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THE STRUCTURE OF RELATIVIZED
P AND NP QUESTIONS

YE HENG: (*}  #2)*

Abstract .

First, based on the work of [5] a new property on the structure of P and NP is
proved. Then, using the notions of mitotic and non-mitotic defined by R. B. Ladner!®], the
author defines similar concepts in the relativized classes PX, NPZ and constructs a recursive
oracle. In the constructions, an N P-non-mitotic set is obtained by using the simple priority
argument and the coding strategy W}:uch Robert I. Soa1e[3] used to prove the density
results in the r.e. degrees.

'§1. Introduction

Since [1] introduced the relativized P and ‘NP problems, ‘many questiong
which are quite difficult to deal Wlth in P and N P have been solvad in relativized
classes PX and NPX,

Almost at the same time of [1] [5] introduced the strucqure of the degree of
Pand NP. _ .

‘We will prove some new results on the structure of relativized cla,sses Px and
NP, ' .

In this section, we will give some notations.

-~ We fix the alphabet:Z={0, 1} as the alphabet in which all (P)NP sebs are
encoded, .80 that a (P)NP setb is simply a subset of 3*. :

- Let < be the natural order on 2* (A<0<1<00<01<10<11<000<+-+), Where
A represents the empty string.

If € 2*, we lot la;] denote the length of @.

We define a 1—1 and on-to functlon f. which maps 3* into N as follows: f:
2*=>N. 2*: 201000110 11 000 -

N:012 8 4 5 6 7-.-,
Lo f(1)=0, £(0) =1, f(1) =2, £(00) =3,

For each set 4 and strmg , accordmg to the natural order of 2* we define
Ato={y|y<e and y€E 4},
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The definition of P, NP, P4 NP4 are the same as [1].

Let {P?: i€ N}=PB({NP? ¢€N}=NP?) De a standard enumeration. of the
polynomial time bounded oracle deterministic (non-deterministic). Turing
machines with oracle set B, and we let {P:: 4€N} be a recursive sequence of
polynomlale such that P; bounds the run time of P? (N PB) for each oracle B. when
B=¢, P{, P* N P‘* and N P“ are abbrevialed to P,, P, N P‘, and NP respectlvely.

Wosay =

A<£ B if 3 such that A— PP,

A<NP B if 3¢ such that A=NP?,

=p B iff A< B and B<p 4

NPB ift A<N? Band B<h? 4,

T
A<£ B iff A<y, B and B{T

Al B g Agl B and BegT
NP
T
We use Gode] numbermg of N—>N*, Whlch can be encoded and decoded wfuhm
polynomlal gteps.
- N—>N* means t—>(4, j, k, 1) where = (q,, 4, k, 1) denotes ( ((o, P, k), 1)..
For every number n, » denobes the n—th string in the natural order of 2" i e.
We encode each finite sequence of bmary strings @y, «*-, @, into the binary
. string (@4, *+, @,) that is obtained from the string z:* «-:* o, (over the. alp]iabet»
{0, 1, *})‘ by reblacing eadh occurence of 0, 1, = 1oy 00, 01, and 11, respectively.
Both the enoodmg and decoding can bhe performed in tune bounded above by a
linear function of || - -+ [a;,,,l Note thal la;,l <] (a;i, . a;,,.)] for every ¢<m.
Suppose B is a given oracle, we define the followmg \
A set A is P—mltotlc in PBif A € P? and there are two sets o0, D EPB,such that

OUD=A4, OND=4, 0—5 A—P D, We say tha,t (0, D) is a P-mitotic sphttmg

of A, ,
A sot 4 is N P-mitotio in NP? if there are sets O, D € NP such that O UD= A,

A<NP By A< NPBa a BT

OND=0 and O= =NP DE% P 4. We eay (0, D) isan N P——mito’ﬁic splitbing of A.

A sob A is NP-non—mitotic in N.P? if for all o, De NP3, (0, D) is ot an
N P—-mitotic sphttmg of A, S » ‘.
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A et 4 is P—non—m.ltotlc in P38 if for all O, D GPB (O D) is not the P-mitotic
18p1113131ng of A, o S L : AR
The existence of P-mitotic seb is trivial. In particular, in class P, for all

ACP, ¢, A spllt A and qS:P A:P A (We can oompute A within polynomlal

steps without oraele) : .
The existence of N P—mitotic set is 'hl‘lVlal For each sob A 1f A is P—ml‘uotlo
then A is N P-mitotic.

§2. Another Dense Result

R. E: Ladner’s density result™ tells us that for all 4, B, if A<T Band 4, B

P P p

are computable, then there ex1st oomputable sebs 01 and Oy such that 4< T o< T

for =0, 1, and B_TOOC-BOi, ‘where -

1 ifsCd, |
A@B(zﬁ)={0* lfng ;'A+B(2w+:,1)={,0 if e B,

Usmg the method of coding strategy which encodes a segment of strings of A

1 ifs€B,

into a piece of D, we prove the followmg theorem
Theorem 2.1. For all sets 4, B, O suoh that O<T B<T A tkefre emsts a set - D
such that 0<1y D<E 4 and DIP

- (In partlcular if NP+ P, such A4, 'B 'O exish, according to [1], we get an .
oracle H, Whlch is recusive, such that PE #N PZ and clearly, in such NP”, A4, B, O
exist.) :

Proof We construct D in such a Way that for every JEN, the followmg
requirement is satisfied:" "

R;: _7 4/1, A%P?, j= 4q,+1 D#P‘, j=4i+2, B+ PP, j=4i+3, D#P?,

let Do—{(O, w)ImEO}, no=0 ‘
COonstruction of D :
stage j o
 j=44 (satisfy A+PP)
lob o=y (A(y) % PP() and |y >, |
where uyP (@4, +++, @y, y) means the least y such that the property P(wi, ++, a, y)
holds with respect o the standard enumerations of the strings.

(Such Y ex1sts otherwase A< T o U a finite set i.e, A<£ O, This oontradlcts

the fact O<T A)
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0' <
Dinl-i—Di’
j=46+1 (satisfy D#P")

let A;—{(q,—i-l @) IwEA and ]| >n;}. Olearly A,\I;A.
lot o= M/(A;((@+1 v)) %P"((%+1 y)) and |?/l >m)
(Such & exists, otherwise A< ?ZZ,DO . This conpra.dicts the fact. O <T A) .

let ‘Ib;+1=.?'bj+ = Pi(lyl)

lot ;41 =_'rbf+ O,"J§<‘m Py(| (G+1, ) ]),
Api={(G+1, o) |s€ A and |@| >nj.},
Djsa=D;U (4;= 4jsa). S :
j= 4@+2 (satlsfy B#P}) letw M/(B(y)#PD’(y) and lyl>m)
(Such @ exmts othermse B<£ O U a ﬁmte set, i. e, B< T 0 This eontradwts '_
the fact (e] <T B)
let n?+1=nj+ On,§<;’atly, )
D;y1=D;..
/ j=4i+3 (satisfy D#PB)

let 4; = {(i+1, w)leA and |w|>rbj} N
lot o=juy (As((i+1, 9)) #PF((i+1, 9)) and lyl>n)

(Sueh  exists, otherwise A<< 53‘. This contrad ets the fact B<T Ao ‘
let njp1=m;+ O”szé'w P.(|G+1, ) ]), |
Apa={(+1, o) [s€ A and |o]| >}ty - -
Dj,1=D;U (A‘—AH')
End of the construction of D, D= U D;.

IR

Glearly, for every 4, Rj has received attentlon and no strmg querled by the |
oracle machme restra,med from D is later added to 01 deleted from D. We can

oonclude that O<£ D, ‘

I+ is sufficient to show that D<£ A,
Lenima 2.2, D\T A.

Proof First we define the following:
In—f= {(]6+1 w) ]n4;0+1< ]cv[ SNygpa O Nypps < Iml <n4k+4}’
In—segment ——U In—k. : ef 7

For eeach @, where o= (4, y),



474 .. CHIN. ANN. OF MATH.  : o Vol. 9 Ser. B

: if §=0, :
then x GD iff y E 0. We can decide 1f yEo Wl'bhin polynomlal steps wﬂah oracle set

A (because O< T B<T 4),

. If 40, ‘ ,
- then we can declde if » 8 in In—geament Wlthm lyl sbeps accordmg to the
constructlon . '

o €D iff 5 € In-segment and y € 4.

It follows that D< gA. The proof of Theorem 2.1 is eom'pletéd

" Corollary 2.8. For all sets A, O, B =1, -+, n, such that 0\5 B,<113 4, j=

1, -, m, thefre exists a seb Bo such that O <£ Bo<£,,) A and Bo T B., i=1,

Proof Usmg the same method as Theorem 2 1 we can construct such By
‘piecewisely. We construct B, in such a way that for every k €N, the followmg
Tequirement is satisfied:

R;: j=(2n+2)k: A#=Pp
= (2n+2)k+1: Bo#Pg, ‘
j=Cn+2)k+24: Bi#PE, =1, 2, « n,
j= (2’)’b+2)]6+2’11+1 BoaéPB‘
‘We omit the detall

§8. The Existence of P (NP)-non-mitotic Set
in Relativized Classes P and NP

Theorem 8. 1. There is a recursive oracle B such that there s a set A such that
AEP" and 4 is P-non-mitotio. - .
" Proof 'We construct A=2B,
We let B; contain the elements of B at the the end of the stage ¢. i.e. B, 1s the
approxuna,tlon of B at the end of the stage 2 ,
'We can construet B in such a way that the followmg requlrements are
satisfied: : \
‘ for all #: Ry t= (z, g, k, 1), at least one of the followihg is not true:
1) PEUPE=
(2) PPNP}= ¢,
(8) B=P77,
(4) B=pri; : ,
The construction of B. let mg=0, By=0,
stage t+1 t+1= (4, 4, k, 1) (satisfy R;).
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lob m;=max {‘nt; .’p&(‘nt)r 2i(ne), 2i(Pu(me)), 03 (P1(me))} + 1,
4f there exists a string o, where |o|<m, such that 4
@ (PFUPP) @) #B@) |
or (2) «€PFNPH
or (3) Bi(e) #Pf¥ (o)
or (4) B,(z)+Pr¥ (o), :
‘then we restrain the strings which were asked in the (1)-—(4) computatlon
fromiB and let my,1=max {m:, pi([2]), &:(|2]), pi(pu(l])), Pi@i(lwl))}
If (1)— (4) are not true, then the followmg holds:
(PP PPe) Mme = B,
and P? N PP fme =@
“and B; T’"‘=P:‘%1"." ‘
and B, Mm=P; 7} 1m, .
‘We enumerate string O™ into B, i.e. Byyy=B; U {0""}-‘. There are two cases:
Oas_e 1 P¢ and P{ really split B. One of PF and P} must accept 0™, but nof
both, ‘
If 0™ enters P,B, then PB [1me s PF [‘1'"‘ therefore P, r#B via O™,
If 0™ enters P}, then
Py 4B via o,
et T4y = My
- Case 2. Pf and PP do not split B via a strmg @, where [o] <m,.

We seb'n;,3 =max {m,, Pi(|]), :(le)}+1
End of the ‘consructionres Finally we leb B= L#Bt

:From the construction it is olear that when R, has received attention, it can
not be destroyed forever. All R, has received attention in the eonstruction,
Therefore B is the required set and orale,

Theorem 8.2. There is a recursive omcle B, such that there is a set A, A€ N PB=
PEand A s N P—mn—mwtotw

Pfroof We will construct B sueh that 4= {0"| There is 'a strmg @, suoh that

{#| =n and € B} and B satisfies the following requirements: |
o for allteN -

Ry (NP-non-mitotio requirement), where ¢= (3, j, k1), at lea.sb one of the
following is not true:

(1) NPPUNP}=4,

(2) NPENNPP=g,

(3) A=NP;",
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4 A= NPQ’?’».Q.,
S A+=NPZ,

- The priority of the reqmrements is Ro;S'oR 191 RaS5eee.
Wesay S, R; requlre a.ttentlon if they have not recaived a’ﬁ’oenhon
We say S:, R; are satbisfied if they have already recelved attentlon

‘ le constructwn of B
: let Bo= (]S.

stages - - | :
s+l= 2(t+1) (R; recelves attentlon) t—l—l (w, G lc l), : v
‘ lob my=max{n;, pi(n), 2;(ne), pi(px (”t)): 2 (pu(m )} +1e
If there exists a string @, where || <m;, such thab
(1) NPPUNPP@)#4,@) |

or (2) s€NPNNP}

or (8) 4(a)=NP "(a)

or (4) A(2) ANP (@),
then we s‘et' s - : RS -
 nea=max{my, pi(|2]), p:(|2]), pi(pe(|2])), 052 (|2])} +1.
(Clearly, in this step, we restrain all strings that will destroy the computatlon of

the string & from B).
If such » does not exist, the following is true:
NP”s UNPB' Mme= 4, M™ and NP?P: N NPBﬂf 1™ =
@ { . ey
cand A [‘1""—1\7 P, }M™ and A, M1™=NDP; rl""
then we enumerate 0™ into B, i.6. B,.1=B;U {0™}. There are two cases:
Case 1 NP and NP7 really split. 4, one of the NP+, NPj* must remains
nnchanged becauSe 0" ¢an only enter one of them, : : '
- If O enters N PB (N PB), then :
N aéB via O™ (N ol ? £B via 0"');,
1et Nogd =My, e
Caso 2 NPB*" Un. PB’" rl'”'%A,H fl"" via a strmg @, where le <mg.
leb neys =max{my, pi(|a|), ps( lwl)}+1
+1 2t+1 (Satisty S;) . :
Choose n>>n, s0 large that p (n) <2” run query machine p, Wlth oracle B, om
input 07, If p vacogpts'()"‘ then place nothing into B at this stage.
If pPs rejects 0", then add to B the leash string @ of length n not queried during.
the computation of pf** on input 07 i.e, Bey=B,U {}.
End of the construction Fnially we let B=|_] B,.

SEN -
It is clear that for all 4, By, S; receive attention and are not destroyed by other
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:requirements Theiefoi'e AENP2-P? and A has NP- -non-mitotio property
I would like o thank professor Yang Dongping for his gu1dance Thanks are.
also due to MJSS Xu qumg for some helpful d1sousswns
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