ko chao,sun chi.[J].数学年刊A辑,1980,1(1):83~89 |
|
|
Received:October 03, 1979 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 504 |
Download times: 727 |
中文摘要: |
|
英文摘要: |
For the Diophantine equation
x^4 — Dy^2 = 1 (1)
where D>0 and is not a perfect square, we prove the following theorems in this paper.
Theorem 1. If D\[{\not \equiv }\]7 (mod 8),D=p1p2...ps,s≥2,where pi(i = 1,…,s) are distincyt primes,p1≡1(mod 4) such that either 2p1=a^2+b^2,а≡\[ \pm \]3(mod 8),b三\[ \pm \]3(mod 8) or there is a j(2≤j≤s), for which Legendre
symbal \[\left( {\frac{{{p_j}}}{{{p_1}}}} \right) = - 1\],and pi≡7(mod8) (i=2,..., s) or pi≡3(mod 8) (i=2,..., s), then (1) has no solutions in positive integer x,y.
Theorem 2. If D=p1...ps,s≥2, where pi(i = 1,…,s) are distinct primes, and pi≡3(mod 4)(i = 1,…,s), then (1) has no solutions in positive integer x, y.
Theorem 3. The equation (1) with D=2p1...ps has no solutions in positive
integer x, y, if
(1) p1≡(mod 4), pi≡7(mod 8) (i = 2, ???, s), snch that either 2p1 = a^2+b^2
a≡\[ \pm \]3(mod 8),b≡\[ \pm \]3(mod 8)or there is a j (2≤j≤s),for which \[\left( {\frac{{{p_j}}}{{{p_1}}}} \right) = - 1\];
or
(2) p1≡5(mod8),pi≡3(mod8) (i = 2,..., s);
or
⑶p1≡5(mod8),pi≡7(mod 8) (i=2,…,s).
Corollary of theorem 3. If D = 2pq, p≡5(mod 8), q≡3(mod 4), where p, q
are distinct primes, then (1) has no solutions in positive integer x, y.
Theorem 4. If D=2p1...ps, pi≡3(mod 4)(0 = 1,...,s), then (1) has no solutions In positive integer x, y. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|