THE STRUCTURE OF RELATIVIZED P AND NP QUESTIONS

YE HHNG (叶 红)*

Abstract

First, based on the work of [5] a new property on the structure of P and NP is proved. Then, using the notions of mitotic and non-mitotic defined by R. E. Ladner^[6], the author defines similar concepts in the relativized classes P^x , NP^x and constructs a recursive oracle. In the constructions, an NP-non-mitotic set is obtained by using the simple priority argument and the coding strategy which Robert I. Soare^[8] used to prove the density results in the r.e. degrees.

§1. Introduction

Since [1] introduced the relativized P and NP problems, many questions which are quite difficult to deal with in P and NP have been solved in relativized classes P^{x} and NP^{x} .

Almost at the same time of [1], [5] introduced the structure of the degree of P and NP.

We will prove some new results on the structure of relativized classes P^x and NP^x .

In this section, we will give some notations.

We fix the alphabet $\Sigma = \{0, 1\}$ as the alphabet in which all (P)NP sets are encoded, so that a (P)NP set is simply a subset of Σ^* .

Let < be the natural order on Σ^* ($\lambda < 0 < 1 < 00 < 01 < 10 < 11 < 000 < \cdots$), where λ represents the empty string.

If $x \in \Sigma^*$, we let |x| denote the length of x.

We define a 1-1 and on-to function f which maps Σ^* into N as follows: $f: \Sigma^* \rightarrow N$. $\Sigma^*: \lambda \ 0 \ 1 \ 00 \ 01 \ 10 \ 11 \ 000 \ \cdots$.

 $N: 0 1 2 3 4 5 6 7 \cdots$

i. e. $f(\lambda) = 0$, f(0) = 1, f(1) = 2, f(00) = 3, ...

For each set A and string x, according to the natural order of Σ^* we define

 $A \mid x = \{y \mid y \le x \text{ and } y \in A\}.$

Manuscript ereceived August 17, 1985. Revised January 2, 1987.

^{*} Department of Computer Sciece and Technology, Beijing University, Beijing, China.

The definition of P, NP, P^{A} , NP^{A} are the same as [1].

Let $\{P_i^B: i \in N\} = P^B(\{NP_i^B: i \in N\} = NP^B)$ be a standard enumeration of the polynomial time bounded oracle deterministic (non-deterministic). Turing machines with oracle set B, and we let $\{P_i: i \in N\}$ be a recursive sequence of polynomials such that P_i bounds the run time of $P_i^B(NP_i^B)$ for each oracle B, when $B = \phi$, P_i^{ϕ} , P_i^{ϕ} , and NP_i^{ϕ} are abbreviated to P_i , P_i^{ϕ} , P_i^{ϕ} , and P_i^{ϕ} respectively.

We say

$$A \leqslant_T^P B \text{ if } \exists i \text{ such that } A = P_i^B,$$

$$A \leqslant_T^{NP} B \text{ if } \exists i \text{ such that } A = NP_i^B,$$

$$A \equiv_T^P B \text{ iff } A \leqslant_T^P B \text{ and } B \leqslant_T^P A,$$

$$A \equiv_T^{NP} B \text{ iff } A \leqslant_T^{NP} B \text{ and } B \leqslant_T^{NP} A,$$

$$A \leqslant_T^P B \text{ iff } A \leqslant_T^P B \text{ and } B \leqslant_T^P A,$$

$$A \leqslant_T^P B \text{ iff } A \leqslant_T^P B \text{ and } B \leqslant_T^P A,$$

$$A \leqslant_T^{NP} B \text{ iff } A \leqslant_T^{NP} B \text{ and } B \leqslant_T^P A,$$

$$A \leqslant_T^{NP} B \text{ iff } A \leqslant_T^{NP} B \text{ and } B \leqslant_T^{NP} A.$$

We use Gödel numbering of $N \rightarrow N^4$, Which can be encoded and decoded within polynomial steps.

 $N \rightarrow N^4$ means $t \rightarrow (i, j, k, l)$ where t = (i, j, k, l) denotes (((i, j), k), l).

For every number \underline{n} , n denotes the n-th string in the natural order of Σ^* , i. e. $f(\underline{n}) = n$.

We encode each finite sequence of binary strings x_1, \dots, x_m into the binary string (x_1, \dots, x_m) that is obtained from the string $x_1^* \dots^* x_m$ (over the alphabet $\{0, 1, *\}$) by replacing each occurrence of 0, 1, * by 00, 01, and 11, respectively.

Both the encoding and decoding can be performed in time bounded above by a linear function of $|x_1| + \cdots + |x_m|$. Note that $|x_i| < |(x_1, \dots, x_m)|$ for every $i \le m$.

Suppose B is a given oracle, we define the following:

A set A is P-mitotic in P^B if $A \in P^B$ and there are two sets C, $D \in P^B$, such that $C \cup D = A$, $C \cap D = \emptyset$, $C \equiv_T^P A \equiv_T^P D$. We say that (C, D) is a P-mitotic splitting of A,

A set A is NP-mitotic in NP^B if there are sets C, $D \in NP^B$ such that $C \cup D = A$, $C \cap D = \emptyset$ and $C = \stackrel{NP}{T} D = \stackrel{NP}{T} A$. We say (C, D) is an NP-mitotic splitting of A.

A set A is NP-non-mitotic in NP^B if for all C, $D \in NP^B$, (C, D) is not an NP-mitotic splitting of A.

A set A is P-non-mitotic in P^B if for all C, $D \in P^B$, (C, D) is not the P-mitotic splitting of A.

The existence of P-mitotic set is trivial. In particular, in class P, for all $A \in P$, ϕ , A split A and $\phi \equiv_T^P A \equiv_T^P A$ (We can compute A within polynomial steps without oracle).

The existence of NP-mitotic set is trivial. For each set A, if A is P-mitotic then A is NP-mitotic.

§ 2. Another Dense Result

R. E. Ladner's density result^[5] tells us that for all A, B, if $A <_T^P B$ and A, B are computable, then there exist computable sets C_1 and C_2 such that $A <_T^P C_i <_T^P B$ for i = 0, 1, and $B \equiv_T C_0 \oplus C_1$, where

$$A \oplus B(2x) = egin{cases} 1 & ext{if } x \in A, \ 0 & ext{if } x
otin A, \end{cases} A + B(2x+1) = egin{cases} 1 & ext{if } x \in B, \ 0 & ext{if } x
otin B. \end{cases}$$

Using the method of coding strategy which encodes a segment of strings of A into a piece of D, we prove the following theorem.

Theorem 2.1. For all sets A, B, C such that $C < T^P B < T^P A$ there exists a set D such that $C < T^P B < T^P A$ and $D \mid_T B$.

(In particular, if $NP \neq P$, such A, B, C exist, according to [1], we get an oracle E, which is recusive, such that $P^E \neq NP^E$ and clearly, in such NP^B , A, B, C exist.)

Proof We construct D in such a way that for every $j \in N$, the following requirement is satisfied:

$$R_{i}$$
: $j=4i$, $A \neq P_{i}^{D}$, $j=4i+1$, $D \neq P_{i}^{C}$, $j=4i+2$, $B \neq P_{i}^{D}$, $j=4i+3$, $D \neq P_{i}^{B}$, let $D_{0} = \{(\underline{0}, x) \mid x \in C\}$, $n_{0} = 0$.

Construction of D
stage j

$$j=4i$$
 (satisfy $A \neq P_i^D$)

let
$$x = \mu y(A(y) \neq P_i^{D_j}(y)$$
 and $|y| > n_i)$,

where $\mu y P(x_1, \dots, x_n, y)$ means the least y such that the property $P(x_1, \dots, x_n, y)$ holds with respect to the standard enumerations of the strings.

(Such y exists, otherwise $A \leq_T^P C \cup a$ finite set, i.e. $A \leq_T^P C$. This contradicts the fact $C <_T^P A$.)

let
$$n_{j+1} = n_j + \sum_{0^n j < y < x} P_i(|y|)$$
 $D_{j+1} = D_j,$

j=4i+1 (satisfy $D\neq P_i^c$)

let
$$A_j = \{(\underline{i+1}, x) | x \in A \text{ and } |x| > n_j \}$$
. Clearly $A_j \leqslant_T^P A_{\bullet}$

let
$$x = \mu y (A_i((\underline{i+1}, y)) \neq P_i^{\sigma}((\underline{i+1}, y))$$
 and $|y| > n_i)$

(Such x exists, otherwise $A \leq_T^P C$. This contradicts the fact $C <_T^P A$).

$$\begin{split} & \text{let } n_{j+1} = n_j + \sum_{0^{n_j < y < x}} P_i(\mid (\underline{i+1}, \ y) \mid), \\ & A_{j+1} = \{ (\underline{i+1}, \ x) \mid x \in A \text{ and } \mid x \mid > n_{j+1} \}, \\ & D_{j+1} = D_j \cup (A_j - A_{j+1}). \end{split}$$

j=4i+2 (satisfy $B \neq P_i^p$) let $x=\mu y(B(y) \neq P_i^{p_j}(y))$ and $|y|>n_j$).

(Such x exists, otherwise $B \leqslant_T^P C \cup a$ finite set, i. e. $B \leqslant_T^P C$. This contradicts the fact $C <_T^P B$).

let
$$n_{j+1} = n_j + \sum_{0^{n_{j}} < y \leq x} P_i(|y|),$$

$$D_{j+1}=D_{j}$$
.

j=4i+3 (satisfy $D \neq P_i^B$)

let
$$A_{j} = \{(\underline{i+1}, x) | x \in A \text{ and } |x| > n_{j} \}.$$

let $x = \mu y(A_{j}((\underline{i+1}, y)) \neq P_{i}^{B}((\underline{i+1}, y)) \text{ and } |y| > n_{j})$

(Such x exists, otherwise $A \leq_T^P B$. This contradicts the fact $B <_T^P A$).

let
$$n_{j+1} = n_j + \sum_{0^n, i < y \le x} P_i(|(i+1, y)|),$$

 $A_{j+1} = \{(\underline{i+1}, x) | x \in A \text{ and } |x| > n_{j+1}\},$
 $D_{j+1} = D_j \cup (A_j - A_{j+1}).$

End of the construction of D, $D = \bigcup_{i=1}^{\infty} D_{i}$.

Clearly, for every j, R_j has received attention and no string queried by the oracle machine restrained from D is later added to or deleted from D. We can conclude that $C \leqslant_T^P D$.

It is sufficient to show that $D \leqslant_T^{\mathbf{P}} A$.

Lemma 2.2. $D \leq_T^P A$.

Proof First we define the following:

$$In-k = \{(\underline{k+1}, x) \mid n_{4k+1} < |x| \le n_{4k+2} \text{ or } n_{4k+3} < |x| \le n_{4k+4} \},$$
 $In-\text{segment} = \bigcup_{k} In-k.$

For eeach x, where $x = (\underline{i}, y)$,

if
$$\underline{i} = \underline{0}$$
,

then $x \in D$ iff $y \in C$. We can decide if $y \in C$ within polynomial steps with oracle set A (because $C \leq_T^P B \leq_T^P A$),

If
$$i \neq 0$$
,

then we can decide if x is in In-segment within |y| steps according to the construction.

 $x \in D$ iff $x \in In$ -segment and $y \in A$.

It follows that $D \leq_T^P A$. The proof of Theorem 2.1 is completed.

Corollary 2.3. For all sets A, C, B, $i=1, \dots, n$, such that $C <_T^P B_i <_T^P A$, $i=1, \dots, n$, there exists a set B_0 such that $C <_T^P B_0 <_T^P A$ and $B_0 \mid_{T}^P B_i$, $i=1, \dots, n$.

Proof Using the same method as Theorem 2.1 we can construct such B_0 piecewisely. We construct B_0 in such a way that for every $k \in \mathbb{N}$, the following requirement is satisfied:

$$\begin{array}{ll} R_{j} \colon \ j = (2n+2)k \colon & A \neq P_{k}^{B_{\bullet}}, \\ j = (2n+2)k + 1 \colon & B_{0} \neq P_{k}^{G}, \\ j = (2n+2)k + 2i \colon & B_{i} \neq P_{k}^{B_{\bullet}}, \quad i = 1, \ 2, \ \cdots, \ n, \\ j = (2n+2)k + 2i + 1 \colon & B_{0} \neq P_{k}^{B_{\bullet}}. \end{array}$$

We omit the detail.

§3. The Existence of P(NP)-non-mitotic Set in Relativized Classes P and NP

Theorem 3.1. There is a recursive oracle B such that there is a set A such that $A \in P^B$ and A is P-non-mitotic.

Proof We construct A = B.

We let B_t contain the elements of B at the end of the stage t, i.e. B_t is the approximation of B at the end of the stage t.

We can construct B in such a way that the following requirements are satisfied:

for all t: R_t : t = (i, j, k, l), at least one of the following is not true:

- $(1) P_i^B \cup P_i^B = B,$
- (2) $P_i^B \cap P_i^B = \emptyset$,
- (3) $B = P_k^{P_k}$
- (4) $B = P_{i}^{p_{i}}$

The construction of B. let $n_0 = 0$, $B_0 = \emptyset$. stage t+1 t+1 = (i, j, k, l) (satisfy R_t). let $m_t = \max \{n_t, p_i(n_t), p_i(n_t), p_i(p_k(n_t)), p_j(p_l(n_t))\} + 1$.

if there exists a string x, where $|x| \leq m_t$, such that

- (1) $(P_i^{B_t} \cup P_j^{B_t})(x) \neq B_t(x)$
- or (2) $x \in P_i^{B_t} \cap P_i^{B_t}$
- or (3) $B_t(x) \neq P_k^{P_t^{n_t}}(x)$
- or (4) $B_t(x) \neq P_l^{p_{j_t}}(x)$,

then we restrain the strings which were asked in the (1)—(4) computation from iB and let $n_{t+1}=\max\{m_t, p_i(|x|), p_j(|x|), p_i(p_k(|x|)), p_j(p_1(|x|))\}$.

If (1)—(4) are not true, then the following helds:

$$(P_i^{B_t} \cup P_j^{B_t}) \mid 1^{m_t} = B_t \mid 1^{m_t}$$
and
$$P_i^{B_t} \cap P_j^{B_t} \mid^{m_t} = \emptyset$$
and
$$B_t \mid^{m_t} = P_b^{P_i^{p_t}} 1^{m_t}$$
and
$$B_t \mid 1^{m_t} = P_l^{P_j^{p_t}} \mid 1^{m_t}.$$

We enumerate string 0^{n_t} into B, i.e. $B_{t+1} = B_t \cup \{0^{n_t}\}$. There are two cases:

Case 1 P_i^B and P_j^B really split B. One of P_i^B and P_j^B must accept 0^{n_t} , but not both.

If 0^{n_t} enters P_i^B , then $P_j^B \mid 1^{m_t} \neq P_j^{B_t} \mid 1^{m_t}$, therefore $P_i^{P_j^B} \neq B$ via 0^{n_t} .

If 0^{n_i} enters P_i^B , then

$$P_k^{P_i^B} \neq B \text{ via } 0^{n_i}$$

let $n_{t+1} = m_t$.

Case 2 P_i^B and P_i^B do not split B via a string x, where $|x| \leq m_{i\bullet}$

We set
$$n_{t+1} = \max \{m_t, P_i(|x|), P_i(|x|)\} + 1$$
,

End of the constructionres Finally we let $B = \bigcup_{t \in N} B_t$.

From the construction it is clear that when R_t has received attention, it can not be destroyed forever. All R_t has received attention in the construction. Therefore B is the required set and orale.

Theorem 3.2. There is a recursive oracle B, such that there is a set A, $A \in NP^B$ and A is NP-non-mitotic.

Proof We will construct B such that $A = \{0^n | \text{ There is a string } x$, such that |x| = n and $x \in B\}$ and B satisfies the following requirements:

for all $t \in N$

 R_t : (NP-non-mitotic requirement), where t = (i, j, k, l), at least one of the following is not true:

- (1) $NP_i^B \cup NP_i^B = A$
- (2) $NP_i^B \cap NP_j^B = \emptyset$,
- $(3) A = NP_k^{NP_i^2},$

$$(4) \quad A = NP_1^{NP_j^n}.$$

 $S_t: A \neq NP_t^B$.

The priority of the requirements is $R_0S_0R_1S_1R_2S_2\cdots$.

We say S_t , R_t require attention if they have not received attention.

We say S_t , R_t are satisfied if they have already received attention.

The construction of B

let
$$B_0 = \phi$$
.

stage s

s+1=2(t+1) (R_t receives attention) t+1=(i, j, k, l),

let
$$m_t = \max\{n_t, p_i(n_t), p_j(n_t), p_i(p_k(n_t)), p_j(p_l(n_t))\} + 1_{\bullet}$$

If there exists a string x, where $|x| \leq m_t$, such that

$$(1) NP_i^{B_s} \cup NP_j^{B_i}(x) \neq A_s(x)$$

or (2)
$$x \in NP_i^{B_s} \cap NP_j^{B_s}$$

or (3)
$$A_s(x) \neq NP_k^{NP_i^{n_s}}(x)$$

or (4)
$$A_s(x) \neq NP_l^{NP_j^{p_s}}(x)$$

then we set

$$n_{s+1} = \max\{m_t, p_i(|x|), p_j(|x|), p_j(p_k(|x|)), p_j(p_l(|x|))\} + 1.$$

(Clearly, in this step, we restrain all strings that will destroy the computation of the string x from B).

If such x does not exist, the following is true:

$$(#) \begin{cases} NP_i^{B_s} \bigcup NP_j^{B_s} \upharpoonright 1^{m_t} = A_s \upharpoonright 1^{m_t} \text{ and } NP_i^{B_s} \cap NP_j^{B_s} \upharpoonright 1^{m_t} = \emptyset, \\ \text{and } A_s \upharpoonright 1^{m_t} = NP_k^{NP_j^{q_s}} \upharpoonright 1^{m_t} \text{ and } A_s \upharpoonright 1^{m_t} = NP_i^{NP_j^{q_s}} \upharpoonright 1^{m_t}, \end{cases}$$

then we enumerate 0^{n_s} into B, i.e. $B_{s+1} = B_s \cup \{0^{n_s}\}$. There are two cases:

Case 1 NP_i^B and NP_i^B really split A, one of the $NP_i^{B_{s+1}}$, $NP_i^{B_{s+1}}$ must remains unchanged because 0^{n_s} can only enter one of them.

If 0^{n_s} enters $NP_i^B(NP_i^B)$, then

$$NP_l^{NP_j^n} \neq B \text{ via } 0^{n_t} (NP_k^{NP_i^n} \neq B \text{ via } 0^{n_t}),$$

let $n_{s+1} = m_t$.

Case 2 $NP_i^{B_{s+1}} \cup NP_j^{B_{s+1}} \upharpoonright 1^{m_s} \neq A_{s+1} \upharpoonright 1^{m_s}$ via a string x, where $|x| \leq m_t$.

let
$$n_{s+1} = \max\{m_t, p_i(|x|), p_i(|x|)\} + 1$$
.

+1=2t+1 (Satisfy S_t)

Choose $n > n_s$ so large that $p_t(n) < 2^n$, run query machine p_t with oracle B_s on input 0^n . If $p_t^{B_s}$ accepts 0^n , then place nothing into B at this stage.

If $p_t^{B_s}$ rejects 0^n , then add to B the least string x of length n not queried during the computation of $p_t^{B_s}$ on input 0^n , i.e. $B_{s+1} = B_s \cup \{x\}$.

End of the construction Finially we let $B = \bigcup_{s \in N} B_s$.

It is clear that for all t, R_t , S_t receive attention and are not destroyed by other

requirements. Therefore $A \in NP^B-P^B$ and A has NP-non-mitotic property.

I would like to thank professor Yang Dongping for his guidance. Thanks are also due to Miss Xu Yiqing for some helpful discussions.

References

- [1] Theodore Baker, John Gill and Robert Solovay, Relativizations of the P=? NP Questions, SIAM J. Comput., 4: 4(1975), 431—442.
- [2] Timothy, J. Long, Strong nondeterministic polynomial-time reducibility, *Theoretical Computer Science*, 21(1982), 1—25.
- [3] Robert, I. Soare, Recursively enumerable sets and degrees: The study of computable functions and computable generated sets.
- [4] Steven Homer & Wolfgang Maass, Oracle dependent properties of the lattice of NP sets.
- [5] Ladner, R. E., On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22(1975), 155-171.
- [6] Ladner, R. E., Mitotic recursively enumerable sets, J. Symbolic Logic, 38: 2(1973), 199-211.