Ni LUQUN,YAO JINGQI,ZHAO HANZHANG.[J].数学年刊A辑,1980,1(1):63~74
SOME FIXED POINT THEOREMS OF CONTRACTIVETYPE MAPFINGS
Received:July 24, 1978  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
Ni LUQUN institute of Mathematic Academia Sinica 
YAO JINGQI institute of Mathematic Academia Sinica 
ZHAO HANZHANG institute of Mathematic Academia Sinica 
Hits: 1033
Download times: 873
中文摘要:
      
英文摘要:
      1. Let X be the conjugate of a separable Banach space satifying the *-Opial condition, i. e., if \[\{ {x_n}\} \subset x,{x_n}\mathop \to \limits^{{w^*}} {x_\infty },{x_\infty } \ne y\], then\[\mathop {\overline {\lim } }\limits_{n \to \infty } ||{x_n} - {x_\infty }|| < \mathop {\overline {\lim } }\limits_{n \to \infty } ||{x_n} - y||\] for rxample \[X = {l_1}\] Let K be a nonempty weak* closed convex subset of X. The main results are: Theorem 1. Suppose T is a ooniinuons mappings of K into itself such that for every \[x,y \in K\],\[||Tx - Ty|| \le a||x - y|| + b\{ ||x - Tx|| + ||y - Ty||\} + c\{ ||x - Ty|| + ||y - Tx||\} \] where real numbers \[a,b,c \ge 0\] and \[a + 2b + 2c = 1\]. Suppose also K is bounded.Then T has at least one fixed point in K. Theorem 2. Let T be a mapping of K into itself, and \[a(x,y),b(x,y),c(x,y)\]be real functions such that for all\[x,y \in K\] \[||Tx - Ty|| \le a(x,y)||x - y|| + b(x,y)\{ ||x - Tx|| + ||y - Ty||\} + c(x,y)\{ ||x - Ty|| + ||y - Tx||\} \] and \[a(x{\rm{y}},y){\rm{ + }}2b(x,y){\rm{ + }}2c(x,y) \le 1\] Suppose there exists \[x \in K\] such that \[O(x) = \{ {T^n}x\} _{n = 1}^\infty \] is bounded and \[\mathop {\inf }\limits_{y,z \in o(x)} c(y,z) > 0\] Then T has at least one fixed point z in K and \[{T^n}x\mathop \to \limits^{{w^*}} z\]. 2. We denote \[CL(x) = \{ A;nonempty{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} closed{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} subset{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} of{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} X\} \] \[K(x) = A;nonempty{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} closed{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} subset{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} of{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x\} \] here X is a complete metric space with metric d. On \[CL(x)\] and \[K(x)\] we introduce the generalized Hausdorff distance \[H(,)\], The main results are: Theorem 3. Suppose \[\{ T,S\} \] is a pair of set-valued mappings of X into \[CL(x)\],which satisfies the following condition: \[H(Tx,Sy) \le hMax\{ d(x,y),D(x,Tx),D(y,Sy),\frac{1}{2}[D(x,Sy) + D(y,Tx)]\} \] for each \[x,y \in K\], where 0
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.