董莲莲,王培合,温玉亮.偶数维Riemannian流形的直径估计[J].数学年刊A辑,2009,30(6):787~792
偶数维Riemannian流形的直径估计
Received:December 31, 2008  
DOI:
中文关键词:  直径, 体积比较定理, Hausdorff收敛
英文关键词:Diameter, Volume comparison theorem, Hausdorff convergence
基金项目:
Author NameAffiliationE-mail
DONG Lianlian School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China. lianlian198282@163.com 
WANG Peihe School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China. peihewang@hotmail.com 
WEN Yuliang Department of Mathematics, East China Normal University, Shanghai 200062, China. ylwen@math.ecnu.edu.cn 
Hits: 2645
Download times: 2311
中文摘要:
      M2n是2n维紧致无边单连通的Riemannian流形, S2n为欧氏空间R2n+1中的单位球面. 探讨了满足截面曲率KM∈(0,1], 体积 0< V(M)≤2(1+η)V(B) 的流形M2n的直径估计,这里η是某个仅依赖于n的正数, BS2n上半径为?π的测地球,并且给出了这类流形上的一个gap现象及流形上Laplacian算子第一特征值的一个下界估计.
英文摘要:
      Let M2n be a 2n-dimensional compact, simply connected Riemannian manifold without boundary and S2n be the unit sphere in Euclidean space R2n+1. The authors derive an estimate of the diameter in this note whenever the manifold concerned satisfies that the sectional curvature KM varies in (0,1] and the volume V(M) is not larger than 2(1+η)V(B) for some positive number η depending only on n, where B is the geodesic ball on S2n with radius ?π. A gap phenomenon of the manifold concerned is given and finally a lower bound of the first eigenvalue of Laplacian operator on manifold M is obtained.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.