], 1<Ic<m. ‘ ' (3 37) _

where 4=, —u. . )
Pfroof Applying the expansion (3. .33) for (w, u,) and (u;+4, u,-+4) we obtain"

: . (u “ul) 2 &il'y (’“l) +2 gentlig,n (u, ur) ’ ) 3. 38)
(up—w) = 2 giri(uy+4) —i—Z 8981 Hy,5 (uy+ 4, up+4). (8, 39) '

Muliuply both sides of (3.38) and (8.39) by Z;,(u,) and lk (w+4) respeoiuvelyt
and subtract each other, then we have

&h— &p= (Z,,.(u,+A) — b Cwy)) Cup—uy)
_;,Zq (W (uy+4) « Bop (wy+ 4, up+4) elel—1, (W) + Bgn (wy, uy) 8g8;)  (8.40)
and therefore AR _
|eh—ex] <O 4| |up— '+h2<gllk(u,+A) * By (uy+4, wp-+4)
— b () g (wy, wr) | | ] [ exl .
+2 |G g+ 4) By, (wy+ 4y up+ 4) « (epeh— &g8n) |+ +(8.41)
It follows from. (3.36), (3.41) that ) '
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|e —le—olsil |84|+0 2 |8¢| lsvl |3h]+02 (lshl |80—6g|+|sal [en—snl).

(3 42)
Then by (3.36) and simple caloulations we reach :
IS;’G—Skl =0]85l_l_8.j|, 1<k<m. ’ . (3.43)
The proof is eomplete : L i o
In what follows we assume that N 1 i. e.
TIal<t, SRS (8.44)
First we define a functional for our approﬁinate solubions u(w, £, 8) as follows
F<tn>'=-L(tn> +KQ_(tn)r (3.45)
where R
L(4) =S{|a|: & orosses the line t-—=t,.+:.—g-|7\,| -1} (3 46)

Q) = E{ o] | ,8| o and B eross the line ¢ =t,+- |7\,|‘1 and approaoh}

(3.47)
K =4m0, : - - (3.48)
O is the generie constant appearing in estimates (3.85) and (3.37). - |
» Lemma 8.5. If Vuo(+) 4s small enough such that .
12m0L(to) <i. o (3.49)
Then ‘ ‘ SRS | E
L(t) <2L(te), =1, 2 " - 7(8.50)

which implies that \Ju(s, %, 8) is uni foq"mly boundeol in t and d and u(a;, t 5) are
defined for all t>0. ’

Proof At the line =%, we arrange all of the discontinuous points of u (@,
t,—0, &) and {w+a,d, b= -0, +1, i2 -} in mcreasmg order (and rename them) as
- follows

X=A{- <w_(k+1)<w_i,< <w’_1<wo<w1<--o<wk<wk+1<' 3.

Then we construct an 1mag1nary solution u{w, %, 8) for (w, &) € Xo={(w, ¥):
t,<t<i,(2), € R) as a concatenation of the solutlons to the' Rlema,nn problems ‘
(1.1) at the following points of the line ¢=1%,

o LB oty L oty KBy o oe L@y o0 Ly < < Whogn
“with Riemann data v '
ulwh—, ta—, 0), a<lak,
w(oh+, ta—) 8), @>a}

2@ ) ={,

"and : _—
u(wllc—"v tn_') 8) ‘ w<er
u(w;c+1_y tﬂ;‘! 8) m>w21

;(w, t) = {
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where g
r_ Bt Brog1

= ——g \ »

and ¢=¢, (w) is a eurve such that there is no interaction between wayves from u(®, %,

d) on w,. S
Then we define the functlonal for u(a;, t d) as follows - ,
F@)=LG)+EKQ(,), S (3.4B)
Where : - .
: L(t,) =={|a], a crosses the curve t=t,(a)?}, (3.46)’

q(, ) =3{ |a| 18] , @ and ,8 cross the curve t=1%, (w) and approaeh} (3.47)'
Suppose that = v : B
LG)<2L(k), é<n-—1, (3.51)
which is true for §=1. s

‘Then we study the approximate solution u(w, ¢, 3) defined by (2. 3) in Sp_1.
Prooeedmg as we obtain (3.5) in Lemma 3.1, we can obtain

u(@+mn, 4 8)—u, 4 ) = 2(“70(‘5‘*'7% 8) — uza(w, £),

| : (@, 1) €8ute - (3.52)
Specially for a dlseontmuous point (o', t') €81 '
u(w —, ¥, 8) —u(a; +, t' d) = E(uk(w —, B) —w (@' +, 8)). . (8.53)

A shock, say, a j-shock §;, in u(a;, %, 8) W111 beoome a dlSOOIl'lilD'llO'llS line S (%)
after interacting on other waves and discontinuous lines. It follows from (3.53)
that S (¢) has the same speed of propagation and the same jump in terms of u as

S does On the other hand, by (2.8) we know that the difference of u of left states
(rlght states resp.) between the shock S; and the discontinuous line S (t) equals
o the algebraio sum of jumps of % in the waves and- discontinuous lines which

-have mteracted with §; or 8] before ¢=7, Therefore the Hugoniot jump condition
does not hold for 8 (%) in general, This means that the left state of 8;(%) can not
be connected .on the right by a j-shock to right state of 85(%). Similarly a
rarefaction wave ourve after mwoving without changing its shape in. term of u
becomes a eurve -which is' not a rarefaction wave ocurve in general also, - But
Lemma 3.4 gives the quantitative estimates on this phenomena, Therefore using
Lemma 3.4 at each point ("”“»t)’ (@, t), k=0, +1, +2 ..., we obtain from
(8.46), (8.46)", (3.47), (3.47)’ | ' N

L) = L(tss) <2mOP(t), (3.54)
Q(4) —Q(thx) =2mOP (4) L (fs) -+ (2mOP (1))~ P (1), (3.55)
where
P(t,) =2{lal |B|:e and B in u(w, ¥, 5) cross the line

t=t,_1 +—— A7t and will pass each other before t=t.}. (8.56)



No. 4 Wang, J. H. GLIMM’S SCHEME FOR SYSTEMS OF CONSERVATION .LAWS: - .“4AG'9

Here (3.44) and (3.27) are used to guarantee thab there is no interation
between waves belongihg the same family in S,_. '
It follows from (3.54), (8.55) that
F () —F (1) <2mOP (t,) + K P(¢,) (2mOL (tm_i) + (2mOL (t,._i))ﬂ -1)
<2mOP (tn) +KP (3, ) (BmOL (1) —1

<emoPG)-X P@y<o, (3.57)

where (3.51) and (3 48) are used.
" Since {wg+ad, k=0, +1, +2---} is a subset of X, we know tha.t

e F@<F@, L (3.88)
which With',(3’.57) implies , Dt R
F (t.) <F<tn_1) IR - (8.59)
Therefore inductively we prove that o v .
| L&) <F ) <FGos)< v.<F(to)<2'L‘(to);‘ n=1, 2 . (3.60)
The inequélities yield that ST
Vu(s, tnts 8) <0Vuo( ), m=1 2, (8.61)
It follows from (3.52) that
NVu(s, b ) KVu(, tat, 8), $€8, n=1, 2, D ,;:_(3.62)

It 1s‘ easy 1;0 know that
Suplu(w, t, 8)|< Iuo(—°°)1+Vu(- % 8) < luo(—oo)l+0\/uo() (3. 63)

Thus {Ai(z, 4, 8); 1<j<m} is uniformly bounded: in @, ¢ and §. Hence
u(w, %, d) can be defined for all £>>0. The proof is completed. !

Lemma 3.5. and Proposition 2.1, yield the following theorem. - = "..

Theorem 8.6. If Vuo(+) is sufficiently small, then the family {u (:v, £, 8),
0<5<80} 0f appr omimate solutions to the initial value. problem (1.1), (1.2) constr—
ucted by L. T. 8. Glimm’s scheme (I) contains a sequence (u, v) (@, ¥, ;) such thai
foq' almost all choices of {a:} .

u(8 t, 8) —> u(w, £), 8,50,
and u(w,t) 4s the solutwn to the initial fvalue pa"oblem 1.1, (1 2).
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