LIAO SHAN TAO.[J].数学年刊A辑,1980,1(1):8~30
ON THE STABILITY CONJECTURE
Received:December 21, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
LIAO SHAN TAO Mathematics Department and Mathematics Irbstitute, Peking university 
Hits: 1043
Download times: 946
中文摘要:
      
英文摘要:
      目前微分动力体系理论中,一个主要问题是问关于离散体系的所谓稳定性推测是否成立.设\[{M^n}\]是一 \[n\]维紧致的\[{C^\infty }\]Riemann流形,\[Dif{f^ \bot }({M^n}{\kern 1pt} )\]是\[{M^n}{\kern 1pt} \]上所有\[{C^1}\]微拓变换作成的空间,赋以\[{C^1}\]拓扑.考虑一任给的\[f \in Dif{f^1}({M^n}{\kern 1pt} ){\kern 1pt} \]这推测说,在\[n \ge 2\]情况下,若\[f\]是结构稳定的,则它满足公理\[A\]及强勻断条件;若\[f\]是\[\Omega - \]稳定的,则它满足公理\[A\]及无环性条件.关于这里出现的名词,例如可参看[18],[19],[14],[4]等.这推测即令在\[n = 2\]情况下,直到最近\[Ma\tilde ne{\kern 1pt} \]才在\[{\kern 1pt} \Omega (f) = {M^2}\]这一強的附加条件下证明过有正面的答案.这里\[\Omega (f)\]表\[f\]的非游荡集. 本文的一个目的是给出这推测在\[n = 2{\kern 1pt} {\kern 1pt} \]情况下的正面答案(没有\[\Omega (f) = {M^2}\]这附加假定).我们的主要结果如下: 定理1命\[f \in Dif{f^1}({M^2}{\kern 1pt} ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \].则:\[f\]结构稳定的必要条件是它满足公理A及强匀断条件;f是稳定的必要条件是它满足公理A及无环性条件. 这些条件的充分性也成立,见以前的[14],[15],[19].这样,我们就得出了\[f \in Dif{f^1}({M^2}{\kern 1pt} ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \]结构稳定与稳定的特征性质. 定理2 \[f \in Dif{f^1}({M^2}{\kern 1pt} ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \]是\[\Omega - \]稳定的,当且仅当它\[ \in {{\cal F}^*}({M^2}{\kern 1pt} )\] 这里\[{{\cal F}^*}({M^n}{\kern 1pt} )\]表所有具有下述性质的\[g \in Dif{f^1}({M^n}{\kern 1pt} ){\kern 1pt} \]作成的集合,即:\[g\]在\[Dif{f^1}({M^n}{\kern 1pt} ){\kern 1pt} {\kern 1pt} {\kern 1pt} \]中有一邻域G使得,每一\[h \in G\]的周期点都是双曲的(或等价地,每一\[h \in G\] 都至多只有可数个周期点)。根据一些周知的论断,容易看出对于\[f \in Dif{f^1}({M^1}{\kern 1pt} ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \],定理2的结论仍然成立.由此可看出,文献[8,383页]中提到的一问题在\[\dim {\kern 1pt} {\kern 1pt} {M^n} \le 2\]情况下的解答是肯定的文献[5,318页]中提到的一推测的微拓变换类比形式的答案也是正面的. 本文大部分内容(在较有限制的情况下)讨论了 \[{M^n}\]上的\[{C^1}\]切向量场,然后借助于通常的扭扩的办法完成上述定理1及2的证明.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.