XIA DAOXING.[J].数学年刊A辑,1980,1(1):1~7
ON THE CHARACTERISTIC FUNCTION OF SEMI-HYPONORMAL OPERATOR
Received:October 17, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
XIA DAOXING Institute of Mathematics, Fudan University, Shanghai 
Hits: 971
Download times: 1085
中文摘要:
      
英文摘要:
      本文继[3]之后,研究拟亚正常算子和半亚正常算子的特征函数.设\[A = U|A{|_r}\]是\[H{\kern 1pt} {\kern 1pt} \] 上拟亚正常算子,\[U\]是酉算子,\[B = |A{|_ + } - |A{|_ - }\],作算子\[A\]的特征函数\[W(\lambda ,A) = I - {B^{\frac{1}{2}}}{(\lambda I - {A_ - })^{ - 1}}U{B^{\frac{1}{2}}}\] 定理1 设\[A = U|A{|_r}\]及\[{A^'} = {U^'}|{A^'}{|_r}\]为\[\varphi - \]拟亚正常算子而且都是简单的.又设 \[U\]与\[{U^'}|\]是酉算子.如果有酉算\[T\]将\[H\]映照成\[{H^'}\]而且\[|{A^'}{|_ \pm } = T|A{|_ \pm }{T^{ - 1}}\],\[{U^'} = TU{T^{ - 1}}\]那末必有\[{\cal B}(A)\]到\[{\cal B}({A^'}){\kern 1pt} \]上的酉算子\[S{\kern 1pt} {\kern 1pt} \]使当\[\lambda \notin \sigma ({A_ - }) = \sigma (A_ - ^')\]时\[W(\lambda ,{A^'}) = SW(\lambda ,A){S^{ - 1}}\]反之亦真. 下面设\[A\]是半亚正常的.又设\[{\cal D}\]为一辅助的希尔伯特空间,\[K\]为\[{\cal D}\]到\[{\kern 1pt} H\]中的线 性算子使\[Q = |A{|_{\rm{r}}} - |A{|_l} = K{K^*}{\kern 1pt} {\kern 1pt} \],当\[\lambda \in \rho (A)\],\[|Z| \ne 1\]时作 \[Y(z,\lambda ) = I - {\kern 1pt} {\kern 1pt} z{K^*}{(I - z{U^*})^{ - 1}}{(A - \lambda I)^{ - 1}}K\] 定理2设\[A = U|A{|_r}{\kern 1pt} {\kern 1pt} {\kern 1pt} \]及\[{A^'} = {U^'}|{A^'}{|_r}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \]分别是\[H\]与\[{H^'}{\kern 1pt} {\kern 1pt} {\kern 1pt} \]中的半亚正常算子,\[U\]与 \[{U^'}\]是酉算子而且\[A\]与\[{A^'}\]都是简单的.如果存在\[{\cal D} \to {{\cal D}^'}{\kern 1pt} \]上的酉算子\[S\]使 \[{Y^'}(z,\lambda ) = SY(z,\lambda ){S^{ - 1}}\] 那末必有由\[H\]到\[{H^'}{\kern 1pt} {\kern 1pt} {\kern 1pt} \]上的酉算子\[T\]使(1)成立,反之亦真. 定理3 若\[K\]是希尔伯特-许密特算子则\[Y(z,\lambda )\]的行列式(当\[|Z| \ne 1\]时)存在, 且\[\det (Y(z,\lambda )) = \det ((I - z{U^*})(A - \lambda I){(I - z{U^*})^{ - 1}}{(A - \lambda I)^{ - 1}})\] 下面只考虑奇型积分模型这时\[W(\lambda ,A)\]成为乘法算子,\[(W(\lambda ,A)f)({e^{i\theta }}) = W({e^{i\theta }},\lambda )f({e^{i\theta }})\]其中\[W({e^{i\theta }},\lambda ) = I - \alpha ({e^{i\theta }}){(\lambda {e^{i\theta }}I - \beta ({e^{i\theta }}))^{ - 1}}\alpha ({e^{i\theta }})\] 我们又假设\[A\]是完全非正常的.记\[{Y_ \pm }({e^{i\theta }},\lambda )a = \mathop {\lim }\limits_{r \to 1 \pm 0} Y({e^{i\theta }},\lambda )a\] 定理4设\[\lambda \in \rho (A){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \],\[a \in {\cal D}{\kern 1pt} {\kern 1pt} {\kern 1pt} \]为固定的,那末\[{Y_ \pm }({e^{i\theta }},\lambda )a\]为黎曼-希尔伯特问题 \[{Y_ - }({e^{i\theta }},\lambda )a = W({e^{i\theta }},\lambda ){Y_ + }({e^{i\theta }},\lambda )a\] 的解. 设\[{\cal L}({\cal D}{\kern 1pt} {\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} {\kern 1pt} \]为\[{\cal D}{\kern 1pt} {\kern 1pt} {\kern 1pt} \]上线性有界算子全体所成的Banach空间,\[H_ \pm ^p({\cal L}{\kern 1pt} ({\cal D}{\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} \]为单位圆 外,内取值于\[{\cal L}({\cal D}{\kern 1pt} {\kern 1pt} {\kern 1pt} ){\kern 1pt} \]的某些解析函数所成的Hardy空间.设\[f({e^{i\theta }})\]是单位圆周上的函 数,如果有\[{u_ \pm } \in H_ \pm ^p({\cal L}{\kern 1pt} ({\cal D}{\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} (p > 2)\]使\[u_ - ^{ - 1}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \]存在\[{u_ - }{\kern 1pt} {\kern 1pt} {\kern 1pt} {({e^{i\theta }})^{ - 1}}{u_ + }{\kern 1pt} ({e^{i\theta }}) = f({e^{i\theta }})\]则称\[f\]是可分解的.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.